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Why superstring theory?
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Gravity is undoubtedly one of the forces we see in nature

– needed for describing interaction between large objects,
e.g. earth and us, planets and sun, stars, galaxies etc.

Quantum mechanics is a framework needed for describing
interaction between small objects,

e.g. electrons and the nucleus of an atom, protons and
neutrons inside a nucleus.

This makes it clear that a complete description of nature
will have to incorporate gravity in the framework of
quantum mechanics
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During the last 50 years, quantum mechanics has been
extremely successful in describing all other forces we see
in nature

– strong, weak and electromagnetic forces

The framework we use for this is called quantum field
theory

– a theory whose basic ingredients are fields – like the
familiar electric and magnetic fields – but it also leads to
the notion that the constituents of matter are particles

– a consequence of wave-particle duality
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Most commonly used technique in quantum field theory is
‘perturbation theory’

– a Taylor series expansion in powers of interaction
strength, assuming that the interaction strength is low

There is a systematic procedure for computing the
coefficients of the series expansion

– known as Feynman diagram technique
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Examples of Feynman diagrams contributing to a 2 particle
→ 2 particle scattering amplitude:

Draw all possible graphs with four external lines

Quantum field theory gives definite rules for associating
numbers to these diagrams

Diagrams with larger number of loops correspond to terms
that are higher order in the perturbation expansion in
powers of the interaction strength
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There are two equivalent ways of computing these
diagrams, both involving integrals.

1. Integrate over the positions of the vertices

2. Integrate over momenta flowing in the loop

Occasionally we get infinite answer for these integrals

– known as ultraviolet (UV) divergences. 7



The UV divergences come from from the region of
integration where

– the positions of the vertices come close to each other

– or momentum flowing in the loop become large.

Quantum field theory gives us a set of rules for removing
these divergences and getting finite results

– known as renormalization
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Quantum field theories also have ‘Infrared divergences’

– the integrand becomes infinite at some values of
momenta

These represent physical phenomena and can be removed
once we understand their origin

– will be discussed later
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When we try to apply the quantum field theory methods to
gravity, we run into difficulties.

The UV divergences are more severe than in the case of
other forces

– related to the fact that the strength of gravitational force
grows as the momenta carried by the particles increase.

The usual procedure for removing UV divergences fails. 10



String theory replaces the notion of point-like constituents
of matter by string-like constituents of matter

– one dimensional objects

Like a normal musical string, a vibrating string can exist in
many states of vibration, characterized by harmonics,
amplitude and direction of vibration.

In quantum theory, each of these vibrational states
appears as an elementary particle.

According to string theory the different elementary
particles we see in nature are just different vibrational
states of strings

One of them turns out to be the graviton – the mediator of
gravitational force 11



Scattering amplitudes in string theory are described by
different kinds of ‘Feynman diagrams’.

j

j

j

j
The ultraviolet divergences are absent due to the absence
of definite interaction vertices.
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This intuitive idea can be realized explicitly in a baby
version of string theory known as the ‘bosonic string
theory’.

In this theory a g-loop scattering amplitude with n-external
states is given by ∫

Mg,n

I({m}, {Q})

Mg,n: an abstract space labelled by 6g-6+2n coordinates

– known as moduli space of punctured Riemann surfaces.

6g-6 of these coordinates describe the shape of a Riemann
surface with g handles

2n of the coordinates describe the locations of the n holes
where the external strings attach (punctures)
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∫
Mg,n

I({m}, {Q})

The integrand I depends on 6g-6+2n coordinates {m} of
Mg,n and also on the momenta and other quantum numbers
{Q} of the n external states.

I({m}, {Q}) is finite in the interior of the moduli space

⇒ absence of ultraviolet divergences.

There are infrared divergences from the boundaries of Mg,n
(to be discussed later)
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Additional advantages in string theory

• String theory automatically contains gravity

– no need to add gravity as an additional force.

• In quantum field theories, there are many Feynman
diagrams that we need to add for a given number of loops

In contrast string theory has only one term (for a given
number of loops)
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Unfortunately bosonic string theory is not fully consistent
due to the existence of ‘tachyon’

The perturbation theory describes perturbation around the
maximum of a potential

Some day we may find the minimum of the potential and
develop perturbation theory around the minimum, but as of
today, we do not know if there is a minimum.
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This problem is overcome in superstring theory where we
add more modes of vibration to the string

– does not have any instability

– shares the good properties with bosonic string theory,
e.g. inclusion of gravity and ultraviolet finite perturbation
theory

– gives a consistent ultraviolet finite quantum theory of
gravity.

However there were some technical problems in the
perturbation expansion which have been fully resolved
only recently.
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Spurious poles
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g-loop scattering amplitude of m bosonic and 2n fermionic
states has the form∫

Mg,m+2n

I({m}, {Q};y1, · · · ym+n+2g−2)

The integrand I depends on

• 6g-6+2m+4n coordinates {m} of Mg,m+2n

• the momenta and other quantum numbers {Q} of the
external states

• the complex coordinates of (m + n + 2g− 2) additional
points y1, · · · ym+n+2g−2 on the Riemann surface, known as
‘locations of picture changing operators’ Friedan, Martinec, Shenker
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∫
Mg,m+2n

I({m}, {Q};y1, · · · ym+n+2g−2)

The result seems to depend on the spurious data
y1, · · · ym+n+2g−2.

Under a change in the variables yi, the integrand changes
by a total derivative in the variables {m}

The change is zero if we can ignore boundary terms.

There is however a more serious problem.

The integrand has poles in Mg,m+2n whose locations
depend on the yi’s, making the integral ill-defined

Dijkgraaf, Verlinde, Verlinde
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Solution A.S.; A.S., Witten

• Divide Mg,m+2n into a collection of small cells

• In each cell choose the yi’s so that I({m}; {Q}; {y}) does
not have any pole in that cell.

• At the boundary between two cells yi’s jump

We add correction terms at the boundary to compensate
for the jump.
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We also need additional correction terms where the
codimension one boundaries meet on a codimension two
subspaces, and so on

– gives a systematic procedure for computing scattering
amplitudes.

Final result is independent of the choice of the yi’s in each
cell.
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Infrared divergences
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Scattering amplitude∫
Mg,m+2n

I({m}, {Q};y1, · · · ym+n+2g−2)

Mg,N has boundaries where the Riemann surface
degenerates

– the surface develops a narrow neck

Example:

×
×

×
×××
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∫
Mg,m+2n

I({m}, {Q};y1, · · · ym+n+2g−2)

I({m}, {Q};y1, · · · ym+n+2g−2) diverges when {m}
approaches one of these boundaries

⇒ often
∫

Mg,m+2n
I({m}, {Q};y1, · · · ym+n+2g−2) becomes

ill-defined or divergent.

These divergences are analogs of ‘infrared divergences’ in
quantum field theory

– divergences associated with poles in the propagator
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Example:

p1

p2

p1 + p2

p3

p4

In this Feynman diagram the propagator carrying momentum
p1 + p2 contributes

{(p1 + p2)
2 + m2}−1, (p1 + p2)

2 ≡ −(p0
1 + p0

2)
2 + (~p1 + ~p2)

2

– has pole

In string theory this arises from the region of the moduli space
where two punctures approach each other.

×
×

×
×
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However understanding the physical origin of the
divergence does not immediately offer a solution.

Example: Consider the following diagram in a quantum
field theory.

p1 p1 p1

p2

p3

p4

The intermediate propagators carrying momentum p1
contributes (p2

1 + m2)−1.

Usual relation between energy and momentum of the
external state forces us to have

p2
1 + m2 = 0

causing this diagram to diverge. 27



In quantum field theory these divergences are addressed
using mass renormalization.

p p S p p S p S p+ + +· · ·

is resummed as

1
p2 + m2 +

1
p2 + m2 S(p)

1
p2 + m2 + · · · = 1

p2 + m2 − S(p)

We then look for zeroes of p2 + m2 − S(p) and identify that
as ‘renormalized’ mass2.

⇒ converts multiple poles into a single pole which can be
handled by standard quantum field theory tricks.
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In conventional string perturbation theory this option does
not exist.

• Since there is only one term in every loop order, we
cannot isolate divergent contributions at different loop
orders and resum.

• For consistency of the formalism, the value of p2 for
external states is fixed from the beginning, and there is no
option for changing it at the loop order.

Strategy: Combine the good features of string theory with
the good features of quantum field theory

Use string field theory. Witten; Zwiebach; · · ·
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Bosonic string field theory is a quantum field theory with
infinite number of fields with the following properties:

Giddings, Martinec, Witten; Zwiebach; · · ·

• Scattering amplitudes are given by sum of Feynman
diagrams as in a normal quantum field theory

• Contribution from each Feynman diagram may be
expressed as integral over a cell of Mg,N with the correct
integrand

• Sum of all Feynman diagrams gives us integration over
the union of all the cells

– the whole moduli space.
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If we have a superstring field theory, we can follow the
correct rules, e.g. resum self-energy graphs and carry out
mass renormalization to avoid the divergences

- would give a procedure for defining scattering amplitudes
in superstring theory that are free from all divergences.

Main bottleneck: Writing down an action for the ‘Ramond
sector’ fields.

Solved by doubling the number of string fields, with one
copy remaining free even in the full quantum theory A.S.

This gives an action for all superstring field theories
including type IIB string theory

– for this the action is not supposed to exist due to the
existence of a self-dual 5-form field strength! 31



Corollary: This gives a method for writing down an action
for a self dual field in 4n+2 dimensions by adding a free
field that completely decouples from the theory

Field content:

1. A 2n-form field P

2. A (2n+1)-form self-dual field Q ∗Q =Q

3. Other fields φ

Action ∫ [
1
2

dP ∧ ∗dP− dP ∧Q + L(Q, φ)
]
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∫ [
1
2

dP ∧ ∗dP− dP ∧Q + L(Q, φ)
]

Equations of motion:

d(∗dP + dP−Q) = 0, dP− ∗dP + · · · = 0, φ equations

Degrees of freedom contain

– a free self-dual field ∗dP + dP−Q

– an interacting self-dual field dP + · · ·
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Summary and Outlook

We now have a well-defined and unambiguous prescription
for computing scattering amplitudes in superstring theory.

Goal: Make this into a practical tool

– develop codes for computing string scattering
amplitudes to high order

Main bottleneck: A good parametrization of the moduli
space of Riemann surfaces and a good choice of
coordinate system on the Riemann surface.
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Once we have the practical tools and get a few terms in the
perturbation expansion, we can try resummation
techniques to get information beyond perturbation theory
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