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Consider a scattering amplitude of n particles with
momenta {pa} satisfying on-shell condition

p2
a + m2

a = 0, ma > 0

(all momenta ingoing, p2
a ≡ −(p0

a)
2 + ~p 2

a )

Define

sab = −(pa + pb)
2 = m2

a + m2
b − 2pa.pb

In what domain in the complex sab space is the
scattering amplitude analytic?

– useful starting point for studying many other
properties, e.g. crossing symmetry, dispersion
relations etc. 2



How is this studied in local QFT?

Consider the off-shell amputated Green’s function G(p1, · · ·pn)

S(p1, · · ·pn) = G(p1, · · ·pn)|p2
a=−m2

a

We have dropped the Lorentz indices for notational convenience.

Define P(α) =
∑

a∈Aα
pa, Aα ⊂ {1,2, · · · ,n}

Based on the locality of the position space Green’s function one
can show that G(p1, · · ·pn) is analytic in the domain

{Im(P(α)) 6= 0, (Im(P(α)))2 ≤ 0}

or {Im(P(α)) = 0, −P2
(α) < M2

α}, ∀Aα

Mα: Threshold of production of multi-particle states in the
channel Aα 3



G(p1, · · ·pn) is analytic in the domain

{Im(P(α)) 6= 0, (Im(P(α)))
2 ≤ 0}

or {Im(P(α)) = 0, −P2
(α) < M2

α}, ∀Aα

We shall call this the primitive domain of analyticity

We shall now see that this manifold has
zero intersection with the subspace in which external
states are on-shell

p2
a + m2

a = 0 for a = 1,2,· · · ,n
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Proof:
{Im(P(α)) 6= 0, (Im(P(α)))2 ≤ 0}

or {Im(P(α)) = 0, −P2
(α) < M2

α}, ∀Aα

If pa = paR + i paI then

−m2
a = p2

a = p2
aR − p2

aI + 2 i paR.paI

paR.paI = 0 ⇒ p2
aI ≥ 0 or p2

aR ≥ 0 or both ≥ 0

m2
a = p2

aI − p2
aR ⇒ p2

aI > 0

– conflict with first condition

⇒ in order to have intersection with the primitive
domain of analyticity we must have pa real.
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{Im(P(α)) 6= 0, (Im(P(α)))
2 ≤ 0}

or {Im(P(α)) = 0, −P2
(α) < M2

α}, ∀Aα

All pa’s real⇒ P(α) real

But now P(α) below threshold is impossible to satisfy
since we can always produce the incoming states as
intermediate states in any channel

– conflict with second condition

Apparent conclusion: Analyticity of G in the primitive
domain is useless for exploring analyticity properties
of S-matrix
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The way out:

Suppose f(z1, · · · zn) is function of multiple complex
variables, known to be analytic in some domain D.

Without knowing anything else about f, we can often
prove that the function is analytic in an extended
domain D′.

D′ depends only on D and not on f.
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Example

Suppose f(z1, z2) is known to be analytic in D = D1 ∪ D2:

D1 = {1− ε < |z1| < 1, |z2| < 1}, D2 = {1− ε < |z2| < 1, |z1| < 1}

Claim: f(z1, z2) is analytic in

D′ : |z1| < 1, |z2| < 1

Proof: Given (z1, z2) ∈ D′, define

g(z1, z2) =

∫
C

dζ1

ζ1 − z1
f(ζ1, z2), C ∈ 1− ε < |ζ1| < 1

g agrees with f when (z1, z2) lie in D2.

⇒ g is the analytic continuation of f in D′. 8



Using this kind of argument we can extend the domain of
analyticity of G(p1, · · ·pn) beyond the primitive domain.

Jost, Lehmann; Dyson; Bros, Messiah, Stora; · · ·

The extended domain includes points satisfying p2
a + m2

a = 0

– can be used to prove interesting results for 2→ 2 scattering

1. Crossing symmetry: Existence of an analytic continuation
relating Bros, Epstein, Glaser

A + B→ C + D ⇒ A + C̄→ B̄ + D

2. Analyticity of the elastic forward scattering amplitude (t=0) in
the full complex s-plane see Itzykson-Zuber

etc.
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What about in superstring theory?

To follow the same approach we need off-shell Green’s function

– use superstring field theory

Our goal is to prove analyticity of G(p1, · · ·pn) in the primitive
domain D:

{Im(P(α)) 6= 0, (Im(P(α)))2 ≤ 0}

or {Im(P(α)) = 0, −P2
(α) < M2

α}, ∀Aα

We do not have the position space Green’s functions as the
starting point.

Strategy: Try to prove these properties directly in the
momentum space using Feynman diagrams.
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Superstring field theory has infinite number of fields {φα}.

Gauge fixed action:∫
dDk

(2π)D Kαβ(k)φα(k)φβ(−k)

+
∑

n

∫
dDk1

(2π)D · · ·
dDk1

(2π)D (2π)Dδ(D)(k1 + · · ·+ kn)

V(n)
α1···αn (k1, · · · kn)φα1 (k1) · · ·φαn (kn)

Kinetic term Kαβ: quadratic in momentum k

V(n) has exponential suppression factors that makes it
suppressed as k0

i ’s approach ±i∞ and ki
n’s approach ±∞.

Each Feynman diagram is manifestly UV finite as long as the
ends of k0

s integration contours are at ±i∞ and the ends of ki
s

integration contours are at ±∞. 11



Infrared issues

In the presence of massless states S-matrix has infrared
singularities

– need subtraction / regulation

Subtraction:

Replace each internal propagator by (1-P)

P: projection operator to massless fields.

Analyticity will be analyzed for this amplitude

The effect of massless internal states will have to be taken care
of separately. 12



Regulation:

Add mass term for massless particles in the gauge
fixed action.

The regulated amplitude is free from IR singularities,
and one can analyze analyticity of this amplitude.

For D > 4 the regulated amplitude approaches the
actual amplitude for small mass.

From now on we shall proceed by assuming that
there are no strictly zero mass particles in the theory.
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We begin by analyzing G(p1, · · ·pn) at pa = 0 for
a = 1, · · ·n.

Take the loop energy integration contour along
imaginary axis and the integration contour for spatial
components along real axis.

For an internal propagator with momentum `, `0 is
imaginary and `i are real for i ≥ 1.

⇒ `2 + m2 = −(`0)2 + ~̀ 2
+ m2 is strictly positive, and

the integrals are well defined.

Therefore G(p1, · · ·pn) is analytic in the neighborhood
of {pa = 0}
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Distribution of poles in a complex loop energy (k0)
plane

××
××

× ×

⇑ `0 =
√
~̀ 2

+ m2`0 = −
√
~̀ 2

+ m2

As we deform the external momenta {pa} away from 0
the pole positions move.
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If the poles approach the integration contour, we move the
contour away from the poles to avoid singularities, but keep the
ends fixed for UV finiteness.

×
×

Complex k0
s-plane

When a contour is ‘pinched’ by poles from two sides so that we
cannot deform the contour, the integral becomes singular.

Our goal will be to show that this does not happen inside the
primitive domain D.
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We have been able to prove a limited version of the
result in which Im(pa)’s lie in the 0-1 plane

– sufficient to prove all the known analyticity
properties of S-matrix proved for local QFT
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We carry out the analysis in two steps.

1. Keep Im(p1
a) = 0 and deform all other components

of all external momenta from 0 to the desired value
remaining inside D.

Only p0
a’s have imaginary part.

Show that we do not encounter any pinch singularity
during this deformation. 18



2. Deform Im(p1
a) from 0 to the desired value keeping

all other components fixed, and remaining inside D.

Show that we do not encounter a pinch singularity
during this deformation.

A schematic representation of the deformation in
Im(pa) plane:

Im(p0
a)

Im(p1
a)

⇑

⇒

includes deformations of Re(pµ
a )→
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Step 1: Deform all components of pa other than Im(p1
a) to the

desired values, keeping Im(p1
a) fixed at 0.

During this deformation we continue to integrate the spatial
components of loop momenta {ki

s} along the real axis, but allow
the k0

s integration contours to be deformed, keeping their ends
fixed at ±i∞.

×
×

Complex k0
s-plane

Goal: Show that the k0
s contours are never pinched.

To prove this we assume that the k0
s contour is pinched and

show that there is a contradiction. 20



First time we hit a pinch singularity, certain internal
propagators are forced to be on-shell due to pinch.

Associate with the pinch a reduced diagram, obtained
by shrinking to point all propagators not forced to be
on-shell at that point.

For an on-shell propagator carrying momentum `, we
have

`0 = ±
√
~̀ 2

+ m2

Draw an arrow along ` if `0 =

√
~̀ 2

+ m2 and opposite

to ` if `0 = −
√
~̀ 2

+ m2 at the pinch.
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Claim: The arrows in a reduced diagram cannot form a closed
loop

→

↖↓
→

↑ ↗

→

→
↓

k

`1

`2
`3

Let k be the momentum along such a loop and `r (r ∈ B) be the
momenta carried along the arrow by individual propagators.

`r = k + Lr with Lr determined by external momenta and other
loop momenta.

For {pa = 0}, the pole at `0
r =

√
~̀ 2

+ m2 is to the right of k0

integration contour.

This cannot change during the deformation since the poles do
not cross the integration contour. 22



→
↖↓
→

↑ ↗
→

→
↓

k
`1

`2
`3

All the poles in k0 plane are to the right of k0

integration contour at the pinch.

⇒ k0 integration contour is not pinched.

Conclusion: A reduced diagram cannot have any loop
along which the arrows are unidirectional.

⇒ the vertices admit partial ordering so that arrows
flow from left to right.
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→
↘
↗
↗

→
↘

A ≡ a set of propagators cut by a vertical line.

Total momentum flowing across the vertical line: some P(α)

~P(α) =
∑
r∈A

~̀r, P0
(α) =

∑
r∈A

√
~̀ 2

r + m2
r

Note: P(α) is real and is above the threshold since it is the sum
of momenta carried by on-shell particles in the set A.

– contradicts the condition for the domain D

⇒ we do not encounter a singularity during step 1.
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Step 2: Deform Im(p1
a)’s from 0 to the desired values keeping all

other components of {pa} fixed.

We choose the integration contours for loop momenta {ks} as
follows:

1. {k2
s, · · · kD−1

s } are integrated along the real axis.

2. {k1
s} contours are allowed to be deformed away from real axis

with their ends kept fixed at ±∞.

3. The integration contours of {k0
s} are taken to be the same as

at the end of step 1 for {Re(k1
s),k2

s, · · · kD−1
s }.

Our goal will be to show that by appropriate choice of {k1
s}

contours, we can avoid pinch.
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Consider the configuration at the end of first step.

Plot in the complex k1
s plane the location of the poles

with lowest |Im(k1
s)| for given Re(k1

s) as we vary all
other loop momenta along their chosen contours.

⇒
Re(k1

s)

⇑ Im(k1
s)

– singular loci
26



Bs: set of propagators through which ks flows.

`r: momenta carried by individual propagators in the set Bs

`r = ks + Lr, , r ∈ Bs

Lr are linear combinations of external and other loop momenta.

The poles are at

`1
r = ±i

√
`2

r⊥ − (`0
r )2 + m2

r = ±i
√

(ks⊥ + Lr⊥)2 − (k0
s + L0

r )2 + m2
r

`⊥ ≡ (`2, · · · `D−1)

At the poles, k1
s and `1

r = k1
s + L1

r have same imaginary parts
since L1

r are all real at the end of step 1.
27



⇒
Re(k1

s)

⇑ Im(k1
s)

On the upper curve, Im(`1
r ) > 0 since Im(k1

s) > 0.

On the lower curve, Im(`1
r ) < 0 since Im(k1

s) < 0.

We shall now deform Im(p1
a) keeping other

components fixed, and see what happens to the
singular loci.
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The poles are at

`1
r = ±i

√
`2

r⊥ − (`0
r )2 + m2

r = ±i
√

(ks⊥ + Lr⊥)2 − (k0
s + L0

r )2 + m2
r

In the k1
s plane they are at k1

s = `1
r − L1

r

While `1
r values at the poles remain unchanged during step 2, the

k1
s values shift vertically since the L1

r ’s acquire imaginary parts.

We can deform the k1
s contour and make it pass through the gap.
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Singularity appears when the contour is pinched.

Recall that on the upper curve Im(`1
r ) > 0 and on the lower curve

Im(`1
r′) < 0 with r, r′ ∈ Bs.

This shows that in order to hit a singularity in the k1
s integration

contour, at least a pair of propagators along the loop must have
opposite values of Im(`1

r ) at the pinch.

Must hold for every loop.
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At the pinch, at least a pair of propagators along any loop must
have opposite values of Im(`1

r ) at the pinch.

We now associate to each propagator of a reduced diagram a
double arrow, showing the direction of Im(`1

r ).

We cannot traverse a loop by moving along the double arrows.

⇒ we can assign partial ordering to the vertices so that Im(`1
r )

flows from left to right.

→→
↘↘

↗↗

↗↗

→→

↘↘

31



→→
↘↘
↗↗
↗↗

→→
↘↘

If now draw a vertical cut through propagators
carrying momenta `r (r ∈ B), and if P(α) is the total
momenta entering the graph from right, we have

P(α) =
∑
r∈B

`r, `2
r + m2

r = 0, Im(`1
r ) > 0

Simple kinematic analysis now shows that this is
incompatible with {pa} ∈ D.
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Define four quadrants in 0-1 plane parametrized by (q0,q1):

V+ : q0 > |q1|, V− : q0 < −|q1|, W+ : q1 > |q0|, W− : q1 < −|q0|

V+

V−

W+W−

q0 ↑

q1 →

33



V+

V−

W+W−

q0 ↑

q1 →

P(α) =
∑
r∈B

`r, `2
r + m2

r = 0, Im(`1
r ) > 0

Recall that if `r is on-shell then Im(`r ) must be space-like; hence

Im(`1
r ) > 0 ⇒ Im(`r) ∈W+

Im(P(α)) ∈W+ ⇒ Im(P(α)) space-like

– incompatible with Im(P(α))
2 < 0 34



Conclusion: Our initial assumption must be wrong

⇒ the k1
s contour is not pinched.

⇒ the off-shell Green’s function is analytic in the
domain D.

This proves the analyticity of the off-shell Green’s
function of string field theory in the primitive domain
of analyticity · · ·

· · · with Im(pa) lying in a 2-dimensional Lorentzian
plane.
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