T-duality methods in topological matter

Guo Chuan Thiang

University of Adelaide Institute for Geometry and its Applications

String and M-Theory: The New Geometry of the 21st Century IMS, NUS, Singapore

12/12/18

Outline

Topological insulator \leftrightarrow D-brane analogy (*K*-theory charge).

(T)-duality concept from string theory is useful and natural in solid state physics.

Bulk-edge correspondence heuristic: analytic boundary zero modes detect bulk topology \rightarrow useful for formulating new index theorems.

Torsion invariants, antiunitary symmetries, and "super-ness" are extremely important.

Whole zoo of new crystallographic topological T-dualities, involving *K*-theories with *graded* equivariant twists.

```
Solid state phys \rightarrow new maths \rightarrow string/M-theory?
```

Experimentally verified topological matter and torsion

Experiment: Hsieh et al, PRL 103 (2009). Theory (2005+): Fu-Kane-Mele Z/2 invariant (e.g. in KR-theory)

Why graded symmetry groups?

A super, or graded group will just be a group $\mathscr{G} \xrightarrow{c} \mathbb{Z}_2$. E.g. we generate $\mathbb{Z} \xrightarrow{c} \mathbb{Z}_2$ this we walk — L/R switching data.

In crystallography, this is called the *frieze group* p11g.

$\texttt{p1m1}\cong\mathbb{Z}\rtimes\mathbb{Z}_2$		$l1m \cong \mathbb{Z} imes \mathbb{Z}_2$	p2mm ≅	$p2mm\cong\mathbb{Z}\rtimesD_2$	
♦ ···¥···	♦ ···₩··• ♦	<u>- B ● B</u> ●	• •	-#	
$p1\cong\mathbb{Z}$	$p2\cong \mathbb{Z}\rtimes \mathbb{Z}_2$	p1	$\lg\cong\mathbb{Z}$	$p2mg\cong\mathbb{Z}\rtimes\mathbb{Z}_2$	
•··b··•·b··•		•P-	Ե⊷Ե–Բ⊷	∙₩- ╆•₩- ╆•	

There are 7 frieze groups (2D patterns with 1D translation symmetry). Higher dimension analogue are called *subperiodic groups*, e.g. 75 *rod groups*, 80 *layer groups*.

Baum–Connes conjecture and (T)-duality

Let \mathscr{G} be a discrete (ungraded) group. Baum-Connes conjecture:

$$\mu_{\mathscr{G}}: K_{\bullet}(\underbrace{\underline{B}\mathscr{G}}_{\text{class. space}}) \xrightarrow{\cong} K_{\bullet}(\underbrace{C_{r}^{*}(\mathscr{G})}_{\text{group algebra}}).$$

RHS is hard; here $C_r^*(\mathscr{G})$ is "nonabelian Fourier transform", generalising E.g. $C_r^*(\mathbb{Z}) = C(\mathbb{T})$. LHS is computable with algebraic topology!

No counterexamples! I will use a concrete physics model to motivate a super-BC conjecture, and relate it to crystallographic T-duality. This is a "good" duality in the following sense:

Fourier transform and T-duality

The Fourier transform is the prototypical "good" duality, and involves a Pull-Convolve-Push construction:

$$L^2(\mathbb{R}) \ni \{f: x \mapsto f(x)\} \longleftrightarrow \{\widehat{f}: p \mapsto \int_{\mathbb{R}} f(x)e^{ipx}\} \in L^2(\widehat{\mathbb{R}})$$

There is a geometric version, called the *Fourier–Mukai transform*, or *topological T-duality*:

$$\mathrm{T}:\mathcal{K}^{ullet}(\mathcal{T})\stackrel{\cong}{\to}\mathcal{K}^{ullet-1}(\mathbb{T})$$

 $[\mathcal{E}]\mapsto \hat{p}_*[(p^*\mathcal{E})\otimes\mathcal{P}]$

Here, the "kernel" \mathcal{P} is the Poincaré line bundle over the "correspondence space" $\mathcal{T} \times \mathbb{T}$.

T-duality and Baum–Connes

T-duality is closely related to BC for the group \mathbb{Z} , because there are two *different* circles associated to \mathbb{Z} :

(1) the classifying space $T = B\mathbb{Z} = R/\mathbb{Z}$,

(2) Pontryagin dual (irreps) $\mathbb{T} = \operatorname{Hom}(\mathbb{Z}, \operatorname{U}(1)) \Rightarrow C_r^*(\mathbb{Z}) \stackrel{\mathrm{FT}}{\cong} C(\mathbb{T}).$

Then T-duality is BC for $\ensuremath{\mathbb{Z}}$ with some further identifications,

$$\mathcal{K}^{\bullet}(T) \stackrel{PD}{\to} \mathcal{K}_{1-\bullet}(T = B\mathbb{Z}) \stackrel{BC}{\longrightarrow} \mathcal{K}_{1-\bullet}(C^*_r(\mathbb{Z})) \stackrel{FT}{\to} \mathcal{K}^{\bullet-1}(\mathbb{T})$$

Both T^d and \mathbb{T}^d appear naturally in solid state physics, as the *unit cell* and *Brillouin zone* respectively!

Crystallography \Leftrightarrow extra finite point group action (with twists).

Why $K_{\bullet}(C_r^*(\mathscr{G}))$ relates to topological phases?

Free electron has Hamiltonian $H = -\nabla^2$ on $L^2(R)$. Euclidean invariance broken to \mathbb{Z} by periodic potential V from crystal atoms.

Think of $L^2(R) \cong L^2(\mathcal{F}) \otimes \ell^2_{reg}(\mathbb{Z})$, where $\mathcal{F} = R/\mathbb{Z}$ is the position space "unit cell".

In the Bloch–Floquet transform, $\ell_{reg}^2(\mathbb{Z})$ part is Fourier transformed to $L^2(\mathbb{T})$ where \mathbb{T} is momentum space "Brillouin zone".

 $H = -\nabla^2 + V$ decomposes into Bloch Hamiltonians H_k acting on *k*-quasiperiodic functions (Bloch waves)

$$\mathcal{E}_k = \{\psi: \psi(x+1) = \psi(x)e^{\mathrm{i}k}\} \sim L^2(\mathcal{F}; \mathcal{E}_k), \quad k \in [0, 2\pi) \cong \mathbb{T}.$$

Schrödinger's equation for H_k on *compact* $\mathcal{F} \rightarrow$ discrete spectrum.

Abelian Bloch–Floquet transform

 $\leftarrow \text{ For } E < E_{\mathrm{Fermi}} \text{ get Hermitian} \\ \text{vector eigenbundle } \mathcal{E}_{\mathrm{Fermi}} \rightarrow \mathbb{T}.$

If $\mathcal{E}_{\text{Fermi}}$ is trivialisable, take (cts/smooth) O.N. frame $\{\phi_i\}_{i=1,...,n}$. Inverse transforms of ϕ_i are Wannier wavefunctions $w_i \in L^2(R)$ with orthonormal translates, and decay condition.

> "Atomic limit": $L^2(\mathcal{E}_{\text{Fermi}}) \cong \ell^2_{\text{reg}}(\mathbb{Z}) \otimes \mathbb{C}^n$ via *localised* basis of wavefunctions.

Abelian Bloch–Floquet transform

 $\leftarrow \text{ For } E < E_{\text{Fermi}} \text{ get Hermitian} \\ \text{vector eigenbundle } \mathcal{E}_{\text{Fermi}} \rightarrow \mathbb{T}.$

Choose (cts/smooth) O.N. frame $\{\phi_i\}_{i=1,...,n}$. Inverse transforms of ϕ_i are *Wannier wavefunctions* $w_i \in L^2(R)$ with orthonormal translates, and decay condition.

For $\mathscr{G} = \mathbb{Z}^2$, the first Chern class obstructs trivialisation of $\mathcal{E}_{\text{Fermi}}$, so no "atomic limit". [Brouder, Panati, Monaco,..., 2007⁺]

$K_0(C_r^*(\mathscr{G}))$ as obstruction to "atomic limit"

[Theorem: Ludewig+T '18/19] Let \mathscr{G} (nonabelian generally), act on Riemannian X and $S \subset L^2(X)$ be a spectral subspace of a \mathscr{G} -invariant Hamiltonian. Under mild assumptions, the subspace S_0 of "good wavefunctions" in S form a f.g.p. module for $C_r^*(\mathscr{G})$.

 $K_0(C_r^*(\mathscr{G}))$ measures failure of S_0 to be a free module (i.e. generated by translates of a good wavefunction) \Rightarrow obstruction to existence of "atomic limit" description.

Bulk-topology-imposed tails should be visible analytically at a suitable boundary as zero modes \Leftrightarrow index theorem

Remark: For \mathscr{G} crystallographic, $K_{\bullet}(C_r^*(\mathscr{G}))$ classifies "twisted equivariant matter" [Freed–Moore '13]; modelled over \mathbb{T}^d .

Example of bulk-boundary correspondence (BBC)

For $\mathscr{G} = \mathbb{Z}$, $K_1(C_r^*(\mathbb{Z})) \cong K^{-1}(\mathbb{T}) = \mathbb{Z}$ characterises another type of (relative) topological phase, which is instructive for BBC.

Consider $\ell^2_{\mathrm{reg}}(\mathbb{Z}) \oplus \ell^2_{\mathrm{reg}}(\mathbb{Z})$, sublattice operator $\mathsf{S} = \mathbf{1}_A \oplus -\mathbf{1}_B$.

A supersymmetric Hamiltonian $H = H^*$ commutes with \mathbb{Z} -translations, but HS = -SH. Thus H exchanges $A \leftrightarrow B$.

E.g. "Dimers" H_{blue} (intracell) and H_{red} (intercell)

General:
$$HS = -SH \quad \stackrel{\text{Fourier}}{\longleftrightarrow} \quad H(k) = \begin{pmatrix} 0 & U(k) \\ U(k)^* & 0 \end{pmatrix}, \quad U(k) \in \mathbb{C}$$

Example of bulk-boundary correspondence (BBC)

For $\mathscr{G} = \mathbb{Z}$, $K_1(C_r^*(\mathbb{Z})) \cong K^{-1}(\mathbb{T}) = \mathbb{Z}$ characterises another type of (relative) topological phase, which is instructive for BBC.

Consider $\ell^2_{\mathrm{reg}}(\mathbb{Z}) \oplus \ell^2_{\mathrm{reg}}(\mathbb{Z})$, sublattice operator $\mathsf{S} = \mathbf{1}_A \oplus -\mathbf{1}_B$.

A supersymmetric Hamiltonian $H = H^*$ commutes with \mathbb{Z} -translations, but HS = -SH. Thus H exchanges $A \leftrightarrow B$.

E.g. "Dimers" H_{blue} (intracell) and H_{red} (intercell)

General:
$$HS = -SH \quad \stackrel{\text{Fourier}}{\longleftrightarrow} \quad H(k) = \begin{pmatrix} 0 & U(k) \\ U(k)^* & 0 \end{pmatrix}, \quad U(k) \in \mathbb{C}$$

Example of bulk-boundary correspondence (BBC)

For $\mathscr{G} = \mathbb{Z}$, $K_1(C_r^*(\mathbb{Z})) \cong K^{-1}(\mathbb{T}) = \mathbb{Z}$ characterises another type of (relative) topological phase, which is instructive for BBC.

Consider $\ell^2_{\mathrm{reg}}(\mathbb{Z}) \oplus \ell^2_{\mathrm{reg}}(\mathbb{Z})$, sublattice operator $\mathsf{S} = \mathbf{1}_A \oplus -\mathbf{1}_B$.

A supersymmetric Hamiltonian $H = H^*$ commutes with \mathbb{Z} -translations, but HS = -SH. Thus H exchanges $A \leftrightarrow B$.

E.g. "Dimers" H_{blue} (intracell) and H_{red} (intercell)

General:
$$HS = -SH \quad \stackrel{\text{Fourier}}{\longleftrightarrow} \quad H(k) = \begin{pmatrix} 0 & U(k) \\ U(k)^* & 0 \end{pmatrix}, \quad U(k) \in \mathbb{C}$$

SSH model

Gap condition: $0 \notin \operatorname{spec}(H) \Leftrightarrow U : \mathbb{T} \to \operatorname{GL}(1)$. Wind $(U) \leftrightarrow$ gapped top. phases of \mathbb{Z} -invariant, supersymmetric H!

$$\mathcal{H}_{ ext{blue}}(k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} o ext{Wind} = 0, \ \ \mathcal{H}_{ ext{red}}(k) = \begin{pmatrix} 0 & e^{ik} \\ e^{-ik} & 0 \end{pmatrix} o ext{Wind} = 1.$$

Actually $H_{\text{blue}} \sim_{\text{unitary}} H_{\text{red}}$, so Wind(U) has no bulk meaning.

A boundary "fixes the gauge", and also cuts a red link, leaving behind one "dangling zero mode" of A-type.

SSH model

Gap condition: $0 \notin \operatorname{spec}(H) \Leftrightarrow U : \mathbb{T} \to \operatorname{GL}(1)$. Wind $(U) \leftrightarrow$ gapped top. phases of \mathbb{Z} -invariant, supersymmetric H!

$$\mathcal{H}_{ ext{blue}}(k) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} o ext{Wind} = 0, \ \ \mathcal{H}_{ ext{red}}(k) = \begin{pmatrix} 0 & e^{ik} \\ e^{-ik} & 0 \end{pmatrix} o ext{Wind} = 1.$$

Actually $H_{\text{blue}} \sim_{\text{unitary}} H_{\text{red}}$, so Wind(U) has no bulk meaning.

A boundary "fixes the gauge", and also cuts a red link, leaving behind one "dangling zero mode" of A-type.

SSH model and index theorem

Truncation to $n \ge 0 \Leftrightarrow$ Hardy space $\ell^2(\mathbb{N}) \cong \mathcal{H}^2 \subset L^2(\mathbb{T}) \cong \ell^2(\mathbb{Z})$.

$$H = \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix} \stackrel{\mathrm{half-space}}{\mapsto} \widetilde{H} = \begin{pmatrix} 0 & T_U \\ T_U^{\dagger} & 0 \end{pmatrix}.$$

 T_U is Toeplitz operator on $l^2(\mathbb{N}) \otimes \mathbb{C}^N$ with invertible symbol $U \in C(\mathbb{T}, \operatorname{GL}(N))$ representing a $K^{-1}(\mathbb{T}) \cong \mathbb{Z}$ class.

F. Noether index theorem (1921): T_U is Fredholm iff U invertible, and $\operatorname{Ind}(T_U) = -\operatorname{Wind}(U) = \int_{\mathbb{T}} \operatorname{ch}(U)$.

Analytic Fredholm $Ind(T_U) = \#B - \#A$ zero modes of \tilde{H} , which is topological because of index theorem!

$$H_{\text{blue}}(k) = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\text{Wind=0}} \mapsto \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\text{Ind=0}}, \quad H_{\text{red}}(k) = \underbrace{\begin{pmatrix} 0 & e^{ik} \\ e^{-ik} & 0 \end{pmatrix}}_{\text{Wind=1}} \mapsto \underbrace{\begin{pmatrix} 0 & T_{e^{ik}} \\ T_{e^{-ik}} & 0 \end{pmatrix}}_{\text{Ind=-1}}.$$

Crystallographic BBC and mod-2 index theorem

Run the story in reverse: Physically reasonable BBC heuristic suggests the index theorem justifying the hueristic.

The torsion-free wallpaper group pg is the fundamental group of the Klein bottle. Baum–Connes magic gives easy computation

 $K_1(C_r^*(pg)) \cong K_1(Bpg) \equiv K_1(Klein) \cong H_1(Klein) \cong \mathbb{Z} \oplus \mathbb{Z}/2.$

 $\Rightarrow \mathbb{Z}/2 \text{ topological phase for}$ pg-invariant, supersymmetric *H*. Next few slides will pictorially justify why there is a $\mathbb{Z}/2$ -index map $\mathcal{K}_1(C_r^*(\text{pg})) \rightarrow \mathcal{K}_0^{\text{gr}}(C_r^*(\text{p11g})) \cong \mathbb{Z}/2.$

Super-symmetric Hamiltonians: connect Black-Brown

 $H_{\rm blue}$ has no zero modes when truncated: trivial phase.

The $\mathbb{Z}/2$ "Klein bottle" phase

Zero modes along glide axis edge have graded p11g symmetry!

$\mathbb{Z}/2$ super-index theorem

Theorem [Gomi+T, Lett. Math. Phys. '18]: A pg supersymmetric H has symbol class in $K^{1+\tau}_{\mathbb{Z}_2}(\mathbb{T}^2)$. Its truncation gives a twisted Toeplitz family over \mathbb{T} . The following index maps coincide:

(1) topological Gysin map $\mathcal{K}^{1+\tau}_{\mathbb{Z}_2}(\mathbb{T}^2) \xrightarrow{\pi_1} \mathcal{K}^{0+\tau+c}_{\mathbb{Z}_2}(\mathbb{T}) \cong \mathbb{Z}/2.$

(2) analytic "twisted index bundle", in $\mathcal{K}_0^{\mathrm{gr}}(\mathcal{C}_r^*(\mathsf{pllg}))\cong\mathbb{Z}/2.$

In physics terms, H_{purple} represents a topologically non-trivial $\mathbb{Z}/2$ phase with pg symmetry. It is detected by pl1g-symmetric zero modes induced when sample is cut along a glide axis.

 $\mathbb{Z}/2$ index theorems in complex *K*-theory are very rare! We found this by going to graded *K*-theory, guided by physics.

Crystallographic T-duality [Gomi+T, 1806:11385]

In string theory, one could transform a T bundle $\mathcal{E} \to X$ into a \mathbb{T} bundle $\widehat{\mathcal{E}} \to X$. Even though $\mathcal{E} \ncong \widehat{\mathcal{E}}$, their *twisted* K-theories coincide, up to a degree shift [Bouwknegt–Mathai–Evslin '04].

Some ad-hoc incorporation of $\mathbb{Z}/2$ -actions, e.g. Witten-Atiyah-Hopkins K_{\pm} groups, orientifolds, *KR*-theory,....

Crystallographic T-duality upgrades these to general finite groups acting on tori (or torus bundles).

In fact, crystallographic space group $\mathscr{G} \Leftrightarrow$ affine F action on T^d !

Dually, F acts on \mathbb{T}^d with a twist τ from $\mathscr{G} \not\leftarrow F$.

Crystallographic groups

A crystallographic space group \mathscr{G} is a discrete cocompact subgroup of isometries of Euclidean space R^d .

 \mathscr{G} is an extension of finite point group F by lattice subgroup \mathbb{Z}^d .

Classification of \mathscr{G} -symmetric Hamiltonians $\Leftrightarrow \tau_{\mathscr{G}}$ -twisted F-equivariant K-theory of \mathbb{T}^d \Leftrightarrow K-theory of $C_r^*(\mathscr{G})$ [Freed–Moore '13, T'16].

Crystallographic T-duality

[Gomi+T' 18] There is a zoo of "crystallographic T-dualities". Each *d*-dimensional space group \mathscr{G} defines an isomorphism

$$\mathcal{T}_{\mathscr{G}}: \mathcal{K}_{\mathcal{F}}^{d-ullet+\sigma_{\mathscr{G}}}(\mathcal{T}^{d}_{\mathrm{affine}}) \cong \mathcal{K}_{\mathcal{F}}^{-ullet+ au_{\mathscr{G}}}(\mathbb{T}^{d}_{\mathrm{dual}})$$

Technical subtlety: $\sigma_{\mathscr{G}}, \tau_{\mathscr{G}}$ are graded, equivariant twists (physics gave a clue). As a set (not as a group), these are classified by

$$H^3_F(\,\cdot\,;\mathbb{Z}) imes\underbrace{H^1_F(\,\cdot\,;\mathbb{Z}_2)}_{ ext{graded}}.$$

Geometric formulation is a souped-up version of the Fourier–Mukai transform. Gives many previously unknown isomorphisms between twisted equivariant cohomology theories of tori.

Crystallographic T-duality and super Baum–Connes

Another formulation uses Baum–Connes for \mathscr{G} : Euclidean space R^d is a proper universal space $\underline{E}\mathscr{G}$. Quotient by \mathbb{Z}^d gives orbifold $F \setminus T^d = \underline{B}\mathscr{G}$.

So there is an assembly isomorphism

$$K^{\mathsf{F}}_{\bullet}(T^d) \cong K_{\bullet}(\underline{B}\mathscr{G}) \xrightarrow{\mu_{\mathscr{G}}} K_{\bullet}(C^*_r(\mathscr{G})).$$

LHS is $\mathcal{K}^{F}_{\bullet}(T^{d}) \cong \mathcal{K}^{d-\bullet+\sigma_{\mathscr{G}}}_{F}(T^{d})$ by Poincaré duality, where the twist $\sigma_{\mathscr{G}}$ compensates for the failure of equivariant \mathcal{K} -orientability.

RHS is $K_{\bullet}(C_r^*(\mathscr{G})) \cong K_F^{-\bullet+\tau_{\mathscr{G}}}(\mathbb{T}^d)$ by a Fourier transform, and twist $\tau_{\mathscr{G}}$ due to $\mathscr{G} \not\leftarrow F$.

Crystallographic T-duality and super Baum–Connes

Overall,
$$T_{\mathscr{G}}: K_{\mathsf{F}}^{d-\bullet+\sigma_{\mathscr{G}}}(T^d) \xrightarrow{\sim} K_{\mathsf{F}}^{-\bullet+\tau_{\mathscr{G}}}(\mathbb{T}^d).$$

Giving \mathscr{G} a \mathbb{Z}_2 -grading \rightarrow extra H^1 -type twist c on both sides.

 \Rightarrow a super Baum–Connes assembly map for the graded group ${\mathscr G}$ implements a morphism

$$\mu_{\mathcal{G},c}: K^{\mathcal{G}}_{\bullet+c}(T^d) \longrightarrow K^{\mathrm{gr}}_{\bullet}(C^*_r(\mathcal{G})).$$

"Ordinary Baum–Connes conjecture \Rightarrow Super version" is not known or obvious (according to experts I've asked). Instead, let me give some examples/applications.

Crystallographic T-duality and super Baum–Connes

We've seen how $\mathcal{K}_0^{\mathrm{gr}}(C_r^*(\mathfrak{p}11\mathfrak{g})) \cong \mathcal{K}_{\mathbb{Z}_2}^{0+\tau_{\mathfrak{p}11\mathfrak{g}}+c}(\mathbb{T})$ on the RHS appears for crystallographic BBC for $\mathfrak{pg} \to \mathfrak{p}11\mathfrak{g}$.

Gomi+physicists Shiozaki–Sato computed this to be $\mathbb{Z}/2$ (hard!).

LHS is much easier: $Bp11g = R/p11g = \mathbb{Z}_2 \setminus (R/\mathbb{Z}) = \mathbb{Z}_2 \setminus (T_{\text{free}})$ is a circle S^1 , but remember that the up/down gets flipped when looping once. Twice a point is homologically trivial, so that

$$\mathbb{Z}/2 \cong H_{0+c}(S^1) \cong K_{0+c}(Bp11g) \equiv LHS \stackrel{s-BC}{\cong} RHS \equiv K_0^{\mathrm{gr}}(C_r^*(p11g)) \cong \mathbb{Z}/2$$

Crystallographic T-duality — orbifold exchange

F-actions on T^d and \mathbb{T}^d are generally inequivalent:

Application: Topological phases for p3m1 are dual to those for p31m. Similar exchange of FCC \leftrightarrow BCC (well-known in physics).

For the *CT* group (charge-conjugation, time-reversal), get KO-KR-theory exchange and dual tenfold way [M+T, JPhysA '15].

String theory interpretation?

Crystallographic T-duality — computational trick

Application: For $d \geq 3$ odd, $T_{\mathscr{G}} : K_F^{0+\sigma_{\mathscr{G}}}(T^d) \xrightarrow{\sim} K_F^{-1+\tau_{\mathscr{G}}}(\mathbb{T}^d).$

 $K^{0}_{D_{2}}(T^{3}_{\mathsf{P222}}) \cong \mathbb{Z}^{13}, \qquad K^{1}_{D_{2}}(T^{3}_{\mathsf{P222}}) \cong \mathbb{Z} \text{ or } \mathbb{Z} \oplus \mathbb{Z}/2, \\ K^{0+\omega}_{D_{2}}(T^{3}_{\mathsf{P222}}) \cong \mathbb{Z}, \qquad K^{1+\omega}_{D_{2}}(T^{3}_{\mathsf{P222}}) \cong \mathbb{Z}^{13},$ $K_{D_2}^0(T^3_{C222}) \cong \mathbb{Z}^8, \qquad \qquad K_{D_2}^1(T^3_{C222}) \cong \mathbb{Z}^2 \text{ or } \mathbb{Z}^2 \oplus \mathbb{Z}/2, \\ K_{D_2}^{0+\omega}(T^3_{C222}) \cong \mathbb{Z}^2, \qquad \qquad K_{D_2}^{1+\omega}(T^3_{C222}) \cong \mathbb{Z}^8,$

AHSS computes both sides, but RHS has extension problems. Solved by simply inspecting K^0 on the LHS!

T-duality and BBC

In simplest models of BBC, the boundary is codim-1 hyperplane dividing Euclidean space into "bulk" and "vacuum".

Machinery of Toeplitz extensions produces an index map ∂ from bulk to boundary "momentum space" \sim integration-along- k_{\perp}

[Hannabuss+Mathai+T, CMP'16, LMP'18] ∂ is simply the T-dual of a geometric restriction-to-boundary map in position space.

Intuitively "obvious" because Fourier transform converts integration along a circle into restriction to 0-th Fourier coefficient.

T-duality and BBC in non-Euclidean geometries

In Nil-geometry, lattice $\sim \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a, b, c \in \mathbb{Z} \right\}$ models screw dislocations [H+M+T, ATMP'16], and T-dual has H-flux. Get "screw modes" as argued in [Ran+Zhang+Vishwanath, Nature '19]

In hyperbolic plane, lattice \sim surface/Fuchsian group, and there is fractional BBC [M+T '17]