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Outline

Topological insulator <+ D-brane analogy (K-theory charge).

(T)-duality concept from string theory is useful and natural in solid
state physics.

Bulk-edge correspondence heuristic: analytic boundary zero modes
detect bulk topology — useful for formulating new index theorems.

Torsion invariants, antiunitary symmetries, and “super-ness” are
extremely important.

Whole zoo of new crystallographic topological T-dualities,
involving K-theories with graded equivariant twists.

Solid state phys — new maths — string/M-theory?
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Experimentally verified topological matter and torsion

Experiment: Hsieh et al, PRL 103 (2009). Theory (2005+): Fu—Kane-Mele Z/2 invariant (e.g. in KR-theory)
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Experiment: (L) Xu et al, Science 349 613 (2015); (R) [—] Nature Phys. 11 748 (2015).
Theory: [T+Sato+Gomi, Nucl. Phys. B 923 (2017)], Z/2 monopole and Dirac strings
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Why graded symmetry groups?

A super, or graded group will just be a group ¢ < Z,.

E.g. we generate Z —» Zy this we walk — L/R switching data.

In crystallography, this is called the frieze group pllg.

plml = 7Z x Zo plim = 7Z x Zp p2mm = 7 x Dy

LR AN —B——B—e —H——H—
pl=7Z P2 = 7Z X Lo pllg=7Z p2mg = 7Z % 7y
o bepe (CEXSYORSOC] P- bep-pre Y= Aoy -

There are 7 frieze groups (2D patterns with 1D translation
symmetry). Higher dimension analogue are called subperiodic
groups, e.g. 75 rod groups, 80 layer groups.
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Baum—Connes conjecture and (T)-duality
Let ¢ be a discrete (ungraded) group. Baum—Connes conjecture:
o Kl BY ) K G(9) ).
—~~ ~——

class. space group algebra

RHS is hard; here C/(¥¢) is “nonabelian Fourier transform”,
generalising E.g. C}(Z) = C(T).
LHS is computable with algebraic topology!

No counterexamples! | will use a concrete physics model to
motivate a super-BC conjecture, and relate it to crystallographic
T-duality. This is a “good” duality in the following sense:

~

[Easy in POV 1 | Duaiits [Hard in POV 2 |

°| E

[Hard in POV 1 | [Easy in POV2 |

Duality
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Fourier transform and T-duality

The Fourier transform is the prototypical “good” duality,and
involves a Pull-Convolve-Push construction:

LAR) S {f: x> F(x)} = {f: ps /R f(x)eP} € LA(R)

There is a geometric version, called the Fourier—Mukai transform,
or topological T-duality:

T: K(T)S K Y(T)

A * 7)
[€] = B[(p"E) @ P v
Here, the “kernel” P is the Poincaré p I'xT
line bundle over the “correspondence T ~~ \ T

space” T x T.
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T-duality and Baum—Connes

T-duality is closely related to BC for the group Z, because there
are two different circles associated to Z:

(1) the classifying space T = BZ = R/Z,
(2) Pontryagin dual (irreps) T = Hom(Z, U(1)) = C}(Z) = C(T).

Then T-duality is BC for Z with some further identifications,
K(T) 2 ki_o(T = BZ) BS Ki_o(C(z2)) B3 K*—1(T)

Both 79 and T appear naturally in solid state physics, as the unit
cell and Brillouin zone respectively!

Crystallography < extra finite point group action (with twists).
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Why K.(C/(¥)) relates to topological phases?

Free electron has Hamiltonian H = —V? on L?(R). Euclidean
invariance broken to Z by periodic potential V' from crystal atoms.

Think of L2(R) =2 L2(F) ®€feg(Z), where F = R/Z is the position
space “unit cell”.

In the Bloch-Floquet transform, (2, (Z) part is Fourier transformed

to L?(T) where T is momentum space “Brillouin zone" .

H = —V? + V decomposes into Bloch Hamiltonians Hj acting on
k-quasiperiodic functions (Bloch waves)

Ex ={Y p(x+1) =(x)e*} ~ [2(F; &), ke[0,2m)=T.

Schrodinger’s equation for H, on compact F — discrete spectrum.
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Abelian Bloch—Floquet transform

G A G d Lo - moe s oo M

T TR

< For E < Egermi get Hermitian

vector eigenbundle Eperm; — T.

If Efermi is trivialisable, take
(cts/smooth) O.N. frame

s |Band Gap {¢i}i=1,.. n. Inverse transforms
of ¢; are Wannier wavefunctions
w; € L?(R) with orthonormal
translates, and decay condition.

P »: et Fu Y""‘l " e
LR ¥ 3 ;! Atomic limit":
L2 (gFormi) = g%eg(Z) ®C"
via localised basis of
wavefunctions.
A—E—)



Abelian Bloch—Floquet transform

~|Band Gap

G A Gt o - nw s a0 M

< For E < Epermi get Hermitian
vector eigenbundle Epermi — T.

Choose (cts/smooth) O.N. frame
{¢i}i=1,..n- Inverse transforms
of ¢; are Wannier wavefunctions
w; € L?(R) with orthonormal
translates, and decay condition.

For & = 72, the first
Chern class obstructs
trivialisation of Epermi, SO
no “atomic limit”.
[Brouder, Panati,
Monaco,. .., 20077]
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Ko(C (%)) as obstruction to “atomic limit”

[Theorem: Ludewig+T '18/19] Let ¢ (nonabelian generally), act
on Riemannian X and S C L?(X) be a spectral subspace of a
@-invariant Hamiltonian. Under mild assumptions, the subspace Sy
of “good wavefunctions” in S form a f.g.p. module for C}(¥).

Ko(C} (%)) measures failure of Sy to be a free module (i.e.
generated by translates of a good wavefunction) = obstruction to
existence of “atomic limit" description.

Bulk-topology-imposed tails should be visible analytically at a
suitable boundary as zero modes < index theorem

Remark: For & crystallographic, Ke(C;(¥¢)) classifies “twisted
equivariant matter” [Freed—Moore '13]; modelled over T¢.
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Example of bulk-boundary correspondence (BBC)

For 4 = Z, K1(C}(Z)) & K~Y(T) = Z characterises another type
of (relative) topological phase, which is instructive for BBC.

Consider 2, (Z) & (2,,(Z), sublattice operator S = 14 & —1.

reg

® ® ® ® ® ®

| n=-1 1| n=0 | n=1 | n=2 | n=3 |

A supersymmetric Hamiltonian H = H* commutes with
Z-translations, but HS = —SH. Thus H exchanges A < B.

E.g. "Dimers” Hye (intracell) and H,eq (intercell)

. . Fourier . 0 U(k)
General : HS=-SH & H(k)= <U(k)* 0 ) , Ulk)eC
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SSH model

Gap condition: 0 ¢ spec(H) < U: T — GL(1).
Wind(U) < gapped top. phases of Z-invariant, supersymmetric H!

01 0 el

Hblue(k) = (1 0) — Wind=0, Hred(k) = (e_ik 0 ) — Wind=1.

Actually Hylue ~unitary Hred, S0 Wind(U) has no bulk meaning.

A boundary “fixes the gauge”, and also cuts a red link, leaving
behind one “dangling zero mode” of A-type.
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SSH model and index theorem

Truncation to n > 0 < Hardy space 2(N) = H? C L?(T) = (?(Z).

- 0 U half—space 5 0 TU
H_<UT 0> ~ H‘(TL 0)

Ty is Toeplitz operator on 2(N) @ CN with invertible symbol
U € C(T,GL(N)) representing a K~1(T) = Z class.

F. Noether index theorem (1921): Ty is Fredholm iff U invertible,
and Ind(Ty) =—Wind(U)= [, ch(U).

Analytic Fredholm Ind(Ty) = #B — #A zero modes of H, which
is topological because of index theorem!

0 1 0 1 0 e 0 Ta
Horue (k)= (1 0> — (1 0)' Hrea (k)= (e_ik 0) ~ (T—ik 0k>.
h/—/

‘Wind=0 Ind=0 Wind=1 Ind=—-1
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Crystallographic BBC and mod-2 index theorem

Run the story in reverse: Physically reasonable BBC heuristic
suggests the index theorem justifying the hueristic.

The torsion-free wallpaper group pg is the fundamental group of
the Klein bottle. Baum—Connes magic gives easy computation

Ki(C/(pg)) = Ki(Bpg) = Ki(Klein) = Hy(Klein) = Z & Z/2.

= 7./2 topological phase for
pg-invariant, supersymmetric H. F
Next few slides will pictorially justify A Y 4
why there is a Z/2-index map “-_l

Y
\

Ki(C (pg)) — K§'(CP(pllg)) =Z/2.

bulk phases boundary zero modes
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Super-symmetric Hamiltonians: connect Black-Brown

Hplue has no zero modes when truncated: trivial phase.
14 /25



The Z/2 "Klein bottle” phase

R
REEEEnE.

Zero modes along glide axis edge have graded pllg symmetry!
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Z,/2 super-index theorem

Theorem [Gomi+T, Lett. Math. Phys. '18]: A pg supersymmetric
H has symbol class in Kzle(']I‘z). Its truncation gives a twisted
Toeplitz family over T. The following index maps coincide:

(1) topological Gysin map K%jT('JIQ) 5 Kg:rTJrC(T) =7/2.
(2) analytic “twisted index bundle”, in K§'(C(pllg)) = Z/2.

In physics terms, Hpple represents a topologically non-trivial Z/2
phase with pg symmetry. It is detected by pllg-symmetric zero
modes induced when sample is cut along a glide axis.

7,/?2 index theorems in complex K-theory are very rare! We found
this by going to graded K-theory, guided by physics.
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Crystallographic T-duality [Gomi+T, 1806:11385]

In string theory, one could transform aTbundle — Xintoa T
bundle £ — X. Even though & 2 &, their twisted K-theories
coincide, up to a degree shift [Bouwknegt—Mathai—Evslin '04].

Some ad-hoc incorporation of Z/2-actions, e.g.
Witten—Atiyah—Hopkins KL groups, orientifolds, KR-theory,. . ..

Crystallographic T-duality upgrades these to general finite groups
acting on tori (or torus bundles).

In fact, crystallographic space group ¢ < affine F action on T9!

Dually, F acts on T9 with a twist 7 from & ¢ F.
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Crystallographic groups

A crystallographic space group ¢ is a discrete cocompact subgroup
of isometries of Euclidean space R.

0 RY Euc(d) O(d) 1
I I |
0 z4 g F 1

¢ is an extension of finite point group F by lattice subgroup Z9.

Classification of ¥-symmetric Hamiltonians
& Ty-twisted F-equivariant K-theory of T¢
< K-theory of C}(¥)

[Freed—Moore '13, T'16].
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Crystallographic T-duality

[Gomi+T’ 18] There is a zoo of “crystallographic T-dualities”.
Each d-dimensional space group ¢ defines an isomorphism

. d—e d ~ — O Tq d
Ty : KF +Ug(Tafﬁne) = KF e (Tdual)

Technical subtlety: oy, ¢ are graded, equivariant twists (physics
gave a clue). As a set (not as a group), these are classified by

HE( - Z) x HE( - ;7).
~—
graded

Geometric formulation is a souped-up version of the Fourier—Mukai
transform. Gives many previously unknown isomorphisms between
twisted equivariant cohomology theories of tori.
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Crystallographic T-duality and super Baum—Connes

Another formulation uses Baum—Connes for ¢: Euclidean space
R9 is a proper universal space E¥. Quotient by Z gives orbifold
F\T9 = B9.

So there is an assembly isomorphism
KE(T) = Ko(BY) X% Ko(CH(9)).

LHS is K (T9) =2 KZ*"79(T9) by Poincaré duality, where the
twist 0 compensates for the failure of equivariant K-orientability.

RHS is Ko(C}(¥)) = K,?'JFT%(T") by a Fourier transform, and
twist 7 due to 4 < F.
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Crystallographic T-duality and super Baum—Connes

Overall, Ty : K& *T79(T9) 5 K- *t7(T9).
Giving ¢4 a Zy-grading — extra H!-type twist ¢ on both sides.

= a super Baum—Connes assembly map for the graded group ¢
implements a morphism

nyct KL o(TY) — KE(C(9)).

“Ordinary Baum—Connes conjecture = Super version” is not
known or obvious (according to experts |'ve asked). Instead, let me
give some examples/applications.
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Crystallographic T-duality and super Baum—Connes

We've seen how K§'(C;(pllg)) = szTP“ngC(T) on the RHS
appears for crystallographic BBC for pg — pllg.

Gomi-+physicists Shiozaki—Sato computed this to be Z/2 (hard!).

LHS is much easier: Bpllg = R/pllg = Zy\(R/Z) = Zo\( Ttree)
is a circle St, but remember that the up/down gets flipped when
looping once. Twice a point is homologically trivial, so that

s—BC
Z/2 = Hoyo(S') = Koy o(Bpllg) = LHS = RHS = K§'(C(pllg)) = Z/2

21/25



Crystallographic T-duality — orbifold exchange

F-actions on T9 and T9 are generally inequivalent:

o L

(a) p3m1 (b) p31m

Application: Topological phases for p3m1 are dual to those for
p31m. Similar exchange of FCC «» BCC (well-known in physics).

For the CT group (charge-conjugation, time-reversal), get
KO-KR-theory exchange and dual tenfold way [M+T, JPhysA '15].

String theory interpretation?



Crystallographic T-duality — computational trick
Application: For d >3 odd, Ty : Kp™7¢(T9) 5 K117 (T),

KIOD; (ngzz) o Z13=><K}_), (ngzz) =ZZorZSL/[2,
K?)tu(ngzz) =1Z, Kll)tw(ngzz) =7,
K, (Te,) = 27, ><K1132 (Tep) =7 ox 2 ® Z/2,
K?)-:w (T¢yn) = 22, Kll)tw(ngzz) = 78,
KD, (T3n) = 2T ®Z/2,\ Kb,(Tin) =Zor Z&Z/2,
KDt (Tipp) = Z& Z/2, Kt (Tigp) = Z7,
K%Q(Tli}zzz) =7, Kll)z (TE) Z LB Z3 ox ZO L2,
K%tw(TFszzz) =7, Kjl:):w(ngzz) =7 or Z' © Z/2.

AHSS computes both sides, but RHS has extension problems.
Solved by simply inspecting K® on the LHS!
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T-duality and BBC

In simplest models of BBC, the boundary is codim-1 hyperplane
dividing Euclidean space into “bulk” and "vacuum”.

Machinery of Toeplitz extensions produces an index map 0 from
bulk to boundary “momentum space” ~ integration-along-k

[Hannabuss+Mathai+T, CMP'16, LMP'18] 0 is simply the T-dual
of a geometric restriction-to-boundary map in position space.

OOO00OO
OOOOO

Intuitively “obvious” because Fourier transform converts
integration along a circle into restriction to 0-th Fourier coefficient.
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T-duality and BBC in non-Euclidean geometries
1 a ¢

In Nil-geometry, lattice ~ {(0 1 b) ,a,b,ce Z} models screw
0 0 1

dislocations [H+M+T, ATMP'16], and T-dual has H-flux. Get
“screw modes” as argued in [Ran+Zhang+Vishwanath, Nature '19]

In hyperbolic plane, lattice
~ surface/Fuchsian group,
and there is fractional
BBC [M+T '17]
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