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Outline

Topological insulator ↔ D-brane analogy (K -theory charge).

(T)-duality concept from string theory is useful and natural in solid
state physics.

Bulk-edge correspondence heuristic: analytic boundary zero modes
detect bulk topology → useful for formulating new index theorems.

Torsion invariants, antiunitary symmetries, and “super-ness” are
extremely important.

Whole zoo of new crystallographic topological T-dualities,
involving K -theories with graded equivariant twists.

Solid state phys → new maths → string/M-theory?
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Experimentally verified topological matter and torsion

Experiment: Hsieh et al, PRL 103 (2009). Theory (2005+): Fu–Kane–Mele Z/2 invariant (e.g. in KR-theory)

Experiment: (L) Xu et al, Science 349 613 (2015); (R) [—] Nature Phys. 11 748 (2015).
Theory: [T+Sato+Gomi, Nucl. Phys. B 923 (2017)], Z/2 monopole and Dirac strings
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Why graded symmetry groups?

A super, or graded group will just be a group G
c−→ Z2.

E.g. we generate Z c−→ Z2 this we walk — L/R switching data.

• • • •
• • • •

In crystallography, this is called the frieze group p11g.

p1 ∼= Z

• • •b b

p1m1 ∼= Z o Z2

• • •| | | | |∨ ∨

p2 ∼= Z o Z2

• • •

| | | | |

S S

p11m ∼= Z× Z2

• • •B B

p11g ∼= Z

• • •p b p b

p2mm ∼= Z o D2

• ••| | | | |H H

p2mg ∼= Z o Z2

• • •| | | |∨ ∧ ∨ ∧

There are 7 frieze groups (2D patterns with 1D translation
symmetry). Higher dimension analogue are called subperiodic
groups, e.g. 75 rod groups, 80 layer groups.
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Baum–Connes conjecture and (T)-duality
Let G be a discrete (ungraded) group. Baum–Connes conjecture:

µG : K•( BG︸︷︷︸
class. space

)
∼=−→ K•( C ∗r (G )︸ ︷︷ ︸

group algebra

).

RHS is hard; here C ∗r (G ) is “nonabelian Fourier transform”,
generalising E.g. C ∗r (Z) = C (T).
LHS is computable with algebraic topology!

No counterexamples! I will use a concrete physics model to
motivate a super-BC conjecture, and relate it to crystallographic
T-duality. This is a “good” duality in the following sense:

Easy in POV 1

⊕
��

∼
Duality

// Hard in POV 2

⊕
��

oo

Hard in POV 1

OO

∼
Duality

// Easy in POV 2

OO

oo
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Fourier transform and T-duality

The Fourier transform is the prototypical “good” duality,and
involves a Pull-Convolve-Push construction:

L2(R) 3 {f : x 7→ f (x)} ←→ {f̂ : p 7→
∫
R
f (x)e ipx} ∈ L2(R̂)

There is a geometric version, called the Fourier–Mukai transform,
or topological T-duality:

T : K •(T )
∼=→ K •−1(T)

[E ] 7→ p̂∗[(p
∗E)⊗ P]

Here, the “kernel” P is the Poincaré
line bundle over the “correspondence
space” T × T.

P
��

T × T
p

zz
p̂

$$
T T

6 / 25



T-duality and Baum–Connes

T-duality is closely related to BC for the group Z, because there
are two different circles associated to Z:

(1) the classifying space T = BZ = R/Z,

(2) Pontryagin dual (irreps) T = Hom(Z,U(1))⇒ C ∗r (Z)
FT∼= C (T).

Then T-duality is BC for Z with some further identifications,

K •(T )
PD→ K1−•(T = BZ)

BC−→ K1−•(C
∗
r (Z))

FT→ K •−1(T)

Both T d and Td appear naturally in solid state physics, as the unit
cell and Brillouin zone respectively!

Crystallography ⇔ extra finite point group action (with twists).
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Why K•(C
∗
r (G )) relates to topological phases?

Free electron has Hamiltonian H = −∇2 on L2(R). Euclidean
invariance broken to Z by periodic potential V from crystal atoms.

Think of L2(R) ∼= L2(F)⊗ `2reg(Z), where F = R/Z is the position
space “unit cell”.

In the Bloch–Floquet transform, `2reg(Z) part is Fourier transformed
to L2(T) where T is momentum space “Brillouin zone”.

H = −∇2 + V decomposes into Bloch Hamiltonians Hk acting on
k-quasiperiodic functions (Bloch waves)

Ek = {ψ : ψ(x + 1) = ψ(x)e ik} ∼ L2(F ; Ek), k ∈ [0, 2π) ∼= T.

Schrödinger’s equation for Hk on compact F → discrete spectrum.
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Abelian Bloch–Floquet transform

← For E < EFermi get Hermitian
vector eigenbundle EFermi → T.

If EFermi is trivialisable, take
(cts/smooth) O.N. frame
{φi}i=1,...,n. Inverse transforms
of φi are Wannier wavefunctions
wi ∈ L2(R) with orthonormal
translates, and decay condition.

“Atomic limit”:
L2(EFermi) ∼= `2reg(Z)⊗ Cn

via localised basis of
wavefunctions.
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Abelian Bloch–Floquet transform

← For E < EFermi get Hermitian
vector eigenbundle EFermi → T.

Choose (cts/smooth) O.N. frame
{φi}i=1,...,n. Inverse transforms
of φi are Wannier wavefunctions
wi ∈ L2(R) with orthonormal
translates, and decay condition.

For G = Z2, the first
Chern class obstructs
trivialisation of EFermi, so
no “atomic limit”.
[Brouder, Panati,
Monaco,. . . , 2007+]
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K0(C ∗r (G )) as obstruction to “atomic limit”

[Theorem: Ludewig+T ’18/19] Let G (nonabelian generally), act
on Riemannian X and S ⊂ L2(X ) be a spectral subspace of a
G -invariant Hamiltonian. Under mild assumptions, the subspace S0
of “good wavefunctions” in S form a f.g.p. module for C ∗r (G ).

K0(C ∗r (G )) measures failure of S0 to be a free module (i.e.
generated by translates of a good wavefunction) ⇒ obstruction to
existence of “atomic limit” description.

Bulk-topology-imposed tails should be visible analytically at a
suitable boundary as zero modes ⇔ index theorem

Remark: For G crystallographic, K•(C
∗
r (G )) classifies “twisted

equivariant matter” [Freed–Moore ’13]; modelled over Td .
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Example of bulk-boundary correspondence (BBC)

For G = Z, K1(C ∗r (Z)) ∼= K−1(T) = Z characterises another type
of (relative) topological phase, which is instructive for BBC.

Consider `2reg(Z)⊕ `2reg(Z), sublattice operator S = 1A ⊕−1B .

A A A A A A

B B B B B

. . . . . .

n = −1 n = 0 n = 1 n = 2 n = 3| | | | | |

A supersymmetric Hamiltonian H = H∗ commutes with
Z-translations, but HS = −SH. Thus H exchanges A↔ B.

E.g. “Dimers” Hblue (intracell) and Hred (intercell)

General : HS = −SH
Fourier⇐⇒ H(k) =

(
0 U(k)

U(k)∗ 0

)
, U(k) ∈ C
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SSH model

Gap condition: 0 /∈ spec(H) ⇔ U : T→ GL(1).
Wind(U) ↔ gapped top. phases of Z-invariant, supersymmetric H!

Hblue(k) =

(
0 1
1 0

)
→ Wind=0, Hred(k) =

(
0 eik

e−ik 0

)
→ Wind=1.

Actually Hblue ∼unitary Hred, so Wind(U) has no bulk meaning.

A A A A A A

B B B B B

. . .

n = −1 n = 0 n = 1 n = 2 n = 3| | | | |
n′ = −1 n′ = 0 n′ = 1 n′ = 2| | | | |

A boundary “fixes the gauge”, and also cuts a red link, leaving
behind one “dangling zero mode” of A-type.
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0 eik
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A A A A A

B B B B

A

B
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SSH model and index theorem

Truncation to n ≥ 0 ⇔ Hardy space `2(N) ∼= H2 ⊂ L2(T) ∼= `2(Z).

H =

(
0 U
U† 0

)
half−space7→ H̃ =

(
0 TU

T †U 0

)
.

TU is Toeplitz operator on l2(N)⊗ CN with invertible symbol
U ∈ C (T,GL(N)) representing a K−1(T) ∼= Z class.

F. Noether index theorem (1921): TU is Fredholm iff U invertible,
and Ind(TU) =−Wind(U)=

∫
T ch(U).

Analytic Fredholm Ind(TU) = #B −#A zero modes of H̃, which
is topological because of index theorem!

Hblue(k)=

(
0 1
1 0

)
︸ ︷︷ ︸
Wind=0

7→
(
0 1
1 0

)
︸ ︷︷ ︸

Ind=0

, Hred(k)=

(
0 eik

e−ik 0

)
︸ ︷︷ ︸

Wind=1

7→
(

0 Teik

Te−ik 0

)
︸ ︷︷ ︸

Ind=−1

.
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Crystallographic BBC and mod-2 index theorem

Run the story in reverse: Physically reasonable BBC heuristic
suggests the index theorem justifying the hueristic.

The torsion-free wallpaper group pg is the fundamental group of
the Klein bottle. Baum–Connes magic gives easy computation

K1(C ∗r (pg)) ∼= K1(Bpg) ≡ K1(Klein) ∼= H1(Klein) ∼= Z⊕ Z/2.

⇒ Z/2 topological phase for
pg-invariant, supersymmetric H.
Next few slides will pictorially justify
why there is a Z/2-index map

K1(C ∗r (pg))︸ ︷︷ ︸
bulk phases

→ K gr
0 (C ∗r (p11g))︸ ︷︷ ︸

boundary zero modes

∼= Z/2.

`

`

.
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Super-symmetric Hamiltonians: connect Black-Brown

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

nx = −1 nx = 0 nx = 1 nx = 2

ny = −1

ny = 0

ny = 1

ny = 2

Hblue has no zero modes when truncated: trivial phase.
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The Z/2 “Klein bottle” phase

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

nx = −1 nx = 0 nx = 1 nx = 2

ny = 0

ny = 1

ny = −1

ny = −2

Zero modes along glide axis edge have graded p11g symmetry!

• • • •
• • • •
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Z/2 super-index theorem

Theorem [Gomi+T, Lett. Math. Phys. ’18]: A pg supersymmetric
H has symbol class in K 1+τ

Z2
(T2). Its truncation gives a twisted

Toeplitz family over T. The following index maps coincide:

(1) topological Gysin map K 1+τ
Z2

(T2)
π!
� K 0+τ+c

Z2
(T) ∼= Z/2.

(2) analytic “twisted index bundle”, in K gr
0 (C ∗r (p11g)) ∼= Z/2.

In physics terms, Hpurple represents a topologically non-trivial Z/2
phase with pg symmetry. It is detected by p11g-symmetric zero
modes induced when sample is cut along a glide axis.

Z/2 index theorems in complex K -theory are very rare! We found
this by going to graded K -theory, guided by physics.
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Crystallographic T-duality [Gomi+T, 1806:11385]

In string theory, one could transform a T bundle E → X into a T
bundle Ê → X . Even though E 6∼= Ê , their twisted K -theories
coincide, up to a degree shift [Bouwknegt–Mathai–Evslin ’04].

Some ad-hoc incorporation of Z/2-actions, e.g.
Witten–Atiyah–Hopkins K± groups, orientifolds, KR-theory,. . . .

Crystallographic T-duality upgrades these to general finite groups
acting on tori (or torus bundles).

In fact, crystallographic space group G ⇔ affine F action on T d !

Dually, F acts on Td with a twist τ from G 6← F .
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Crystallographic groups

A crystallographic space group G is a discrete cocompact subgroup
of isometries of Euclidean space Rd .

0 −−−−→ Rd −−−−→ Euc(d) −−−−→ O(d) −−−−→ 1x x x
0 −−−−→ Zd −−−−→ G −−−−→ F −−−−→ 1

G is an extension of finite point group F by lattice subgroup Zd .

Classification of G -symmetric Hamiltonians
⇔ τG -twisted F -equivariant K -theory of Td

⇔ K -theory of C ∗r (G )
[Freed–Moore ’13, T’16].
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Crystallographic T-duality

[Gomi+T’ 18] There is a zoo of “crystallographic T-dualities”.
Each d-dimensional space group G defines an isomorphism

TG : Kd−•+σG
F (T d

affine) ∼= K−•+τGF (Td
dual)

Technical subtlety: σG , τG are graded, equivariant twists (physics
gave a clue). As a set (not as a group), these are classified by

H3
F ( · ;Z)× H1

F ( · ;Z2)︸ ︷︷ ︸
graded

.

Geometric formulation is a souped-up version of the Fourier–Mukai
transform. Gives many previously unknown isomorphisms between
twisted equivariant cohomology theories of tori.
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Crystallographic T-duality and super Baum–Connes

Another formulation uses Baum–Connes for G : Euclidean space
Rd is a proper universal space EG . Quotient by Zd gives orbifold
F\T d = BG .

So there is an assembly isomorphism

KF
• (T d) ∼= K•(BG )

µG−→ K•(C
∗
r (G )).

LHS is KF
• (T d) ∼= Kd−•+σG

F (T d) by Poincaré duality, where the
twist σG compensates for the failure of equivariant K -orientability.

RHS is K•(C
∗
r (G )) ∼= K−•+τGF (Td) by a Fourier transform, and

twist τG due to G 6← F .
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Crystallographic T-duality and super Baum–Connes

Overall, TG : Kd−•+σG
F (T d)

∼→ K−•+τGF (Td).

Giving G a Z2-grading → extra H1-type twist c on both sides.

⇒ a super Baum–Connes assembly map for the graded group G
implements a morphism

µG ,c : KG
•+c(T d) −→ K gr

• (C ∗r (G )).

“Ordinary Baum–Connes conjecture ⇒ Super version” is not
known or obvious (according to experts I’ve asked). Instead, let me
give some examples/applications.

20 / 25



Crystallographic T-duality and super Baum–Connes

We’ve seen how K gr
0 (C ∗r (p11g)) ∼= K

0+τp11g+c
Z2

(T) on the RHS
appears for crystallographic BBC for pg→ p11g.

Gomi+physicists Shiozaki–Sato computed this to be Z/2 (hard!).

• • • •
• • • •

LHS is much easier: Bp11g = R/p11g = Z2\(R/Z) = Z2\(Tfree)
is a circle S1, but remember that the up/down gets flipped when
looping once. Twice a point is homologically trivial, so that

Z/2 ∼= H0+c(S1) ∼= K0+c(Bp11g) ≡ LHS
s−BC∼= RHS ≡ K gr

0 (C∗
r (p11g)) ∼= Z/2
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Crystallographic T-duality — orbifold exchange

F -actions on T d and Td are generally inequivalent:

Application: Topological phases for p3m1 are dual to those for
p31m. Similar exchange of FCC ↔ BCC (well-known in physics).

For the CT group (charge-conjugation, time-reversal), get
KO-KR-theory exchange and dual tenfold way [M+T, JPhysA ’15].

String theory interpretation?
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Crystallographic T-duality — computational trick

Application: For d ≥ 3 odd, TG : K 0+σG
F (T d)

∼→ K−1+τGF (Td).

AHSS computes both sides, but RHS has extension problems.
Solved by simply inspecting K 0 on the LHS!
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T-duality and BBC

In simplest models of BBC, the boundary is codim-1 hyperplane
dividing Euclidean space into “bulk” and “vacuum”.

Machinery of Toeplitz extensions produces an index map ∂ from
bulk to boundary “momentum space” ∼ integration-along-k⊥

[Hannabuss+Mathai+T, CMP’16, LMP’18] ∂ is simply the T-dual
of a geometric restriction-to-boundary map in position space.

Intuitively “obvious” because Fourier transform converts
integration along a circle into restriction to 0-th Fourier coefficient.
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T-duality and BBC in non-Euclidean geometries

In Nil-geometry, lattice ∼

1 a c
0 1 b
0 0 1

 , a, b, c ∈ Z

 models screw

dislocations [H+M+T, ATMP’16], and T-dual has H-flux. Get
“screw modes” as argued in [Ran+Zhang+Vishwanath, Nature ’19]

In hyperbolic plane, lattice
∼ surface/Fuchsian group,
and there is fractional
BBC [M+T ’17]
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