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Normal words

A normal word is an infinite word such that all finite words of
the same length occur in it with the same frequency.

If x ∈ Aω and w ∈ A∗, the frequency of w in x is defined by

freq(x,w) = lim
N→∞

|x[1..N ]|w
N

.

where |z|w denotes the number of occurrences of w in z.

A word x ∈ Aω is normal if for each w ∈ A∗:

freq(x,w) =
1

|A||w|

where I |A| is the cardinality of the alphabet A

I |w| is the length of w.



Normal words (continued)

Theorem (Borel, 1909)

The decimal expansion of almost every real number in [0, 1) is a
normal word in the alphabet {0, 1, ..., 9}.

Nevertheless, not so many examples have been proved normal.
Some of them are:

I Champernowne 1933 (natural numbers):

12345678910111213141516171819202122232425 · · ·

I Besicovitch 1935 (squares):

149162536496481100121144169196225256289324 · · ·

I Copeland and Erdős 1946 (primes):

235711131719232931374143475359616771737983 · · ·



Normality as randomness

Normality is the poor mans’s randomness. This is the least
requirement one can expect from a random sequence.

This is much weaker than Martin-Löf randomness which implies
non-computability.
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Selection rules

I If x = a1a2a3 · · · is a normal infinite word, then so is
x′ = a2a3a4 · · · made of symbols at all positions but the
first one.

I If x = a1a2a3 · · · is normal infinite word, then so is
x′ = a2a4a6 · · · made of symbols at even positions.

I What about selecting symbols at positions 2n ?

I What about selecting symbols at prime positions ?

I What about selecting symbols following a 1 ?

I What about selecting symbols followed by a 1 ?



Oblivious prefix selection
Let L ⊆ A∗ be a set of finite words and x = a1a2a3 · · · ∈ Aω.
The prefix selection of x by L is the word x � L = ai1ai2ai3 · · ·
where {i1 < i2 < i3 < · · ·} = {i : a1a2 · · · ai−1 ∈ L}.
Example (Symbols following a 1)

If L = (0 + 1)∗1, then i1 − 1, i2 − 1, i3 − 1 are the positions of 1
in x and x � L is made of the symbols following a 1.

Theorem (Agafonov 1968)

Prefix selection by a rational set of finite words preserves
normality.

The selection can be realized by a transducer.

Example (Selection of symbols following a 1)

q0 q10|ε
1|ε

0|0
1|1



Oblivious suffix selection

Let X ⊆ Aω be a set of infinite words and x = a1a2a3 · · · ∈ Aω.
The suffix selection of x by X is the word x � X = ai1ai2ai3 · · ·
where {i1 < i2 < i3 < · · ·} = {i : ai+1ai+2ai+3 · · · ∈ X}.

Example (Symbols followed by a 1)

If L = 1(0 + 1)ω, then i1 + 1, i2 + 1, i3 + 1 are the positions of 1
in x and x � X is made of the symbols followed by a 1.

Theorem
Suffix selection by a rational set of infinite words preserves
normality.

Combining prefix and suffix does not preserve normality in
general. Selecting symbols having a 1 just before and just after
them does not preserve normality.
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Transducers

Q

Input tape a0 a1 a2 a3 a4 a5 a6 a7

Output tape b0 b1 b2 b3 b4 b5 b6

Transitions p a|v−−→ q for a ∈ A, v ∈ B∗.



Example

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0



Example

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0 1



Example

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1



Example

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0



Example

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0 1 0 0



Example

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0 1 0 0 1



Example

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0 0 1



Example

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0 0 1



Example

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0 0 1 0



Characterization of normal words

An infinite word x = a1a2a3 · · · is compressible by a transducer
if there is an accepting run q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · ·
satisfying

lim inf
n→∞

|v1v2 · · · vn| log |B|
|a1a2 · · · an| log |A|

< 1.

Theorem (Schnorr, Stimm and others)

An infinite word is normal if and only if it cannot be
compressed by deterministic one-to-one transducers.

Similar to the characterization of Martin-Löf randomness by
non-compressibility by prefix Turing machines.

lim inf
n→∞

H(x[1..n])− n > −∞

where H is the prefix Kolmogorov complexity.



Ingredients

Shannon (1958)

I frequency of u different from b−|u| implies non maximum
entropy

I non-maximum entropy implies compressibility

Huffman (1952)

I simple greedy implementation of Shannon’s general idea

I implementation by a finite state tranducer



Robust characterization

Transducers can be replaced by

I Non-deterministic but functional one-to-one transducers

I Transducers with one counter

I Two-way transducers

det non-det non-rt

finite-state N N N
1 counter N N N

≥ 2 counters N N T
1 stack ? C C

1 stack + 1 counter C C T

where

N means cannot compress normal words

C means can compress some normal word

T means is Turing complete and thus can compress.



Non-compressibility implies selection

0 1 1 0 1 0 0 1 1 0 0 1 0

0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1

1 1 0 1 0 1 1 0 1 1 0 0 1

1 1 1 0 0 1 0 1 1 1 0 1 1

Selection

Compression

Merge
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Preservation of normality

A functional transducer T is said to preserve normality if for
every normal word x ∈ Aω, T (x) is also normal.

Question

Given a deterministic complete transducer T , does T preserve
normality?



Weighted Automata

A weighted automaton T is an automaton whose transitions,
not only consume a symbol from an input alphabet A, but also
have a transition weight in R and whose states have initial
weight and final weight in R.

q0 q1
1 11:1

1:1
0:1

0:2
1:2

This weighted automaton computes the value of a binary
number.



The weight of a run q0
b1−→ q1

b2−→ · · · bn−→ qn in A is the product
of the weights of its n transitions times the initial weight of q0

and the final weight of qn.

q0 q1
1 11:1

1:1
0:1

0:2
1:2

weightA(q0
1−→ q0

1−→ q1
0−→ q2) = 1 ∗ 1 ∗ 1 ∗ 2 ∗ 1 = 2



The weight of a run q0
b1−→ q1

b2−→ · · · bn−→ qn in A is the product
of the weights of its n transitions times the initial weight of q0

and the final weight of qn.

q0 q1
1 11:1

1:1
0:1

0:2
1:2

The weight of a word w in A is given by the sum of weights of
all runs labeled with w:

weightA(w) =
∑

γ run on w

weightA(γ)

weightA(110) = weightA(q0
1−→ q0

1−→ q1
0−→ q1) +

weightA(q0
1−→ q1

1−→ q1
0−→ q1) = 2 + 4 = 6



Theorem
For every strongly connected deterministic transducer T there
exists a weighted automaton A such that for any finite word w
and any normal word x, weightA(w) is exactly the frequency
of w in T (x).

Example

1

2

3a|a
b|λ

a|λ
b|bb

a|λ
b|ba

1

2

3

4

5

2/3

1/6

1/6

1

1

1

1

1a:1/2

b:1/4

b:1/4

b:1/2

b:1/2

b:1

b:1

a:1

Transducer T Weighted Automaton A



Deciding preservation of normality

Proposition

Such a weighted automaton can be computed in cubic time
with respect to the size of the transducer.

Theorem
It can decided in cubic time whether a given deterministic
transducer does preserve normality (that is sends each normal
word to a normal word)

.



Recap of the links between automata and normality

I Selecting with an automaton in an normal word preserves
normality.

I Normality is characterized by non-compressibility by finite
state machines.

I Frequencies in the output of a deterministic transducer are
given by a weighted automaton.

Thank you
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