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Equidistribution

Equidistribution

A sequence a = (an | n € N) of real numbers is uniformly distributed (or
equidistributed) mod 1if,foral0 < a< b <1,

. ’{n< m| {an} € [a,b]}‘ Y

m— oo m
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Equidistribution

Equidistribution

A sequence a = (an | n € N) of real numbers is uniformly distributed (or
equidistributed) mod 1if,foral0 < a< b <1,

. ’{n< m| {an} € [a,b]}‘ Y

m— oo m

Weyl’s criterion (1916)
This holds if and only if, for all h € 7,

m—oco m

1 m—1 :
lim — " e?mihen =0
n=0
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Normal Numbers

Normality

¥ ={0,1,--- ,b—1} (2<eN)

ForSex®, wexrt,andnez",

[{i < n|S[i..i+|w|—1]=w}|
n

= n-th frequency of win S

freq,(w, S) =
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Normality

¥ ={0,1,--- ,b—1} (2<eN)

ForSex®, wexrt,andnez",

[{i < n|S[i..i+|w|—1]=w}|
n

= n-th frequency of win S

freq,(w, S) =

Borel (1909)
A sequence S € X% s normal if

A = _ v
(Vwex )nl—l)moo freq,(w, S) = b~ "1
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Normal Numbers

Normality

¥ ={0,1,--- ,b—1} (2<eN)

ForSex®, wexrt,andnez",

[{i < n|S[i..i+|w|—1]=w}|
n

= n-th frequency of win S

freq,(w, S) =

Borel (1909)
A sequence S € X% s normal if

A = _ v
(Vwex )nl—l)moo freq,(w, S) = b~ "1

A real number « is normal in base b if the base-b expansion of {«} is a normal
sequence.
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Normal Numbers

Wall (1949)

A real number « is normal in base b if and only if the sequence (b"« | n € N) is
uniformly distributed mod 1.
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Hausdorff Dimension

Hausdorff dimension (1928)

Assigns a dimension dimy(E) to every subset E of a given metric space.

Jack Lutz lowa State University Finite-State Dimensions



Hausdorff Dimension

Hausdorff dimension (1928)

Assigns a dimension dimy(E) to every subset E of a given metric space.

Here we focus on the metric spaces X equipped with the metric

d(S, T) = b= min{nlSInl#TInl}
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Hausdorff Dimension

Today we use a very nonclassical characterization of classical Hausdorff dimension.
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Hausdorff Dimension

Today we use a very nonclassical characterization of classical Hausdorff dimension.

Fix a universal oracle Turing machine % . The Kolmogorov complexity of a string
w € X* relative to an oracle AC Nis

KA(w) = min {|x|x € {0,1}* and Z*(x) = w}.
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Hausdorff Dimension

Today we use a very nonclassical characterization of classical Hausdorff dimension.

Fix a universal oracle Turing machine % . The Kolmogorov complexity of a string
w € X* relative to an oracle AC Nis

KA(w) = min {|x|x € {0,1}* and Z*(x) = w}.

The Kolmogorov complexity of a string w € ©* is

K(w) = K%(w).
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Hausdorff Dimension

The lower and upper algorithmic dimensions of a sequence S € X% are

dim(S) = liminf _Kw) _

(Lutz 2003, Mayordomo 2002)
w—S |w|log|X|

and

Dim(S) = limsup _Kw)

,  (Athreya, Hitchcock, Lutz, Mayordomo 2007)
wos |w|log|X|

respectively.
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,  (Athreya, Hitchcock, Lutz, Mayordomo 2007)
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Hausdorff Dimension

The lower and upper algorithmic dimensions of a sequence S € X% are

K
dim(8) = liminf KW itz 2008, Mayordomo 2002)
w—S |w|log|X|

and

K
Dim(S) = limsup — ) (threya, Hitchcock, Lutz, Mayordomo 2007)
w—s |w|log|X|

respectively.
In general, 0 < dim(S) < Dim(S) < 1.

Define the relativized algorithmic dimensions dim”(S) and Dim#(S) analogously.
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Hausdorff Dimension

Today we use the following theorem as the definition of Hausdorff dimension.

Point-to-Set Principle (N. Lutz and J. Lutz 2018)

Forevery E C ¥¥ )
imu(E) — mi . .
dimy(E) ;\nellr\};tej%dlm (S)
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Hausdorff Dimension

Today we use the following theorem as the definition of Hausdorff dimension.

Point-to-Set Principle (N. Lutz and J. Lutz 2018)

Forevery E C ¥¥ )
di E) = mi di S).
imy(E) g Sl (S)

Also holds with R" in place of ¥%.

Allows one to prove a lower bound on dimg(E) by proving that a judiciously chosen
point x € E has large dim”(x).
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Hausdorff Dimension

Today we use the following theorem as the definition of Hausdorff dimension.

Point-to-Set Principle (N. Lutz and J. Lutz 2018)

Forevery E C ¥¥ )
di E) = mi di S).
imy(E) g Sl (S)

Also holds with R" in place of ¥%.

Allows one to prove a lower bound on dimg(E) by proving that a judiciously chosen
point x € E has large dim”(x).

N. Lutz and Stull (2017) and N. Lutz (2017) have used this method to solve open
problems in classical geometric measure theory.
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Finite-State Dimension

But algorithmic dimensions are not effective enough to study normality.
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Finite-State Dimension

But algorithmic dimensions are not effective enough to study normality.

Dai, Lathrop, Lutz, and Mayordomo (2004) developed the lower and upper finite-state
dimensions dimgs(S) and Dimgs(S) of sequences S € ¥«
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Finite-State Dimension

But algorithmic dimensions are not effective enough to study normality.

Dai, Lathrop, Lutz, and Mayordomo (2004) developed the lower and upper finite-state
dimensions dimgs(S) and Dimgs(S) of sequences S € ¥«

Several equivalent characterizations are now known. Today we use the compression
characterization.
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Finite-State Dimension

Shannon (1948)
A is a 5-tuple

C=(Q,x,4,s,v),

where
m Qs afinite set of ;
mxX={0,1,--- ,b—1}isthe ;
md:QxX— Qisthe ;
m se Qisthe ;and
mv:QxX— {0,1}*isthe )
Write C(w) for the of C on aninputw € X*.
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Finite-State Dimension

An information-lossless finite-state compressor (ILFSC) is an FSC
C=(Q,%,4,s,v) for which the function

TF 5 {0,1}* x Q
w— (C(w),d(s,w))

is one-to-one.
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Finite-State Dimension

An information-lossless finite-state compressor (ILFSC) is an FSC
C=(Q,%,4,s,v) for which the function

= {0,1}* xQ
w— (C(w),d(s,w))
is one-to-one.

Today’s definitions :

. C(w)
f
dimgs(S) = inf IIvT—ig Wilogz]

; C(w)
Dimgs(S) = inflimsup ————
C wos |w|loglZ|’

(Dai, Lathrop, Lutz, Mayordomo 2004)
(Athreya, Hitchcock, Lutz, Mayordomo 2007)

(C ranges over all ILFSCs.)
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Finite-State Dimension

An information-lossless finite-state compressor (ILFSC) is an FSC
C=(Q,%,4,s,v) for which the function

= {0,1}* xQ
w— (C(w),d(s,w))
is one-to-one.

Today’s definitions :

. C(w)
f
dimgs(S) = inf IIvT—ig Wilogz]

; C(w)
Dimgs(S) = inflimsup ————
C wos |w|loglZ|’

(Dai, Lathrop, Lutz, Mayordomo 2004)
(Athreya, Hitchcock, Lutz, Mayordomo 2007)

(C ranges over all ILFSCs.)

In general, 0 < dimgs(S) < Dimgs(S) < 1.
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Finite-State Dimension

Schnorr & Stimm (1972) ; Bourke, Hitchcock, & Vinodchandren (2005) :

A sequence S € X¥ is normal if and only if dimgs(S) = 1.
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Finite-State Dimension

Schnorr & Stimm (1972) ; Bourke, Hitchcock, & Vinodchandren (2005) :
A sequence S € X¥ is normal if and only if dimgs(S) = 1.

Schnorr and Stimm’s method makes it clear that normality is finite-state randomness.
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Finite-State Dimension

Schnorr & Stimm (1972) ; Bourke, Hitchcock, & Vinodchandren (2005) :
A sequence S € X¥ is normal if and only if dimgs(S) = 1.
Schnorr and Stimm’s method makes it clear that normality is finite-state randomness.

The finite-state world is the only one that we know of where dimension 1 implies
randomness.
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Finite-State Dimension

Schnorr & Stimm (1972) ; Bourke, Hitchcock, & Vinodchandren (2005) :
A sequence S € X¥ is normal if and only if dimgs(S) = 1.
Schnorr and Stimm’s method makes it clear that normality is finite-state randomness.

The finite-state world is the only one that we know of where dimension 1 implies
randomness.

Elvira will tell you about very recent work extending Schnorr and Stimm’s remarkable
theorem.
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Finite-State Dimension

We now know that a sequence S € ¢ is normal if and only if dimgs(S) = 1.
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Finite-State Dimension

We now know that a sequence S € ¢ is normal if and only if dimgs(S) = 1.

QUESTION : Which theorems about normality can be better understood as the
dimension-1 special case of quantitative theorems about finite-state dimension ?
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Finite-State Dimension

EXAMPLE 1 : Copeland-Erdds sequences

2<beNx={0,1,---,b—1}
For n € Z*, op(n) = the base-b expansion of n.
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Finite-State Dimension

EXAMPLE 1 : Copeland-Erdds sequences

2<beNx={0,1,---,b—1}
For n € Z*, op(n) = the base-b expansion of n.

The base-b Copeland-Erdos sequence of an infinite set
A:{a1 <a2<-~~}gZ+

is the sequence CEp(A) = op(ay)op(az) --- € X¥.
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Finite-State Dimension

Champernowne (1933)

The decimal Champernowne sequence
CEqo(Z") = 123456789101112- - -

is normal.
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Finite-State Dimension

Champernowne (1933)

The decimal Champernowne sequence
CEqo(Z") = 123456789101112- - -

is normal.
Champernowne conjectured that

CE1o(PRIMES) = 2357111317 - -

is also normal.
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Finite-State Dimension

Copeland-Erdés (1

For all b,
CEy(PRIMES) is normal.

)
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Finite-State Dimension

Copeland-Erdés (1946)

For all b,
CEy(PRIMES) is normal.

Outline of proof

For all sufficiently dense A C Z™,
CEp(A) is normal.

PRIMES is sufficiently dense. O
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Finite-State Dimension

Zeta dimensions (invented times over the past 200 years)
For A C Z*, define the A-zeta function
CA : [07 OO) — [Oa OO]

als) = _n—°.

neA
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Finite-State Dimension

Zeta dimensions (invented times over the past 200 years)
For A C Z*, define the A-zeta function
CA : [07 OO) — [Oa OO]
Ca(s) = _n—°.
neA
The zeta-dimension of Ais

Dim¢(A) = inf{s | {a(s) < oo}.
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Finite-State Dimension

Zeta dimensions (invented many times over the past 200 years)
For A C 7+, define the A-
CA : [07 OO) — [0,00]
Ca(s)=>_n*.

neA

The of Ais
Dim¢(A) = inf{s | {a(s) < oo}.

Cahen (1894)

loglAN{1,---,n}|

Dim¢(A) = limsu
<« n—>oop logn
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Finite-State Dimension

Zeta dimensions (invented many times over the past 200 years)
For A C 7+, define the A-

Ca: [07 OO) - [0,00]

als) = _n—°.

neA

The of Ais
Dim¢(A) = inf{s | {a(s) < oo}.

Cahen (1894)

log|AN {1, --

Dim¢(A) = limsup loglAn {1,---, n}
n— oo logn

The of Ais

loglAn{1,---,n}|

dim¢(A) = liminf
im¢ (4) ns60 log n
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Finite-State Dimension

Zeta dimensions (invented many times over the past 200 years)
For A C 7+, define the A-
CA : [07 OO) — [0,00]
Ca(s)=>_n*.

neA

The of Ais
Dim¢(A) = inf{s | {a(s) < oo}.

Cahen (1894)

log|AN{1,---

Dim (A) = limsup ‘AL, M}
n— oo logn

The of Ais

dim¢(A) = “m;nfw
n— oo logn

Clearly, 0 < dim¢(A) < Dim¢(A) < 1.
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Finite-State Dimension

Gu, Lutz, and Moser (2007)
For every infinite A C Z,

dimes(CEp(A)) = dim¢(A)

and
Dimpg(CEp(A)) = Dim¢(A)
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Finite-State Dimension

Gu, Lutz, and Moser (2007)
For every infinite A C Z,

dimes(CEp(A)) = dim¢(A)

and
Dimpg(CEp(A)) = Dim¢(A)

These inequalities are tight : For any real numbers

vy < 46 <1
VI VI
0 < a < B
there exists an infinite A C Z* with dim¢(A) = «, Dim¢(A) = 8, dimgs(CEp(A)) =7,
and Dlmps(ch(A)) =94.
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Finite-State Dimension

Gu, Lutz, and Moser (2007)
For every infinite A C Z,

dimes(CEp(A)) = dim¢(A)

and
Dimpg(CEp(A)) = Dim¢(A)

These inequalities are tight : For any real numbers

vy < 6 <1
VI VI
0 < a < B

there exists an infinite A C Z* with dim¢(A) = «, Dim¢(A) = 8, dimgs(CEp(A)) =7,
and Dimgg(CEp(A)) = 4.
Remarks :

m The Copeland-Erdds density criterion is equivalent to dim(A) = 1.

m The dimension theorem required a different method.
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Finite-State Dimension

EXAMPLE 2 : Finite-state dimension and real arithmetic.

Wall (1949)

If q is a non-zero rational, then,
for every real number o,
« is normal in base b
—> g+ « and ga are normal in base b.
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EXAMPLE 2 : Finite-state dimension and real arithmetic.

Wall (1949)

If q is a non-zero rational, then,
for every real number o,
« is normal in base b
—> g+ « and ga are normal in base b.

Doty, Lutz, and Nandakumar (2007)

If q is a non-zero rational, then, for every real number o, the base-b expansions of o,
g + «, and qa all have the same finite-state dimension and the same strong finite-state
dimension.
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EXAMPLE 2 : Finite-state dimension and real arithmetic.

Wall (1949)

If q is a non-zero rational, then,
for every real number o,
« is normal in base b
—> g+ « and ga are normal in base b.

Doty, Lutz, and Nandakumar (2007)

If q is a non-zero rational, then, for every real number o, the base-b expansions of o,
g + «, and qa all have the same finite-state dimension and the same strong finite-state
dimension.

The dimension result required a very different method.
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Finite-State Dimension

I’'m asking again, and this time I'm asking you'!

QUESTION : Which theorems about normality can be better understood as the
dimension-1 special case of quantitative theorems about finite-state dimension ?

Jack Lutz lowa State University Finite-State Dimensions



Finite-State Dimension

Further Directions

(1) It is routine to generalize normality to a-normality, where « is a probability
measure on X. One can also define finite-state dimensions with respect to such «.
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Further Directions

(1) It is routine to generalize normality to a-normality, where « is a probability
measure on X. One can also define finite-state dimensions with respect to such «.

Lutz (2011)
If o and B are positive probability measures on ¥~ and R € X is a-normal, then

H(e)
H(a) +D(eB)

dimps(R) = DimZg(R) =

where ]
H = Ealog —,D(ol|8) = Ea log >
a B

are the Shannon entropy and the Kullback-Leibler divergence.
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Finite-State Dimension

Further Directions

(1) It is routine to generalize normality to a-normality, where « is a probability
measure on X. One can also define finite-state dimensions with respect to such «.

Lutz (2011)
If o and B are positive probability measures on ¥~ and R € X is a-normal, then

H(e)
H(a) +D(eB)

dimps(R) = DimZg(R) =

where ]
H = Ealog —,D(ol|8) = Ea log >
a B
are the Shannon entropy and the Kullback-Leibler divergence.

Can this be usefully generalized ?
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Finite-State Dimension

(2) In many contexts, it is natural to ask “how much randomness” a probability
theorem requires. Classical examples include the law of large numbers and
ergodic theorems. Current examples include stochastic chemical reaction
networks and Banach-Tarski type constructions. The answers range from normality
to algorithmic randomness and beyond. More general notions of normality, along
lines that we've seen this week, may be needed to address such questions.
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Finite-State Dimension

Thank You!
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