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Equidistribution

A sequence α = (αn | n ∈ N) of real numbers is uniformly distributed (or
equidistributed) mod 1 if, for all 0 ≤ a < b ≤ 1,

lim
m→∞

∣∣∣{n < m | {αn} ∈ [a, b]
}∣∣∣

m
= b − a

Weyl’s criterion (1916)

This holds if and only if, for all h ∈ Z+,

lim
m→∞

1
m

m−1∑
n=0

e2πihαn = 0
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Normality

Σ = {0, 1, · · · , b − 1} (2 ≤∈ N)
For S ∈ Σω , w ∈ Σ+, and n ∈ Z+,

freqn(w ,S) =

∣∣{i < n|S[i .. i + |w | − 1] = w
}∣∣

n
= n-th frequency of w in S

Borel (1909)

A sequence S ∈ Σω is normal if

(∀w ∈ Σ+) lim
n→∞

freqn(w ,S) = b−|w|.

A real number α is normal in base b if the base-b expansion of {α} is a normal
sequence.
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Wall (1949)

A real number α is normal in base b if and only if the sequence (bnα | n ∈ N) is
uniformly distributed mod 1.
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Hausdorff dimension (1928)

Assigns a dimension dimH(E) to every subset E of a given metric space.

Here we focus on the metric spaces Σω equipped with the metric

d(S,T ) = b−min{n|S[n] ̸=T [n]}.
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Today we use a very nonclassical characterization of classical Hausdorff dimension.

Fix a universal oracle Turing machine U . The Kolmogorov complexity of a string
w ∈ Σ∗ relative to an oracle A ⊆ N is

K A(w) = min
{
|π|

∣∣π ∈ {0, 1}∗ and U A(π) = w
}
.

The Kolmogorov complexity of a string w ∈ Σ∗ is

K (w) = K∅(w).
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The lower and upper algorithmic dimensions of a sequence S ∈ Σω are

dim(S) = lim inf
w→S

K (w)

|w | log|Σ|
(Lutz 2003, Mayordomo 2002)

and

Dim(S) = lim sup
w→S

K (w)

|w | log|Σ|
, (Athreya, Hitchcock, Lutz, Mayordomo 2007)

respectively.

In general, 0 ≤ dim(S) ≤ Dim(S) ≤ 1.

Define the relativized algorithmic dimensions dimA(S) and DimA(S) analogously.
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Today we use the following theorem as the definition of Hausdorff dimension.

Point-to-Set Principle (N. Lutz and J. Lutz 2018)

For every E ⊆ Σω

dimH(E) = min
A∈N

sup
S∈E

dimA(S).

Also holds with Rn in place of Σω .

Allows one to prove a lower bound on dimH(E) by proving that a judiciously chosen
point x ∈ E has large dimA(x).

N. Lutz and Stull (2017) and N. Lutz (2017) have used this method to solve open
problems in classical geometric measure theory.
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But algorithmic dimensions are not effective enough to study normality.

Dai, Lathrop, Lutz, and Mayordomo (2004) developed the lower and upper finite-state
dimensions dimFS(S) and DimFS(S) of sequences S ∈ Σω .

Several equivalent characterizations are now known. Today we use the compression
characterization.
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Shannon (1948)

A finite-state compressor (FSC) is a 5-tuple

C = (Q,Σ, δ, s, v),

where

Q is a finite set of states ;

Σ = {0, 1, · · · , b − 1} is the input alphabet ;

δ : Q × Σ → Q is the transition function ;

s ∈ Q is the start state ; and

v : Q × Σ → {0, 1}∗ is the output function.

Write C(w) for the cumulative output of C on an input w ∈ Σ∗.

Jack Lutz Iowa State University Finite-State Dimensions 12 / 26
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An information-lossless finite-state compressor (ILFSC) is an FSC
C = (Q,Σ, δ, s, v) for which the function

Σ∗ → {0, 1}∗ × Q

w 7→
(
C(w), δ(s,w)

)
is one-to-one.

Today’s definitions :

dimFS(S) = inf
C

lim inf
w→S

C(w)

|w | log|Σ|
. (Dai, Lathrop, Lutz, Mayordomo 2004)

DimFS(S) = inf
C

lim sup
w→S

C(w)

|w | log|Σ|
. (Athreya, Hitchcock, Lutz, Mayordomo 2007)

(C ranges over all ILFSCs.)

In general, 0 ≤ dimFS(S) ≤ DimFS(S) ≤ 1.
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Schnorr & Stimm (1972) ; Bourke, Hitchcock, & Vinodchandren (2005) :

A sequence S ∈ Σω is normal if and only if dimFS(S) = 1.

Schnorr and Stimm’s method makes it clear that normality is finite-state randomness.

The finite-state world is the only one that we know of where dimension 1 implies
randomness.

Elvira will tell you about very recent work extending Schnorr and Stimm’s remarkable
theorem.
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We now know that a sequence S ∈ Σω is normal if and only if dimFS(S) = 1.

QUESTION : Which theorems about normality can be better understood as the
dimension-1 special case of quantitative theorems about finite-state dimension?
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EXAMPLE 1 : Copeland-Erdös sequences

2 ≤ b ∈ N, Σ = {0, 1, · · · , b − 1}.
For n ∈ Z+, σb(n) = the base-b expansion of n.

The base-b Copeland-Erdös sequence of an infinite set

A = {a1 < a2 < · · · } ⊆ Z+

is the sequence CEb(A) = σb(a1)σb(a2) · · · ∈ Σω .

Jack Lutz Iowa State University Finite-State Dimensions 17 / 26
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Champernowne (1933)

The decimal Champernowne sequence

CE10(Z+) = 123456789101112 · · ·

is normal.

Champernowne conjectured that

CE10(PRIMES) = 2357111317 · · ·

is also normal.

Jack Lutz Iowa State University Finite-State Dimensions 18 / 26
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Copeland-Erdös (1946)

For all b,
CEb(PRIMES) is normal.

Outline of proof
1 For all sufficiently dense A ⊆ Z+,

CEb(A) is normal.

2 PRIMES is sufficiently dense. □
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Zeta dimensions (invented many times over the past 200 years)

For A ⊆ Z+, define the A-zeta function

ζA : [0,∞) → [0,∞]

ζA(s) =
∑
n∈A

n−s.

The zeta-dimension of A is

Dimζ(A) = inf{s | ζA(s) < ∞}.

Cahen (1894)

Dimζ(A) = lim sup
n→∞

log|A ∩ {1, · · · , n}|
log n

The lower zeta-dimension of A is

dimζ(A) = lim inf
n→∞

log|A ∩ {1, · · · , n}|
log n

Clearly, 0 ≤ dimζ(A) ≤ Dimζ(A) ≤ 1.

Jack Lutz Iowa State University Finite-State Dimensions 20 / 26
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Gu, Lutz, and Moser (2007)

For every infinite A ⊆ Z+,

dimFS(CEb(A)) ≥ dimζ(A)

and
DimFS(CEb(A)) ≥ Dimζ(A)

These inequalities are tight : For any real numbers

γ ≤ δ ≤ 1

≤ ≤

0 ≤ α ≤ β

there exists an infinite A ⊆ Z+ with dimζ(A) = α, Dimζ(A) = β, dimFS(CEb(A)) = γ,
and DimFS(CEb(A)) = δ.

Remarks :
The Copeland-Erdös density criterion is equivalent to dimζ(A) = 1.

The dimension theorem required a different method.
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EXAMPLE 2 : Finite-state dimension and real arithmetic.

Wall (1949)

If q is a non-zero rational, then,
for every real number α,

α is normal in base b
=⇒ q + α and qα are normal in base b.

Doty, Lutz, and Nandakumar (2007)

If q is a non-zero rational, then, for every real number α, the base-b expansions of α,
q + α, and qα all have the same finite-state dimension and the same strong finite-state
dimension.

The dimension result required a very different method.

Jack Lutz Iowa State University Finite-State Dimensions 22 / 26



Very Big Picture Equidistribution Normal Numbers Hausdorff Dimension Finite-State Dimension

EXAMPLE 2 : Finite-state dimension and real arithmetic.

Wall (1949)

If q is a non-zero rational, then,
for every real number α,

α is normal in base b
=⇒ q + α and qα are normal in base b.

Doty, Lutz, and Nandakumar (2007)

If q is a non-zero rational, then, for every real number α, the base-b expansions of α,
q + α, and qα all have the same finite-state dimension and the same strong finite-state
dimension.

The dimension result required a very different method.

Jack Lutz Iowa State University Finite-State Dimensions 22 / 26



Very Big Picture Equidistribution Normal Numbers Hausdorff Dimension Finite-State Dimension

EXAMPLE 2 : Finite-state dimension and real arithmetic.

Wall (1949)

If q is a non-zero rational, then,
for every real number α,

α is normal in base b
=⇒ q + α and qα are normal in base b.

Doty, Lutz, and Nandakumar (2007)

If q is a non-zero rational, then, for every real number α, the base-b expansions of α,
q + α, and qα all have the same finite-state dimension and the same strong finite-state
dimension.

The dimension result required a very different method.

Jack Lutz Iowa State University Finite-State Dimensions 22 / 26



Very Big Picture Equidistribution Normal Numbers Hausdorff Dimension Finite-State Dimension

I’m asking again, and this time I’m asking you !

QUESTION : Which theorems about normality can be better understood as the
dimension-1 special case of quantitative theorems about finite-state dimension?

Jack Lutz Iowa State University Finite-State Dimensions 23 / 26



Very Big Picture Equidistribution Normal Numbers Hausdorff Dimension Finite-State Dimension

Further Directions

(1) It is routine to generalize normality to α-normality, where α is a probability
measure on Σ. One can also define finite-state dimensions with respect to such α.

Lutz (2011)

If α and β are positive probability measures on Σ and R ∈ Σω is α-normal, then

dimβ
FS(R) = Dimβ

FS(R) =
H(α)

H(α) +D(α∥β)
,

where
H = Eα log

1
α
,D(α∥β) = Eα log

α

β

are the Shannon entropy and the Kullback-Leibler divergence.

Can this be usefully generalized?
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(2) In many contexts, it is natural to ask ‘’how much randomness‘’ a probability
theorem requires. Classical examples include the law of large numbers and
ergodic theorems. Current examples include stochastic chemical reaction
networks and Banach-Tarski type constructions. The answers range from normality
to algorithmic randomness and beyond. More general notions of normality, along
lines that we’ve seen this week, may be needed to address such questions.
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Thank You!
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