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Motivation

Every irrational real number in r ∈ [0, 1] has a unique continued fraction
expansion of the form

r = 0 +
1

a1 +
1

a2 +
1

a3 +
1

.. .

,

where, for every i ∈ N+, we have ai ∈ N+.

We denote this by [0; a1, a2, a3, . . . ].
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Normality for base-b expansions of reals

Let b ≥ 2 be an integer. Denote the set {0, 1, . . . , b − 1} by Σb, and the
set of finite strings drawn from this alphabet by Σ∗

b
. For a finite string w ,

let |w | denote its length.
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Normality for base-b expansions of reals

Let b ≥ 2 be an integer. Denote the set {0, 1, . . . , b − 1} by Σb, and the
set of finite strings drawn from this alphabet by Σ∗

b
. For a finite string w ,

let |w | denote its length.

Definition

A real r with base-b expansion .r1r2 . . . is said to be normal in base b, if
for every w ∈ Σ∗

b
, we have

lim
n→∞

|{1 ≤ i < n − |w |+ 1 | ri . . . ri+|w |−1 = w}|

n − |w |+ 1
=

1

b|w |
.
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Sliding Block matching

r1 r2 r3 . . .

w1 w2
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Normality for continued fractions

Denote the set of finite strings of positive integers by N∗
b
. For continued

fractions, we consider the Gauss measure as the invariant measure.

Definition

For a Borel set A ⊆ [0, 1], the Gauss measure of A is defined by

γ(A) =
1

ln 2

∫
A

1

1 + x
dx .

The left-shift transformation on continued fractions is ergodic wrt γ.
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Continued fraction normality

Definition

An irrational r with continued fraction expansion [0; a1, a2, . . . ] is said to
be continued fraction normal, if for every w ∈ N∗,

lim
n→∞

|{1 ≤ i < n − |w |+ 1 | ai . . . ai+|w |−1 = w}|

n − |w |+ 1
= γ(Cw ),

where Cw is the cylinder set

{r ∈ [0, 1] −Q | w is a prefix of the continued fraction expansion of r}.
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Subselections along Arithmetic Progressions

Let [0; a1, a2, . . . ] be a continued fraction normal, and let
(m,m + d ,m + 2d , . . . ), m ≥ 1, d ≥ 2 be an arithmetic progression of
integers.

Question:

Is [0; am, am+d , am+2d , . . . ] a continued fraction normal?
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Subselections along Arithmetic Progression

Base-b normality is preserved when we select a subsequence along an
arithmetic progression. [Wall, 1949]
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Subselections along Arithmetic Progression

Base-b normality is preserved when we select a subsequence along an
arithmetic progression. [Wall, 1949]

Continued fraction normality is not!

Theorem ([Heersink and Vandehey, 2016])

For any [0; a1, a2, . . . ] continued fraction normal, and any

(m,m+ d ,m+ 2d , . . . ), the continued fraction [0; am, am+d , am+2d , . . . ] is
not normal.

The proof uses ergodic-theoretic techniques used in a result by Vandehey
[Vandehey, 2017].
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Proofs of Wall’s Result

Wall’s result on arithmetic progressions has different proofs using

1 Weyl’s criterion

2 Automata Theoretic

3 Combinatorial (?)
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A combinatorial approach

The key ingredients of the proof in [Heersink and Vandehey, 2016]:

1

lim
n→∞

|{0 ≤ i ≤ N | T imr ∧ T im+d r ∈ C[0;1]}|

N

=
∑

a1,a2,...,an∈N+

γ(C[0;1,a1,...,an,1]).
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A combinatorial approach

The key ingredients of the proof in [Heersink and Vandehey, 2016]:

1

lim
n→∞

|{0 ≤ i ≤ N | T imr ∧ T im+d r ∈ C[0;1]}|

N

=
∑

a1,a2,...,an∈N+

γ(C[0;1,a1,...,an,1]).

2 For any n ≥ 1,
∑

a1,a2,...,an∈N+

γ(C[0;1,a1,...,an,1]) > γ(C[0;1,1]).
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A combinatorial approach

Our approach:

1 Inequality by induction

Satyadev Nandakumar, Subin Pulari, Prateek Vishnoi, Gopal Viswanathan . IIT KanpurContinued Fraction Normals and Subsequence selections - a combinatorial approachMay 9, 2019 12 / 18



A combinatorial approach

Our approach:

1 Inequality by induction

2 If a sequence is continued fraction normal, then the disjoint block
frequencies also behave normally.
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A combinatorial approach

Our approach:

1 Inequality by induction

2 If a sequence is continued fraction normal, then the disjoint block
frequencies also behave normally.

Key obstacle: loss of compactness, countably infinite alphabet!
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Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma ∑
a∈N+

γ(C[0;1,a,1]) > γ(C[0;1,1]).
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Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma ∑
a∈N+

γ(C[0;1,a,1]) > γ(C[0;1,1]).

Proof Strategy: Show that the Lebesgue measure of C[0;1,a,1] is greater
than that of C[0;1,1,a].
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Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma ∑
a∈N+

γ(C[0;1,a,1]) > γ(C[0;1,1]).

Proof Strategy: Show that the Lebesgue measure of C[0;1,a,1] is greater
than that of C[0;1,1,a].

Use the standard continued fraction recurrence for denominators of the
extremities of the cylinders to show:

denom([0; 1, 1, a]) × denom([0; 1, 1, (a + 1)]

> denom([0; 1, a, 1]) × denom([0; 1, a, 2]).
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Step 2: loss of compactness

Sliding block frequencies normal ⇒ disjoint block frequencies normal.
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Step 2: loss of compactness

Sliding block frequencies normal ⇒ disjoint block frequencies normal.

A consequence of the Piateskii-Shapiro Theorem. Follows the proof in
Kuipers and Niederreiter, with a careful application of Helley Selection.
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Tying things up

A. P.
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Thank You!
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Arbitrary length cylinders

Using the concavity of the cumulative distribution function of Gauss
measure, we can reduce the general inequality to an algebraic inequality
involving denominators.
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