Continued Fraction Normals and Subsequence selections - a combinatorial approach

Satyadev Nandakumar, Subin Pulari, Prateek Vishnoi, Gopal Viswanathan

IIT Kanpur

May 9, 2019

Table of contents

Motivation

Subselection along A. P.

Motivation

Every irrational real number in $r \in [0,1]$ has a unique continued fraction expansion of the form

$$r = 0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots}}}}$$

where, for every $i \in \mathbb{N}^+$, we have $a_i \in \mathbb{N}^+$.

We denote this by $[0; a_1, a_2, a_3, \dots]$.

Satyadev Nandakumar, Subin Pulari, Prateek Continued Fraction Normals and Subsequence

Normality for base-b expansions of reals

Let $b \geq 2$ be an integer. Denote the set $\{0, 1, \ldots, b-1\}$ by Σ_b , and the set of finite strings drawn from this alphabet by Σ_b^* . For a finite string w, let |w| denote its length.

Normality for base-b expansions of reals

Let $b \geq 2$ be an integer. Denote the set $\{0,1,\ldots,b-1\}$ by Σ_b , and the set of finite strings drawn from this alphabet by Σ_b^* . For a finite string w, let |w| denote its length.

Definition

A real r with base-b expansion $.r_1r_2...$ is said to be *normal in base* b, if for every $w \in \Sigma_b^*$, we have

$$\lim_{n \to \infty} \frac{|\{1 \le i < n - |w| + 1 \mid r_i \dots r_{i+|w|-1} = w\}|}{n - |w| + 1} = \frac{1}{b^{|w|}}.$$

Sliding Block matching

Sliding Block matching

Normality for continued fractions

Denote the set of finite strings of positive integers by \mathbb{N}_b^* . For continued fractions, we consider the Gauss measure as the invariant measure.

Definition

For a Borel set $A \subseteq [0,1]$, the *Gauss measure* of A is defined by

$$\gamma(A) = \frac{1}{\ln 2} \int_A \frac{1}{1+x} dx.$$

The left-shift transformation on continued fractions is ergodic wrt γ .

Continued fraction normality

Definition

An irrational r with continued fraction expansion $[0; a_1, a_2, \ldots]$ is said to be *continued fraction normal*, if for every $w \in \mathbb{N}^*$,

$$\lim_{n \to \infty} \frac{|\{1 \le i < n - |w| + 1 \mid a_i \dots a_{i+|w|-1} = w\}|}{n - |w| + 1} = \gamma(C_w),$$

where C_w is the cylinder set

 $\{r \in [0,1] - \mathbb{Q} \mid w \text{ is a prefix of the continued fraction expansion of } r\}.$

Satyadev Nandakumar, Subin Pulari, Prateek Continued Fraction Normals and Subsequence

Subselections along Arithmetic Progressions

Let $[0; a_1, a_2, \dots]$ be a continued fraction normal, and let $(m, m+d, m+2d, \dots)$, $m \geq 1$, $d \geq 2$ be an arithmetic progression of integers.

Question:

Is $[0; a_m, a_{m+d}, a_{m+2d}, \dots]$ a continued fraction normal?

Subselections along Arithmetic Progression

Base-b normality is preserved when we select a subsequence along an arithmetic progression. [Wall, 1949]

Subselections along Arithmetic Progression

Base-b normality is preserved when we select a subsequence along an arithmetic progression. [Wall, 1949]

Continued fraction normality is not!

Theorem ([Heersink and Vandehey, 2016])

For any $[0; a_1, a_2, ...]$ continued fraction normal, and any (m, m+d, m+2d, ...), the continued fraction $[0; a_m, a_{m+d}, a_{m+2d}, ...]$ is not normal.

The proof uses ergodic-theoretic techniques used in a result by Vandehey [Vandehey, 2017].

Proofs of Wall's Result

Wall's result on arithmetic progressions has different proofs using

- Weyl's criterion
- Automata Theoretic
- Combinatorial (?)

The key ingredients of the proof in [Heersink and Vandehey, 2016]:

1

$$\lim_{n \to \infty} \frac{|\{0 \le i \le N \mid T^{im}r \land T^{im+d}r \in C_{[0;1]}\}|}{N} = \sum_{\substack{a_1, a_2, \dots, a_n \in \mathbb{N}^+}} \gamma(C_{[0;1,a_1,\dots,a_n,1]}).$$

The key ingredients of the proof in [Heersink and Vandehey, 2016]:

1

$$\lim_{n \to \infty} \frac{|\{0 \le i \le N \mid T^{im}r \land T^{im+d}r \in C_{[0;1]}\}|}{N} = \sum_{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in \mathbb{N}^+} \gamma(C_{[0;1,\mathbf{a}_1, \dots, \mathbf{a}_n, 1]}).$$

② For any $n \ge 1$, $\sum_{\substack{a_1,a_2,...,a_n \in \mathbb{N}^+}} \gamma(C_{[0;1,a_1,...,a_n,1]}) > \gamma(C_{[0;1,1]})$.

Our approach:

Inequality by induction

Our approach:

- Inequality by induction
- If a sequence is continued fraction normal, then the disjoint block frequencies also behave normally.

Our approach:

- Inequality by induction
- If a sequence is continued fraction normal, then the disjoint block frequencies also behave normally.

Our approach:

- Inequality by induction
- If a sequence is continued fraction normal, then the disjoint block frequencies also behave normally.

Key obstacle: loss of compactness, countably infinite alphabet!

Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma

$$\sum_{a \in \mathbb{N}^+} \gamma(C_{[0;1,a,1]}) > \gamma(C_{[0;1,1]}).$$

Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma

$$\sum_{a \in \mathbb{N}^+} \gamma(C_{[0;1,a,1]}) > \gamma(C_{[0;1,1]}).$$

Proof Strategy: Show that the *Lebesgue measure* of $C_{[0;1,a,1]}$ is greater than that of $C_{[0;1,1,a]}$.

Illustrative case for Step 1

Consider A.P.s with common difference 2.

Lemma

$$\sum_{a \in \mathbb{N}^+} \gamma(C_{[0;1,a,1]}) > \gamma(C_{[0;1,1]}).$$

Proof Strategy: Show that the *Lebesgue measure* of $C_{[0;1,a,1]}$ is greater than that of $C_{[0;1,1,a]}$.

Use the standard continued fraction recurrence for denominators of the extremities of the cylinders to show:

$$\begin{split} \mathsf{denom}([0;1,1,a]) \times \mathsf{denom}([0;1,1,(a+1)] \\ &> \mathsf{denom}([0;1,a,1]) \times \mathsf{denom}([0;1,a,2]). \end{split}$$

Step 2: loss of compactness

Sliding block frequencies normal \Rightarrow disjoint block frequencies normal.

Step 2: loss of compactness

Sliding block frequencies normal \Rightarrow disjoint block frequencies normal.

A consequence of the Piateskii-Shapiro Theorem. Follows the proof in Kuipers and Niederreiter, with a careful application of Helley Selection.

Tying things up

Tying things up

References

Heersink, B. and Vandehey, J. (2016).

Continued fraction normality is not preserved along arithmetic progressions.

Archiv der Mathematik, 106(4):363–370.

Vandehey, J. (2017).

Non-trivial matrix actions preserve normality forcontinued fractions. *Compositio Mathematica*, 153(2):274293.

Wall, D. D. (1949).

Normal Sequences.

PhD thesis, University of California, Berkeley.

Thank You!

Arbitrary length cylinders

Using the concavity of the cumulative distribution function of Gauss measure, we can reduce the general inequality to an algebraic inequality involving denominators.