Uniform distribution of generalized polynomials and applications

Younghwan Son (POSTECH)

joint work with V. Bergelson and I. J. H. Knutson

Equidistribution: Arithmetic, Computational and Probabilistic Aspects April 29, 2019

<ロ> (日) (日) (日) (日) (日)

Generalized polynomials

• generalized polynomials: $q : \mathbb{Z} \to \mathbb{R}$ obtained from the conventional polynomials by the use of

+, $\times,~[\cdot]$ (or $\{\cdot\})$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Generalized polynomials

• generalized polynomials: $q: \mathbb{Z} \to \mathbb{R}$ obtained from the conventional polynomials by the use of

+, $\times, \ [\cdot]$ (or $\{\cdot\})$

• Example:

$$q_1(n) = [\alpha n^2]\beta n, \ q_2(n) = [\sqrt{2}n^2 + \pi n] - \sqrt{3}n\{\sqrt{5}n + \log 7\}$$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Generalized polynomials

• generalized polynomials: $q: \mathbb{Z} \to \mathbb{R}$ obtained from the conventional polynomials by the use of

+, $\times, \ [\cdot]$ (or $\{\cdot\})$

• Example:

$$q_1(n) = [\alpha n^2]\beta n, \ q_2(n) = [\sqrt{2}n^2 + \pi n] - \sqrt{3}n\{\sqrt{5}n + \log 7\}$$

- uniform distribution of q(n)
- applications to recurrence in dynamical systems

Plan

- I. Sets of recurrence
- II. Equidistribution
- III. Main Results

イロン イヨン イヨン イヨン

æ

I. Sets of recurrence

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Sárkőzy's theorem

Theorem

Let $E \subset \mathbb{N}$ be a set of positive upper density:

$$\overline{d}(E) := \limsup_{N \to \infty} \frac{|E \cap \{1, 2, \cdots, N\}|}{N} > 0.$$

イロト イヨト イヨト イヨト

Sárkőzy's theorem

Theorem

Let $E \subset \mathbb{N}$ be a set of positive upper density:

$$\overline{d}(E) := \limsup_{N \to \infty} \frac{|E \cap \{1, 2, \cdots, N\}|}{N} > 0.$$

Then, $E - E := \{n : x, x + n \in E\}$ is combinatorially rich: For any $k \in \mathbb{N}$,

$$(E-E)\bigcap\{n^k:n\in\mathbb{N}\}\neq\emptyset.$$

- 4 同 6 4 日 6 4 日 6

Dynamical Systems

- (X, \mathcal{B}, μ, T) a measure preserving system
 - (X, \mathcal{B}, μ) : a probability space
 - $T: X \to X$: an invertible measure preserving map

$$\mu(A) = \mu(T^{-1}A)$$

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Recurrence

- (X, B, μ, T): a measure preserving system.
- $A \in \mathcal{B}$ with $\mu(A) > 0$.

Theorem (Poincaré)

 $\exists n \in \mathbb{N} : \mu(A \cap T^{-n}A) > 0.$

・ 母 と ・ ヨ と ・ ヨ と

Polynomial recurrence

- (X, B, μ, T): a measure preserving system.
- $A \in \mathcal{B}$ with $\mu(A) > 0$.

Theorem (Furstenberg)

 $q(n) \in \mathbb{Z}[n]$: a polynomial with q(0) = 0. Then

$$\exists n \in \mathbb{N} : \mu(A \cap T^{-q(n)}A) > 0.$$

(4月) イヨト イヨト

Furstenberg Correspondence Principle

Theorem For any $E \subset \mathbb{N}$ with $\overline{d}(E) > 0$, $\exists (X, \mathcal{B}, \mu, T)$ and $A \in \mathcal{B}$ with $\mu(A) = \overline{d}(E)$ such that $\forall m \in \mathbb{Z} : \overline{d}(E \cap E - m) > \mu(A \cap T^{-m}A).$

Furstenberg Correspondence Principle

Theorem
For any
$$E \subset \mathbb{N}$$
 with $\overline{d}(E) > 0$,
 $\exists (X, \mathcal{B}, \mu, T)$ and $A \in \mathcal{B}$ with $\mu(A) = \overline{d}(E)$ such that
 $\forall m \in \mathbb{Z} : \overline{d}(E \cap E - m) \ge \mu(A \cap T^{-m}A).$

• correspondence principle + polynomial recurrence \Rightarrow for *E* with $\overline{d}(E) > 0$ and $k \in \mathbb{N}$,

$$\exists n: E \cap (E - n^k) \neq \emptyset \Leftrightarrow n^k \in (E - E)$$

(4月) イヨト イヨト

Sets of recurrence

Definition

A set $R \subset \mathbb{Z}$ is a set of recurrence if for any measure preserving system (X, \mathcal{B}, μ, T) and for any $A \in \mathcal{B}$ with $\mu(A) > 0$

$$\exists n \in R(n \neq 0): \ \mu(A \cap T^{-n}A) > 0.$$

Example: $\{q(n) : n \in \mathbb{N}\}$ for $q(n) \in \mathbb{Z}[n]$ with q(0) = 0.

Polynomial recurrence

Theorem

Let $q(n) \in R[n]$ be a polynomial with $q(\mathbb{Z}) \subset \mathbb{Z}$, $\deg(q) \ge 1$. Then the following conditions are equivalent:

- 1. *(intersective)* For all $a \in \mathbb{N}$, $\{q(n) : n \in \mathbb{Z}\} \cap a\mathbb{N} \neq \emptyset$.
- 2. $\{q(n) : n \in \mathbb{Z}\}$ is a set of recurrence.
- 3. $\{q(n) : n \in \mathbb{Z}\}$ is a set of averaging recurrence: For any (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$ with $\mu(A) > 0$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-q(n)}A)>0.$$

イロト イポト イヨト イヨト

Generalized polynomial

Question: Let q(n) be an integer-valued generalized polynomial.

When is $\{q(n) : n \in \mathbb{Z}\}$ a set of recurrence ?

Generalized polynomial

Question: Let q(n) be an integer-valued generalized polynomial.

When is $\{q(n) : n \in \mathbb{Z}\}$ a set of recurrence ?

Example (1) $\{[\sqrt{2}n]\sqrt{2}] : n \in \mathbb{Z}\}$ is not a set recurrence

Generalized polynomial

Question: Let q(n) be an integer-valued generalized polynomial.

When is $\{q(n) : n \in \mathbb{Z}\}$ a set of recurrence ?

Example (1) $\{ [[\sqrt{2}n]\sqrt{2}] : n \in \mathbb{Z} \}$ is not a set recurrence (2) $\{ [[\sqrt{2}n]\sqrt{2}]^2 : n \in \mathbb{Z} \}$ is a set of recurrence.

Generalized polynomial

Question: Let q(n) be an integer-valued generalized polynomial.

When is $\{q(n) : n \in \mathbb{Z}\}$ a set of recurrence ?

Example (1) $\{[[\sqrt{2}n]\sqrt{2}] : n \in \mathbb{Z}\}$ is not a set recurrence (2) $\{[[\sqrt{2}n]\sqrt{2}]^2 : n \in \mathbb{Z}\}$ is a set of recurrence. (3) Both $\{[[\sqrt{3}n]\sqrt{3}] : n \in \mathbb{Z}\}$ and $\{[[\sqrt{3}n]\sqrt{3}]^2 : n \in \mathbb{Z}\}$ are not sets of recurrence.

II. Equidistribution

Younghwan Son (POSTECH) Uniform distribution of generalized polynomials and application

・ロ・・(四・・)を注・・(注・・)注

Uniform distribution mod 1

Definition

 $(x_n)_{n\in\mathbb{N}}$ is uniformly distributed mod 1 (u.d. mod 1) if for any continuous function $f:[0,1] \to \mathbb{R}$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(\{x_n\}) = \int_0^1 f(x) \, dx.$$

(4回) (1日) (日)

Uniform distribution mod 1

Definition

 $(x_n)_{n\in\mathbb{N}}$ is uniformly distributed mod 1 (u.d. mod 1) if for any continuous function $f:[0,1] \to \mathbb{R}$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}f(\{x_n\})=\int_{0}^{1}f(x)\,dx.$$

Theorem (Weyl Criterion) $(x_n)_{n \in \mathbb{N}}$ is u.d. mod 1 if and only if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}e^{2\pi ihx_n}=0 \quad \textit{for all integers } h\neq 0.$$

Spectral Theorem

• For any (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$ with $\mu(A) > 0$,

 $a_m = \mu(A \cap T^{-m}A)$ is positive definite.

・ロト ・回ト ・ヨト ・ヨト

Spectral Theorem

• For any (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$ with $\mu(A) > 0$,

 $a_m = \mu(A \cap T^{-m}A)$ is positive definite.

• spectral theorem: \exists a measure ν on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$

$$\mu(A\cap T^{-m}A) = \int_{\mathbb{T}} e^{2\pi imt} \, d
u(t) \quad ext{ for all } m\in\mathbb{Z}$$

(ロ) (同) (E) (E) (E)

Recurrence and equidsitribution

• the limiting behavior of

$$\frac{1}{N}\sum_{n=1}^{N}\mu(A\cap T^{-q(n)}A) = \int \frac{1}{N}\sum_{n=1}^{N}e^{2\pi i q(n)t} d\nu(t).$$

•need to understand the behavior of

$$q(n)t \mod 1, \quad n=1,2,\ldots$$

(4回) (4回) (4回)

Distribution of polynomials

For a polynomial $q: \mathbb{Z} \to \mathbb{R}$

- - 4 回 ト - 4 回 ト

Distribution of polynomials

For a polynomial $q : \mathbb{Z} \to \mathbb{R}$ 1. $q(n) \in \mathbb{Q}[n] + \mathbb{R}$: $\{q(n) \mod 1\}$ is a finite set.

- - 4 回 ト - 4 回 ト

Distribution of polynomials

For a polynomial $q:\mathbb{Z}\to\mathbb{R}$

- 1. $q(n) \in \mathbb{Q}[n] + \mathbb{R}$: $\{q(n) \mod 1\}$ is a finite set.
- 2. $q(n) \notin \mathbb{Q}[n] + \mathbb{R}$:
 - Weyl: (q(n)) is uniformly distributed mod 1

イロト イポト イヨト イヨト

Distribution of polynomials

For a polynomial $q:\mathbb{Z}\to\mathbb{R}$

- 1. $q(n) \in \mathbb{Q}[n] + \mathbb{R}$: $\{q(n) \mod 1\}$ is a finite set.
- 2. $q(n) \notin \mathbb{Q}[n] + \mathbb{R}$:
 - ▶ Weyl: (q(n)) is uniformly distributed mod 1
 - Vinogradov, Rhin: q(p_n) is uniformly distributed mod 1.
 (Here (p_n) is the sequence of primes in increasing order.)

(ロ) (同) (E) (E) (E)

Some examples of generalized polynomials

Some examples of generalized polynomials

(1) $q_1(n) = {\sqrt{2n}}^2$ is equidistributed with respect to $\frac{dx}{2\sqrt{x}}$:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(\{\sqrt{2}n\}^2) = \int_0^1 F(x) \frac{1}{2\sqrt{x}} \, dx.$$

Some examples of generalized polynomials

(1) $q_1(n) = {\sqrt{2n}}^2$ is equidistributed with respect to $\frac{dx}{2\sqrt{x}}$:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(\{\sqrt{2}n\}^2) = \int_0^1 F(x) \frac{1}{2\sqrt{x}} \, dx.$$

(2) $q_2(n) = \{\sqrt{2}n\}\{\sqrt{3}n\}$ is equidistributed w.r.t. $-\log x \, dx$.

- 4 周 ト 4 日 ト 4 日 ト - 日

Some examples of generalized polynomials

(1) $q_1(n) = {\sqrt{2n}}^2$ is equidistributed with respect to $\frac{dx}{2\sqrt{x}}$:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}F(\{\sqrt{2}n\}^2)=\int_{0}^{1}F(x)\frac{1}{2\sqrt{x}}\,dx.$$

(2) $q_2(n) = \{\sqrt{2}n\}\{\sqrt{3}n\}$ is equidistributed w.r.t. $-\log x \, dx$.

(3) $q_3(n) = [\sqrt{2}(n+1)] - [\sqrt{2}n] - [\sqrt{2}]$ is equidistributed with respect to $(1 - {\sqrt{2}})\delta_0 + {\sqrt{2}}\delta_1$.

イロト イポト イヨト イヨト

Dynamical representation of generalized polynomials

Theorem (Bergelson and Leibman, 2007)

Let q(n) be a bounded generalized polynomial. Then there exist

- a nilmanifold $X = G/\Gamma$
- an ergodic nilrotation on X by $a \in G$
- ▶ x₀ ∈ X
- $f: X \to \mathbb{R}$ is a nice function

such that

$$q(n) = f(a^n x_0)$$

Piecewise polynomials

A piecewise polynomial $f: Q \to \mathbb{R}^m$ is a function

- $Q = \bigcup_{i=1}^{k} Q_i$ is a finite partition, where Q_i is determined by polynomial inequalities
- $f|_{Q_i}$ is a polynomial.

(ロ) (同) (E) (E) (E)

Piecewise polynomials

A piecewise polynomial $f: Q \to \mathbb{R}^m$ is a function

- $Q = \bigcup_{i=1}^{k} Q_i$ is a finite partition, where Q_i is determined by polynomial inequalities
- $f|_{Q_i}$ is a polynomial.

Example

$$f(x,y) = \begin{cases} xy+1 & y \le x^2 \\ x^2 + 3y + 5 & y > x^2, y^2 < x \\ y-1 & y^2 \ge x \end{cases}$$

is a pp-function on $[0, 1]^2$.

(ロ) (同) (E) (E) (E)

Canonical form of GP

Theorem (Leibman, 2012)

Let q(n) be a bounded generalized polynomial. Then there exist

- ▶ generalized polynomials v₁,..., v_k
- a subgroup Λ with $[\mathbb{Z} : \Lambda] < \infty$

such that

- 1. $(\{v_1(n)\},\ldots,\{v_k(n)\})$ is equidistributed on $[0,1]^k$
- 2. on any translate $\Lambda'=n_0+\Lambda,$ there is a pp-function f on $[0,1]^k$ such that

$$q|_{\Lambda'}(n) = f(\{v_1(n)\}, \cdots, \{v_k(n)\}).$$

III. Main Results

Younghwan Son (POSTECH) Uniform distribution of generalized polynomials and application

・ロト ・回 ト ・ヨト ・ヨー

cc-polynomials

Every generalized polynomial can be written as

$$q(n) = b_k(n)n^k + b_{k-1}(n)n^{k-1} + \cdots + b_1(n)n + b_0(n),$$

where $b_i(n)$ is a bounded generalized polynomial.

・ 母 と ・ ヨ と ・ ヨ と

cc-polynomials

Every generalized polynomial can be written as

$$q(n) = b_k(n)n^k + b_{k-1}(n)n^{k-1} + \cdots + b_1(n)n + b_0(n),$$

where $b_i(n)$ is a bounded generalized polynomial.

Definition: q(n) is called a cc-polynomial at least one of b_i(n), where i ≠ 0, is constant.

cc-polynomials

Every generalized polynomial can be written as

$$q(n) = b_k(n)n^k + b_{k-1}(n)n^{k-1} + \cdots + b_1(n)n + b_0(n),$$

where $b_i(n)$ is a bounded generalized polynomial.

Definition: q(n) is called a cc-polynomial at least one of b_i(n), where i ≠ 0, is constant.

Theorem

If q(n) is a cc-polynomial, then there is a set $J \subset \mathbb{N}$ with d(J) = 0 such that

$$\lim_{n\notin J, n\to\infty} |q(n)| = \infty.$$

Main results I - equidistirbution of cc-polynomials

Theorem

Let q(n) be a cc-polynomial. Then

- 1. $q(n)\lambda$ is uniformly distributed mod 1 for all but countably many λ .
- 2. $q(p_n)\lambda$ is uniformly distributed mod 1 for all but countalby many λ .

・ 回 ・ ・ ヨ ・ ・ ヨ ・

the W-tricked von Mangoldt functions

•
$$\Lambda'(n) = 1_{\mathcal{P}}(n) \log n$$

▶ For
$$W, r \in \mathbb{N}$$
 with $(r, W) = 1$,

$$\Lambda'_{W,r}(n) = \frac{\phi(W)}{W} \Lambda'(Wn+r).$$

Theorem (Green and Tao, 2010)

• $\eta(n) = f(a^n x_0)$: a basic nilsequence

$$\lim_{\substack{W \in \mathcal{W} \\ W \to \infty}} \limsup_{N \to \infty} \sup_{\substack{\eta \in \mathcal{L}_{D,L,M} \\ r \in \mathcal{R}(W)}} \left| \frac{1}{N} \sum_{n=1}^{N} (\Lambda'_{W,r}(n) - 1) \eta(n) \right| = 0.$$

Main results II - recurrecne for cc-polynomials

Theorem

Let q(n) be a cc-polynomial. Then the following are equivalent: (1) For any $k \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

 $\{n: \|q(n)\alpha_i\| < \epsilon\}$

has positive upper density for any $\epsilon > 0$ (2) For any (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$ with $\mu(A) > 0$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-q(n)}A)>0.$$

Main results III - recurrecne for cc-polynomials

Theorem

Let q(n) be a cc-polynomial. Then the following are equivalent: (1) For any $k \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

 $\{n: \|q(p_n)\alpha_i\| < \epsilon\}$

has positive upper density for any $\epsilon > 0$ (2) For any (X, \mathcal{B}, μ, T) and $A \in \mathcal{B}$ with $\mu(A) > 0$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-q(p_n)}A)>0.$$

Examples

- Let $q(n) = [\sqrt{11}n + 2]$.
 - $\{q(n): n \in \mathbb{Z}\} \cap a\mathbb{N} \neq \emptyset.$
 - $\{q(n) : n \in \mathbb{Z}\}$ is not a set of recurrence.

- - 4 回 ト - 4 回 ト

Examples

- Let $q(n) = [\sqrt{11}n + 2]$.
 - $\{q(n): n \in \mathbb{Z}\} \cap a\mathbb{N} \neq \emptyset.$
 - $\{q(n) : n \in \mathbb{Z}\}$ is not a set of recurrence.
- Let $q(n) = 2n^2 1 + [1 \{[\{\alpha n\}n]\alpha\}]$, where $\alpha = \sum_{j=1}^{\infty} \frac{1}{10^{j!}}$.
 - $\{q(n) : n \in \mathbb{Z}\}$ is a set of recurrence.
 - $\{q(n) : n \in \mathbb{Z}\}$ is not a set of averaging recurrence.

イロト イポト イヨト イヨト 二日

Recurrence for [q(n)]

Theorem Let $q(n) = a_k n^k + \cdots + a_1 n + a_0 \notin \mathbb{Q}[n] + \mathbb{R}$. Then the following are equivalent.

- 1. $\{[q(n)] : n \in \mathbb{Z}\}$ is a set of recurrence
- 2. $\{[q(n)] : n \in \mathbb{Z}\}$ is an averaging set of recurrence
- 3. q(n) is one of the following form:
 - $\exists i, j \text{ such that } a_i/a_j \notin \mathbb{Q} \ (i, j \neq 0)$
 - ▶ $q(n) = \alpha q_0(n) + \beta$, where $\alpha \notin \mathbb{Q}$, $q_0(n) \in \mathbb{Z}[n]$ intersective and $0 \le \beta \le 1$.

- 本部 とくき とくき とうき

Thank you for your attention!

◆□ > ◆□ > ◆臣 > ◆臣 > ○