-
'''''''

IMSSlngapore 2019

Zeev Rudnick, TAU
R TIEET———i——————



Uniform distribution

Definition: A sequence of points {x,,;:n = 1,2, ...} € R/Z in the unit interval/circle is asymptotically uniformly distributed
If for any (fixed) subinterval I € R/Z,

lim - in<N: x, €I} = |l

N—ooo N

In particular, the mean spacing between the points is 1/N.

Example: If « € R then the sequence of fractional parts {a 10"} is UD €= « is normal (in base 10) €<

all (fixed) strings by ... by, of k digits occur with the same asymptotic frequency (1/10%) in the decimal
expansion of « .

Z exp(2rikx ) =0

Weyl's criterion: {x,:n =1,2,...}isUD <> forall fixed 0 # k € Z, I|m

N—owo N

these sums are called " "Weyl sums".



Examples

 Ifa & Qisirrational, then the fractional parts {a n} are uniformly distributed
e Weyl (1916): for « irrational, the fractional parts an? are UD.

« More generally, if f(x) = azx® + --- a;x € R[x] is a polynomial with at least one irrational coefficient
(not the constant term), then {a f(n)} is UD.

« The fractional parts vn are UD mod 1

» The fractional parts { log n} are NOT UD.

« A metric theorem: If a(n) € Z are distinct integers, then for almost all «, the sequence {a a(n)} is UD.




Beyond Uniform Distribution

Once we know that a sequence is uniformly distributed (more generally, equidistributed w.r.t. some
continuous measure), we should investigate finer statistics and compare with those of suitable random
models.

We examine
» The distribution of normalized nearest neighbor gaps

« The pair correlation function
* The minimal gap statistic



Level spacing distribution

Given a sequence of points, let {E,,} be the “order statistics”: E; < E, < -+ < Ey <

P(s) :=limiting distribution of the normalized gaps o, between adjacent levels

Ea e E E, B E;, FE, =

5n — n+1 n- 4\7
mean spacing * * * * N

1 X
N#{ns N : 6, < X}—— >£P(S)ds

Equivalently, for any test function f € C:°[0, )

lim — Zf(&) j f (s) P(s)ds

N—o N



Statistical models

Wigner-Dyson; GOE

08} Poisson

a) “Picket fence”: the levels are perfectly spaced: x,, = n. §,, = x,4.1 — x, = 1, /’ﬁ‘
0.6

and P(s) = 6p(s — 1) Z
0.4
0.2 F \

b) Uncorrelated levels: E, independent, uniform in [0,1] (homogeneous Poisson process | =

on the line with intensity 1). level spacing distribution is P(s)=exp(-s) 0 —

c) E,, = eigenvalues of a random NxN symmetric matrix (Gaussian Orthogonal Ensemble)
H=HT, matrix elements=independent real Gaussians
P(s) was computed by Gaudin and Mehta (1960°s)



The Poisson model

Take N uniform l1ID’s x4, ..., x5 € [0,1) = R/Z. The order statistics are

Xy < Xoy <...< X

(1) (2) (N)

The normalized gaps are

5n =N (X(n+1) o X(n))’ Xin+1) = X

Theorem: a) The normalized gaps are identically distributed.

S N S
b5, hascoF Prob(d; <s) =1 — (1 _N) ~1—e7° = fo ERSt s



Random Matrix Theory (RMT)

Wigner modeled spectra of complex, many body, guantum systems
(heavy nuclel, slow neutron resonances), by those of various
ensembles of RANDOM matrices, e.g.:

Gaussian Orthogonal Ensemble (GOE): N
NXN symmetric matrices H=HT ,
matrix elements=independent real Gaussians

Gaussian Unitary Ensemble (GUE): > N0
NxN hermitian matrices H=HT ,
matrix elements=independent complex Gaussians




L_evel repulsion in nuclear spectra

Landau & Smorodinsky, Wigner (1950’s): "repulsion of energy levels" of the
same symmetry type occurs in complex atomic spectra
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FIG. 1. Segments of complex spectra, each containing 50 lev-
els and rescaled to the same spectrum span. The first two
show experimental results for neutron and proton resonances,
while Fig. 1(c) shows the central region of a 1206-dimensional,
J¥=2", T =0, shell-model spectrum; in these three cases all
the states have the same exact symmetries. Figure 1(d) shows
a Poisson sequence, while Figs. 1(e) and 1(f) show spectra with
mixed exact symmetries, the first an experimental spectrum
with J=3,4" and the second a shell model spectrum with J

=3 43 s -+ 147 The “arrowheads” mark the occurrence of
pairs of levels with spacings smaller than one quarter of the
average..
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FIG. 2. Nearest-neighbor spacing histograms for the six cases BOhlgaS’ Haq &Pandey’ 1983
of Fig. 1, constructed by considering all the available levels The nuclear data ensemble (experlment)

instead of the 50 used in Fig. 1. Spacings S, are expressed in

Brody et al
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Pair correlation

os ] — GOE
' . GUE
Definition: Assume we have a sequence {x;} with unit mean spacing. ~ Poisson
The pair correlation function R, (s) (assuming it exists) is defined by

||||||||||||||||||||||||||||||||

1\1,1_{210 #{l 5 ] N: ‘xl o x]l t} = f RZ (S)dS The pair correlation function R, (s)
for Poisson, GUE and GOE

Equivalently, for any even test function f €CX(R)

- N Z Fl =) = f £(5)R,(5)ds Explain why we divide by N

N-oo
1<i#j<N

measures spacings between all pairs of levels - avoids ordering the levels (not a probability distribution)

For the Poisson ensemble, R, (s)=1

sin(nx))2

X

GUE: R,(x)=1- (



Spacings of {an?}

Theorem (Weyl 1916): If « irrational then fractional parts {& n?}>_, are uniformly distributed.

Normalization: x,;: = N{a n?}, n < N has unit mean spacing (x,, unordered).

Conjecture (ZR-Sarnak-Zaharescu 2001): If « is badly approximable then spacings of {& n?} are Poissonian.
(i.e. all correlation functions are Poissonian).

p

Badly approximable: V € > 0,3 ¢(a,€) > 0, ‘a —5‘ e E

prxed VE e.g. a algebraic (Roth), almost all

L]

o . g
Metric Theorems: :X‘ J2-n?* mod 1, n<2000

Theorem (ZR and Sarnak 1998): For almost all «, the pair correlation
of {a n?} is Poissonian. °l \

Same result for fractional parts {a f(n)}, f(x)=integer polynomial of
degree > 2.
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Spacings of {a2"}

Thm (ZR & A. Zaharescu, 2002): For almost all «, the level spacing distribution of {a2™} is Poissonian

- showed that all correlation functions, in particular the pair correlation, is Poissonian for almost all .

Do not know any naturally occurring a where we can determine the spacings (same as for the question of
uniform distribution).

“artificial” examples where normality (uniform distribution) is known, have been proved to NOT have a
pair correlation function:

e Champernowne’s base-2 number o.=0. 01 10 11 100 101 110 111 1000 . . . (Pirsic & Stockinger 2018)

« Stoneham numbers a, 3 = Y,,1 1 /(3™ 23™) (Larcher & Stockinger 2018),....


Presenter
Presentation Notes
The stoneham number \alpha_{2,3} is 2-normal


A non-Poissonian example: an mod 1

The spacings between fractional parts {a n}, n < N:

—3-gap Theorem"" (V. Sos 1957,....):
Nearest neighbor spacing of fractional parts {a n}, n < N
takes at most 3 distinct values Ay, By, Cy -

Consequence: Level spacings distribution is not stationary; P(s) does not exist. PS) @) Ps) (#
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Frouge 5. Level spacing distributions for two-dimensional harmonie oseillators with frequency
ratio @. (g) @ = 1fy'2, lowest 5000 levels (b} & = 1]/5, lowest 5000 levels (dotted line),
loweat 10000 levels (full line).

MV Berry & M Tabor 1977




A non-Poissonian example: Sqrt n mod 1

N. Elkis & C. McMullen (2004): The level spacing distribution of fractional parts of vn exists, is not Poissonian (e.g. is
constant near 0, power law tails).
- Use homogeneous dynamics (Ratner’s measure classification)

D. Elbaz, J. Marklof & I. Vinogradov (2015): The pair correlation is Poissonian
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Figure 1. Gaps in {,/n}¥, N = 2.5 x 107, together with the graph of the F(t) =< Fy(t) te[1/2,2],
g P Vit g g 2] 2l /

limiting gap distribution y = F(t). Fy(t) te[20),



Fractional parts of avn

Conjecture
For any Diophantine irrational a, the level spacing distribution of the fractional parts of Vav/n is Poissonian
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Level spacing of {Vn},n <2 - 105 Level spacing of {21/3v/n}, n < 20000



Fractional part of 3/n ??7??
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Figure 1: Gap distribution of the fractional parts of n'/? with n < 2 x 10°.



metric theory of pair correlation

In the past couple of years, there has been renewed interest in the metric theory of the pair correlation function.
Earlier arguments were formalized, giving a formal connection between the property that the sequence

aa(n)mod 1 has Poissonian pair correlation for almost all & and the additive energy of the sequence a(n):

Suppose A = {a(n)} is a sequence of increasing integers. The additive energy is

E(A;N)=#{1<k,/,mn<N: a(k)+a(¥)=a(m)+a(n) }

Note that N*<E(A;N)<N°

THM (Aistleitner, Larcher & Lewko 2017, Bloom, Chow, Gaffney & Walker 2018, Bloom & Walker 2019):

3 C » 1suchthatif E(A; N) < N3/(log N)¢ then aa(n)mod 1 has Poissonian pair correlation for almost all «

N3
log N

for almost all « the pair correlation function is NOT Poissonian

A. Walker (2018): A = P =primes then E (:P, N) ~ (does not satisfy assumptions of thm) and




The Riemann zeros
=1 11y
Riemann zeta function: For Re(s)>1 4/(3) - Z_ = (1__3)
Riemann (1858): Analytic continuation & functional equation

£ (s) = n‘S’Zr(g)z;(s) = ¢ (1-5)

Is analytic in C, except for simple poles at s=0,1

The Riemann hypothesis: All zeros of {*(s) are on the line Re(s)=1/2 (“nontrivial zeros”)

Riemann von-Mangoldt formula N(T)=#{0< Vi < T}= L log L+O( logT)

2w 27e
2TT
> Mean spacing between zeros is
log T




A M. ODLYZKO

Repulsion between zeros o —

A fundamental discovery was made in 1972 by Montgomery,
who found that nearby zeros tend to “repel” each other :

Montgomery studied the “pair correlation function”, which <_) I

measures the repUIS|On between palrS Of |€V€|S ]/2+|'Y, % +|’Y, Pair correlation of\geros of the zeta function. Solid line: GUE
- - - rediction. Scatter \glot: empirical data based on zeros v,,

as measured in the scale of their mean spacing: 1<n< 10 ’ b

SIﬂ?Z'X
TX

1 logT
—#1 # 7.~ T
N {i# .77 >

)?dx

— el jl (

repulsion

Dyson: this Is the same as that for GUE in Random Matrix Theory !!
— originally used to model spectra of complex atoms



P(s) for the zeros of Riemann’s zeta function

Conjecture: P(s) for the zeros of {(s) coincides with that of CUE/GUE.

A. M. ODLYZKO

Extensive numerical work by Odlyzko (1980-present)

Mearest neighbor spacings, N = 10**12

Theory:

 Montgomery(1973), pair correlation
e Rudnick & Sarnak (1994) higher correlations

- agreement with GUE in restricted range Fioun 4

Probability density of the normalized spacings 8,. Solid line:
GUE prediction. Scatter plot: empirical data based on zeros
Y, 102 + 1 < n <102 + 10°,

Odlyzko: 10° zeros near 101?-th zero



Minimal gaps
The minimal gap between the first N levels of a sequence x4, ..., xy, ... € [0,1)

Oin (N) = MIN | X — X

1= J<N

For uncorrelated levels - N uniform 1ID’s x4, ..., x5 on (0,1), (Poisson sequence), the minimal gap is of size
Poisson ] _ .

Smin (N) ~ F - exercise (the birthday problem)

Paul Lévy (1939) NZ26,i,(N) has a limiting exponential distribution.

Vinson 2001, Ben Arous & Bourgade 2013

(Normalize mean gap to be 1/N)



A metric theory of minimal gaps

Suppose A = {a(n)} is a sequence of increasing integers. Define 65 (N):=minimal gap between aa(n) mod 1

min
Recall that for a random sequence, 52955 (N) ~ 1/N?

THM (ZR, 2018) If A = {a(n) € Z} are distinct integers, and the additive energy satisfies E (A; N) <« N2+o(1)

1
then for almost all «, SICIXIIII(N) < Nz_g

-- consistent with Poisson statistics for the minimal gap

forall e > 0

Examples: a(n) = n%,d >2; a(n) =2"

N3
log N

“Bad” example: A = P =primes then E(:P, N) ~
1
N (log N )2+0(1) not Poissonian !

(does not satisfy assumptions of thm) and

for almost all «,

02 (N)>

min




Open problems

If « is badly approximable then spacings of {a n?} are Poissonian.

For any Diophantine irrational «, the level spacing distribution of the fractional parts of Vav/n is Poissonian

Metric theory: ditto for almost every a

Minimal spacings?

Thank you for your attention!
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