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1 Preliminaries

1.1 L and HOD

For each set X, P(X) denotes the set of all Y such that Y ⊆ X. P(X) is the powerset of
X.

By the ZFC axioms, every set is generated by the transfinite iteration of the powerset
operation:

Definition 1.1 (Cumulative Hierarchy). The sets Vα are defined by induction on the
ordinal α as follows.

(1) V0 = ∅.

(2) Vα+1 = P(Vα).

(3) If α is a limit ordinal then Vα = ∪
{
Vβ | β < α

}
. ut
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For each set X,PDef(X) denotes the definable powerset of X. More precisely,PDef(X)
is the set of all Y ⊆ X such that Y is definable from parameters in the structure

(X, ∈).

Definition 1.2 (Effective Cumulative Hierarchy). The sets Lα are defined by induction
on the ordinal α as follows.

(1) L0 = ∅.

(2) Lα+1 = PDef(Lα).

(3) If α is a limit ordinal then Lα = ∪
{
Lβ | β < α

}
. ut

Definition 1.3 (Gödel). L is the class of all sets X such that

X ∈ Lα
for some ordinal α. ut

Definition 1.4 (Gödel). The axiom V = L is the axiom which asserts that for all sets X,
X ∈ L. ut

The definition of L does not require the Axiom of Choice.

Theorem 1.5 (Gödel). Assume V = L. Then the following hold.

(1) The Axiom of Choice.

(2) CH.

(3) There exists a wellordering <L of P(ω) of length ω1 such that

<L ∈ PDef(Vω+1 × Vω+1). ut

Theorem 1.6 (Gödel). Suppose (M, E) � ZF. Let LM be the set of all X ∈ M such that

(M, E) � “X ∈ L ”.

Then the following hold.

(1) (LM, E |LM) � ZFC.

(2) (LM, E |LM) � “V = L”. ut

The issue of whether V = L is arguably settled by Scott’s Theorem. Basic large
cardinal notions are reviewed in Section 1.3.

Theorem 1.7 (Scott). Assume there is a measurable cardinal. Then V , L. ut

We fix some standard notation. Suppose X is a set. Then TC(X) is the transitive
closure of X, this defined to be the smallest transitve set Y such that X ∈ Y .
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Remark 1.8. By the ZF axioms, for every set X, TC(X) exists. But this requires the
Axiom of Replacement.

To see why consider the set

X = {{Vn} | n < ω} .

Let M be the closure of X ∪ ω under powerset. Then one can show that M is transitive
and

M � ZC

where ZC denotes the ZFC axioms without the Axiom of Replacement. But

TC(X) = Vω ∪ {X}

and one can verify that Vω < M. ut

Gödel defined another very important transitive class, HOD. This definition, like the
definition of the class L, does not require the Axiom of Choice.

Definition 1.9 (Gödel). HOD is the class of all sets X such that for some ordinal α the
following hold where Y = TC(X).

(1) Y ∈ Vα.

(2) Suppose A ∈ Y . Then A is definable in the structure

(Vα, ∈)

from ordinal parameters.

Theorem 1.10. Suppose (M, E) � ZF. Let H be the set of all X ∈ M such that (i) holds
where Y ∈ M and

(M, E) � “Y = TC(X)”.

(i) Suppose Z ∈ M and (Z,Y) ∈ E. Then Z is definable in (M, E) from parameters
from the set

OrdM = {A ∈ M | (M, E) � “A is an ordinal”} .

Then the following hold.

(1) H is the set of all A ∈ M such that (M, E) � “A ∈ HOD”.

(2) (H, E |H) � ZFC. ut

Remark 1.11. A key question is: Does V = HOD? ut
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1.2 Vopěnka’s Theorem

The following theorem of Vopěnka (which is a theorem of just ZF) plays an important
role in modern Set Theory. This is particularly true in inner model theory and in the
study of the Axiom of Determinacy.

Vopěnka’s theorem has a remarkable metamathematical consequence. Every count-
able model

(M, E) � ZF + ¬AC + “There exists a set X such that V = L(X)”

is a symmetric forcing extension of a model of ZFC. Here L(X) refers to L relativized
to X, as in Definition 1.64 on page 25.

Theorem 1.12 (Vopěnka). Assume ZF and suppose that A ⊆ λ. Then either A ∈ HOD
or HOD[A] is a generic extension of HOD.

Proof. Let B be the set of all
X ⊂ P(λ)

such that X is definable from ordinal parameters. More precisely, B is the set of all

X ⊂ P(λ)

such that there exists an ordinal α > λ such that X is definable in Vα from ordinal
parameters.

By Axiom of Replacement, there exists an ordinal η > λ such that for all X ⊆ P(λ)
the following are equivalent.

(1.1) X ∈ B.

(1.2) X is definable in Vη from ordinal parameters.

Fix η. There exists a Boolean algebra B0 ∈ HOD and an isomorphism

π0 : B0 → B.

We prove:

(2.1) B0 is a complete Boolean algebra in HOD.

(2.2) Let GA = {b ∈ B0 | A ∈ π0(b)}. Then GA is a HOD-generic ultrafilter and
A ∈ HOD[GA].

We first prove (2.1). LetA be an antichain in B0 withA ∈ HOD. Let

X = ∪ {π0(b) | b ∈ A} .

Thus X is definable from ordinal parameters and so X ∈ B. Let b0 ∈ B0 be such that
π0(b0) = X. Then b0 is the least upper bound ofA in B0. This proves (2.1).
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We finish by proving (2.2). LetA be a maximal antichain in B0 withA ∈ HOD. Let

X = ∪ {π0(b) | b ∈ A} .

Thus X = P(λ) (since A is a maximal antichain and since π0 is an isomorphism).
Therefore there exists b ∈ A such that A ∈ π0(b), But then b ∈ GA and so GA ∩A , ∅.

This proves that GA is a HOD-generic ultrafilter. For each α < λ, let

Xα = {E ⊂ λ | α ∈ E}

and let bα ∈ B0 be such that π0(bα) = Xα. Thus

〈bα : α < λ〉 ∈ HOD.

Finally
A = {α | bα ∈ GA}

and so A ∈ HOD[GA]. ut

1.3 Measurable cardinals, supercompact cardinals, and extendible cardinals

This is a very quick review of some basic large cardinal notions.

Definition 1.13. Suppose U is an ultrafilter on a nonempty set X (so U ⊂ P(X)).

(1) U is non-principal if for all a ∈ X, {a} < U.

(2) Suppose δ is a regular cardinal. Then U is δ-complete if for all Z ⊆ U, if |Z| < δ

then ∩Z ∈ U. ut

Remark 1.14. Suppose U is an ultrafilter on a nonempty set X.

(1) U is ω-complete.

(2) U is non-principal if and only if every Z ∈ U is infinite. ut

Suppose U is an ultrafilter on a cardinal κ. Then U is uniform if for all α < κ

{β < κ | α < β} ∈ U.

If U is a κ-complete non-principal ultrafilter on κ then U must be a uniform ultrafilter
on κ.

Definition 1.15 (Measurable cardinals). Suppose κ is an uncountable regular cardinal.
Then κ is a measurable cardinal if there is an ultrafilter U on κ such that U is non-
principal and κ-complete. ut

Suppose κ is a measurable cardinal and U is a κ-complete non-principal ultrafilter on
κ. Then we can form the ultrapower

Ult0(V,U) = Vκ/U.
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Since the ultrafilter U is countable complete, the ultrapower Ult0(V,U) is isomorphic
to a transitive class, MU .

This transitive class can also be defined as follows. For each transitive set X let XU

be the transitive set which isomorphic to the ultrapower, Xκ/U. Then MU is simply the
union of all the transitive sets XU .

There is an associated (elementary) embedding

jU : V → MU .

This is the ultrapower embedding given by U. For each transitive set X, let

jX
U : X → XU

be the ultrapower embedding.
For all transitive sets X,

jU(X) = XU .

and
jU |X = jX

U .

Thus both MU and jU are Σ2-definable classes from the parameter U.
Since U is a κ-complete ultrafilter,

jU(α) = α

for all α < κ, and since U is a uniform ultrafilter on κ,

jU(κ) > κ.

Thus κ is the least ordinal γ such that jU(γ), this is the critical point of jU and it is
denoted by CRT( jU).

Let
W = {X ⊂ κ | κ ∈ jU(X)} .

Then W is a κ-complete uniform ultrafilter on κ. Suppose f : κ → κ and

{α < κ | f (α) < α} ∈ W.

Then jU( f )(κ) < κ. Let α0 = jU( f )(κ). Then

{α < κ | f (α) = α0} ∈ W.

This motivates the following definition.

Definition 1.16. Suppose κ is an uncountable regular cardinal and that U is a uniform
ultrafilter on κ. Then U is normal if for all functions

f : κ → κ,

if {α < κ | f (α) < α} ∈ U then there exists α0 < κ such that

{α < κ | f (α) = α0} ∈ U. ut
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Lemma 1.17. Suppose U is a normal ultrafilter on κ. Then U is κ-complete. ut

As above suppose U is a κ-complete uniform ultrafilter on κ,
jU : V → MU

is the ultrapower embedding and
W = {X ⊆ κ | κ ∈ jU(X)} .

Then W is a normal ultrafilter on κ and W = U if and only if U is a normal ultrafilter
on κ.

Supercompact cardinals are a generalization of measurable cardinals. Suppose κ < λ
and κ is an uncountable regular cardinal. Then

Pκ(λ) = {σ ⊂ λ | |σ| < κ} .

Definition 1.18. Suppose κ < λ and κ is an uncountable regular cardinal. Suppose U is
an ultrafilter on Pκ(λ). Then:

(1) U is fine if for all α < λ, {σ ∈ Pκ(λ) | α ∈ σ} ∈ U.

(2) U is normal if for all
f : Pκ(λ)→ λ,

if {σ ∈ Pκ(λ) | f (σ) ∈ σ} ∈ U then there exists α0 < λ such that
{σ ∈ Pκ(λ) | f (σ) ∈ α0} ∈ U. ut

Definition 1.19. Suppose κ is an uncountable regular cardinal. Then:

(1) κ is a strongly compact cardinal if for all λ > κ there is a κ-complete, fine, ultrafilter
on Pκ(λ).

(2) κ is a supercompact cardinal if for all λ > κ there is a κ-complete, normel, fine,
ultrafilter on Pκ(λ). ut

Remark 1.20. By the theorem of Menas, if κ is a measurable cardinal and κ is a limit
of strongly compact cardinals, then κ is a strongly compact cardinal. In contrast if κ is
the least measurable cardinal which is a limit of supercompact cardinals then κ is not a
supercompact cardinal.

Further by Magidor’s theorem, if κ is a supercompact cardinal then there is a (class)
forcing extension of V in which κ is a strongly compact cardinal and the only measur-
able cardinal.

A major open problem is Solovay’s Conjecture which is the conjecture that super-
compact cardinals and strongly compact cardinals are equiconsistent. ut

Lemma 1.21. Suppose κ is an uncountable regular cardinal. Then the following are
equivalent.
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(1) κ is a supercompact cardinal.

(2) For all λ > λ, there is a transitive class M and an elementary embedding

j : V → M

such that CRT( j) = κ, j(κ) > λ, and { j(α) | α < λ} ∈ M.

(3) For all λ > λ, there is a transitive class M and an elementary embedding

j : V → M

such that CRT( j) = κ, j(κ) > λ, and such that Mλ ⊂ M. ut

The notion that κ is a supercompact cardinal in naturally localized:

Definition 1.22. Suppose κ is an uncountable regular cardinal and λ ≥ κ. Then κ is
λ-supercompact if there is a κ-complete, fine, ultrafilter on Pκ(λ). ut

Lemma 1.23. Suppose κ is an uncountable regular cardinal and κ ≤ λ. Then the
following are equivalent.

(1) κ is λ-supercompact.

(2) There is a transitive class M and an elementary embedding

j : V → M

such that CRT( j) = κ, j(κ) > λ, and { j(α) | α < λ} ∈ M.

(3) There is a transitive class M and an elementary embedding

j : V → M

such that CRT( j) = κ, j(κ) > λ, and such that Mλ ⊂ M. ut

Corollary 1.24. Suppose κ is λ-supercompact and cof(λ) < κ.

γ = |λcof(λ)|.

Then κ is γ-supercompact. ut

Not all large cardinal notions are easily expressed in terms of ultrafilters.

Lemma 1.25. Suppose
π : Vα → Vβ

is an elementary embedding. Then the following are equivalent.

(1) π(x) = x for all x ∈ Vα.

(2) π(η) = η for all η < α. ut

8



If π : Vα → Vβ is a nontrivial elementary embedding then CRT(π) is the least η < α

such that π(η) , η.

Definition 1.26. Suppose κ is an uncountable regular cardinal. Then κ is an extendible
cardinal if for all λ > κ, there exists an elementary embedding

π : Vλ+1 → Vπ(λ)+1

such that κ = CRT(π) and π(κ) > λ. ut

Lemma 1.27. Suppose that κ is an extendible cardinal. Then κ is a supercompact car-
dinal and κ is a limit ot supercompact cardinals. ut

1.4 Extenders

Any elementary embedding
j : V → M

can be analyzed using extenders.

Definition 1.28. For each (infinite) cardinal γ, H(γ) denotes the union of all transitive
sets M such that |M| < γ. ut

Lemma 1.29. Suppose that γ is an infinite cardinal. Then:

(1) H(γ+) � ZF\Powerset.

(2) H(γ+) � “The Wellordering Principle”. ut

Definition 1.30. A transitive class M is an inner model of ZFC if

(1) Ord ⊂ M,

(2) M � ZFC.

This definition of an inner model of ZFC is not first order. The following lemma
identifies the first order reformulation.

Lemma 1.31. Suppose M is a transitive class containing Ord. Then the following are
equivalent:

(1) M is an inner model of ZFC.

(2) For each infinite cardinal γ,

M ∩ H(γ+) � ZFC\Powerset. ut

Remark 1.32. L and HOD are inner models of ZFC. ut
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Suppose N,M are inner models of ZFC and

j : N → M

is an elementary embedding. Again this is not first order.

Lemma 1.33. Suppose N,M are inner models of ZFC and

j : N → M

is a (class) function. Then the following are equivalent.

(1) j is an elementary embedding.

(2) For all X ∈ M:
j|X : X → j(X)

is an elementary embedding from (X, ∈) to ( j(X), ∈). ut

Suppose N is an inner model of ZFC, X ∈ N, and U is an ultrafilter on P(X) ∩ N.
Then the ultrapower of N by U is computed using only functions

F : X → N

such that F ∈ N. This is denoted by Ult0(N,U). If Ult0(N,U) is wellfounded that MN
U

denotes the transitive collapse of Ult0(N,U) and

jN
U : N → MN

U

denotes the ultrapower embedding. If N = V then MV
U is also denoted by MU and jVU is

also denoted by jU .
This ultrapower construction can be generalized as follows which involves the notion

of an extender. Suppose N,M are inner models of ZFC and

j : N → M

is an elementary embedding. If j is not the identity then there must exist an ordinal α
such that j(α) , α.

The least such ordinal is the critical point of j and denoted CRT( j). This must be a
regular cardinal of N and if N = V then CRT( j) is a measurable cardinal.

Suppose that η is an ordinal and that CRT( j) < η.
For each s ∈ [η]<ω define an ultrafilter Es as follows (and here for any set X, [X]<ω

denotes the set of all finite subsets of X).
Let η̄ be the least ordinal α such that η ≤ j(α). Then

Es =
{
Z ⊆ [η̄]<ω | s ∈ j(Z)

}
,

and so Es is on ultrafilter on P(X) ∩ N where X = [η̄]<ω. Note that{
A ∈ [η̄]<ω | |A| = |s|

}
∈ Es.
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Rephrased, [η̄]k ∈ Es where k = |s| and where for any set X, and for any k < ω, [X]k

is the set of all A ⊂ X such that |A| = k.
The sequence

E = 〈Es : s ∈ [η]<ω〉

is the N-extender of length η defined by j. If N = V , then E is the extender of length η
defined by j.

Let
XE =

{
j( f )(s) | f : [η̄]<ω → N, f ∈ N, s ∈ [η]<ω

}
Then XE ≺ M. Let ME be the transitive collapse of XE and let

πE : ME → M

invert the transitve collapse. Thus

πE : ME → M

is an elementary embedding and if XE , M then CRT(πE) ≥ η since η ⊂ XE. Note
CRT(πE) is simply the least ordinal γ such that γ < XE.

Let
jE : N → ME

be the induced elementary embedding. Thus j = πE ◦ jE and this uniquely specifies jE.
Further, E is the extender of length η given by jE and ME is the ultrapower of N by E.

This ultrapower is defined as the direct limit of the ultrapowers of N by Es where
s ∈ [η]<ω.

The point here is that [η]<ω is directed under the order s ⊆ t. Further if s ⊆ t then
there is a canonical map

πt
s : [η̄]|t| → [η̄]|s|

defined by π(a) = b where (a, b, <) � (t, s, <).
This induces and elementary embedding

es
t : Ult0(N, Es)→ Ult0(N, Et),

and so one has a directed system of ultrapowers and embeddings.
Thus for example in the case where N = V , one can now define an extender E of

length η as a sequence
〈Es : s ∈ [η]<ω〉

of countably complete ultrafilters, such that the following hold.

(1) For some ordinal η̄,
[η̄]|s| ∈ Es

for all s ∈ [η]<ω,
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(2) For all s ⊂ t in [η]<.
Es =

{
X ⊆ [η]|s| | (πt

s)
−1[X] ∈ Et

}
where

πt
s : [η̄]|t| → [η̄]|s|

is defined by π(a) = b where (a, b, <) � (t, s, <).

(3) Ult0(V, E) is wellfounded and if
jE : V → ME � Ult0(V, E)

is the associated ultrapower embedding, then η ≤ jE(η̄) and for all s ∈ [η]<ω,
Es =

{
X ⊆ [η̄]|s| | s ∈ jE(X)

}
.

Except for the requirement that Ult0(V, E) be wellfounded, this definition can be
localized to the structure (

P([η̄]<ω), Es : s ∈ [η]<ω
)
.

This is useful when dealing with N-extenders E when E < N, etc.

Lemma 1.34. Suppose N,M are inner models of ZFC and
j : N → M

is an elementary embedding. Suppose CRT( j) < η and E is the N-extender of length η
given by j. Then E is uniquely determined by the function

F : P(η<ω)→ P(η<ω)
where F(X) = j(X) ∩ η<ω. ut

Using ultrapowers of V by extenders one can prove the following lemma.

Lemma 1.35. Suppose κ is an uncountable regular cardinal. Then the following are
equivalent.

(1) κ is an extendible cardinal.

(2) For each λ > κ, there is a transitive class and an elementary embedding
j : V → M

such that CRT( j) = κ, j(κ) > λ, and V j(λ)+1 ⊂ M. ut

One can use extenders to formulate most large cardinal axioms.

Definition 1.36. Suppose κ is a cardinal. Then κ is a strong cardinal if for all λ > κ

there exists an extender E such that the following hold where
jE : V → ME � Ult0(V, E)

is the associated ultrapower embedding.

(1) CRT( jE) = κ and jE(κ) > λ.

(2) Vλ ⊂ ME. ut
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1.5 Stationary sets and the Solovay Splitting Theorem

Definition 1.37. Suppose κ is an uncountable regular cardinal. Then

(1) Suppose C ⊂ κ then C is closed if for all η < κ such that C∩η is cofinal in η, η ∈ C.

(2) The filter F generated by the closed cofinal subsets of κ is the club filter at κ. ut

The club filter at κ is κ-complete and uniform.

Definition 1.38. Suppose κ is an uncountable regular cardinal and S ⊆ κ. Then S is
stationary if for all closed cofinal C ⊆ κ,

C ∩ S , ∅. ut

Remark 1.39. Suppose κ is an uncountable regular cardinal and that γ < κ is an infinite
regular cardinal. Let

S = {α < κ | cof(α) = γ} .

Then S is stationary subset of κ ut

Theorem 1.40 (Solovay Splitting Theorem). Suppose κ is an uncountable regular car-
dinal and that S ⊆ κ is stationary. Then there is a partition

〈S α : α < κ〉

of S into κ many stationary subsets. ut

Solovay proved the following remarkable theorem about normal fine ultrafilters, and
there is a version of the theorem for just fine δ-complete (even just countably complete)
ultrafilters on Pδ(λ).

Theorem 1.41 (Solovay). Suppose κ < λ, λ is a regular cardinal, and U is a κ-complete
normal fine ultrafilter on Pκ(λ). Then there exists a set X ∈ U such that the function

F : X → λ

where F(σ) = sup(σ) for all σ ∈ X, is 1-to-1 on X. ut

Solovay’s original proof used Jonsson algebras but there is alternative proof using the
Solovay Splitting Theorem and this proof only requires the Solovay Splitting Theorem
in the case where

S = {α < λ | cof(α) = ω} .

The proof of Theorem 1.42 is in essence a simple version the proof of Theorem 6.33
which we do give, see page 53.
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Theorem 1.42 (Solovay). Suppose κ < λ, λ is a regular cardinal, and U is a κ-complete
normal fine ultrafilter on Pκ(λ). Let

S = {η < λ | cof(η) = ω}

and let
〈S α : α < λ〉

be a partition of S into λ-many stationary sets. Define X to be the set of all σ ∈ Pκ(λ)
such that σ is the set of all β < sup(σ) such that

S β ∩C , ∅

for all closed cofinal subsets C of sup(σ). Then

(1) For all σ, τ ∈ X, if sup(σ) = sup(τ) then σ = τ.

(2) X ∈ U. ut

1.6 ∞Borel sets

Definition 1.43 (∞Borel-codes). The class of ∞Borel-codes for ∞Borel subsets of ωω is
the smallest class I such that the following hold.

(1) (0, s) ∈ I for all s ∈ ω<ω.

(2) Suppose 〈wα : α < η〉 is a sequence such that 0 < η and such that wα ∈ I for all
α < η. Then

(1, 〈wα : α < η〉) ∈ I.

(3) Suppose w ∈ I. Then (2,w) ∈ I. ut

Definition 1.44. The interpretation of an ∞Borel-code w is the set Aw ⊆ ω
ω defined by

induction on w as follows.

(1) Suppose w = (0, s). Then Aw = {x ∈ ωω | s ⊂ x}.

(2) Suppose w = (1, 〈wα : α < η〉). Then

Aw = ∪
{
Awα
| α < η

}
.

(3) Suppose w = (2,w0). Then Aw = ωω\Aw0. ut

Definition 1.45. Suppose A ⊆ ωω. Then A is ∞Borel if there exists an ∞Borel-code w
such that

A = Aw. ut
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Remark 1.46. Assuming the Axiom of Choice, or just thatωω can be wellordered, then
every set A ⊆ ωω is ∞Borel.

Thus in the context of the Axiom of Choice, there may exist A ⊆ ωω such that A is
OD but such that there is no ∞Borel-code, w ∈ HOD, such that

A = Aw.

Similarly, if the Axiom of Choice does not hold then there can exist A ⊆ ωω such that
A is not ∞Borel. ut

We fix some notation.

Definition 1.47. (1) B∞ is the class of all ∞Borel-codes.

(2) ∼∞ denotes the equivalence relation on B∞ where

w1 ∼
∞ w2

if Aw1 = Aw2.

(3) B∞ is the complete Boolean algebra given by B∞/∼∞.

(4) For each w ∈ B∞, [w]∞ is the class of all u ∈ B∞ such that Aw = Au. ut

Remark 1.48. The elements of B∞ are really just the equivalence classes [w]∞.

Definition 1.49 (ZF). Suppose that N is an inner model of ZFC. Then N is (∼∞)-closed
if for all ordinals α,

{(w1,w2) ∈ B∞ ×B∞ | w1 ∼
∞ w2} ∩ Vα ∩ N ∈ N. ut

Lemma 1.50. HOD is ∼∞-closed. ut

We note the following lemma.

Lemma 1.51. Suppose that N is an inner model of ZFC. Then the following are equiv-
alent.

(1) N is (∼∞)-closed.

(2) For all ordinals α, {w ∈ B∞ | Aw , ∅} ∩ Vα ∩ N ∈ N. ut

Lemma 1.52 (∞Borel Genericity Lemma). (ZF) Suppose N is an inner model of ZFC
and N is ∼∞-closed. Let

B∞N = (B∞ ∩ N)/(∼∞ ∩ N).

Then the following hold.

(1) B∞N is a complete Boolean algebra in N.
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(2) Suppose x ∈ ωω. Let
Gx ⊂ B

∞
N

be the set of all [w] ∈ B∞N such that x ∈ Aw. Then Gx is an N-generic ultrafilter on
B∞N and

N[x] = N[Gx].

Proof. The proof is essentially the same as the proof of Vopěnka’s theorem, Theo-
rem 1.12. We first prove (1). Let A ∈ N be an antichain in B∞N . Choose a sequence
〈wα : α < η〉 ∈ N of elements of B∞ ∩ N such that that

A = {[wα]∞ ∩ N | α < η}

Let
w = (1, 〈wα : α < η〉).

Thus w ∈ B∞ ∩ N and
Aw = ∪

{
Awα
| α < η

}
.

Thus [w]∞ is the least upper bound ofA in B∞ and so [w]∞∩N is the is the least upper
bound ofA in B∞N .

Thus w ∈ B∞ ∩ N and [w]∞ ∩ N is a least upper bound ofA in B∞N .
We finish by proving (2). Suppose LetA ∈ N be a maximal antichain in B∞N . Choose

a sequence 〈wα : α < η〉 ∈ N of elements of B∞ ∩ N such that that

A = {[wα]∞ ∩ N | α < η}

Let
w = (1, 〈wα : α < η〉).

Thus w ∈ B∞ ∩ N and sinceA is a maximal antichain in B∞N , necessarily

Aw = ∪
{
Awα
| α < η

}
= ωω.

Therefore there exists α < η such that x ∈ Awα
and so

Gx ∩A , ∅.

This proves that Gx is an N-generic ultrafilter on B∞N . For each s ∈ ω<ω, let

ws = (0, s).

Thus 〈ws : s ∈ ω<ω〉 ∈ N and so

x = ∪
{
s ∈ ω<ω | [ws]∞ ∩ N ∈ Gx

}
.

Therefore x ∈ N[Gx], and this proves (2). ut

We fix some more notation

Definition 1.53 (ZF). Suppose 0 < k < ω.
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(1) B(k)
∞ is the class of all ∞Borel-codes for subsets of the product space

(ωω)k = ωω × · · · × ωω.

(2) ∼(k)
∞ is the equivalence relation on B(k)

∞ where

w1 ∼
(k)
∞ w2

if Aw1 = Aw2.

(3) Suppose that N is an inner model of ZFC. Then N is (∼(k)
∞ )-closed if for all ordinals

α, {
(w1,w2) ∈ B(k)

∞ ×B
(k)
∞ | w1 ∼

(k)
∞ w2

}
∩ Vα ∩ N ∈ N. ut

Lemma 1.54 (ZF). Suppose N is an inner model of ZFC. Then the following are equiv-
alent.

(1) N is (∼∞)-closed.

(2) For all 0 < k < ω, N is (∼(k)
∞ )-closed.

Definition 1.55. Suppose N is an inner model of ZFC and N is (∼∞)-closed. Then N is
strongly (∼∞)-closed if for all

w ∈ B(2)
∞ ∩ N

there exists u ∈ B(1)
∞ ∩ N such that

Au = {x ∈ ωω | (x, y) ∈ Aw for some y ∈ ωω} . ut

Remark 1.56. Suppose N is an inner model of ZFC and ωω ⊂ N. Then N is strongly
(∼∞)-closed. ut

We now come to a key theorem.

Theorem 1.57 (ZF). Suppose that N is an inner model of ZFC and that N is strongly
(∼∞)-closed. Then for all x ∈ ωω, N[x] is strongly (∼∞)-closed.

Proof. We first show that N[x] is (∼∞)-closed. It will follow easily from this that N[x]
is necessarily strongly (∼∞)-closed and we will give that argument after showing that
N[x] is (∼∞)-closed.

Let TN be the class of all
τ ∈ NB

∞
N

such that τ is a term for an element of B∞ (with Boolean value 1).
Fix τ ∈ TN and let A be the set of all pairs (x0, y0) ∈ ωω × ωω such that

y0 ∈ Aw0
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where Gx0 is the N-generic ultrafilter on B∞N given by x0 and w0 is the interpretation of
τ by Gx0.

There exists u0 ∈ B
(2)
∞ ∩ N such that Au0 = A. Since N is strongly (∼∞)-closed, there

exists u1 ∈ B
∞ ∩ N such that

B = Au1

where B = {t0 ∈ ωω | (t0, t1) ∈ A for some t1 ∈ ωω}.
Thus for all t0 ∈ ωω, the following are equivalent where Gt0 ⊂ B

∞
N is the N-generic

filter given by t0,

(1.1) b ∈ Gt0 where b ∈ B∞N is that element given by u1.

(1.2) Let w be the interpretation of τ by Gt0. Then Aw , ∅.

Suppose G0 ⊂ B
∞
N is N-generic and let x0 ∈ (ωω)N[G0] be the element given by G0. We

claim the following are equivalent and this claim is interpreted as a first order statement
in N (and not about generic objects actually in V). This claim follows immediately from
the choice of u1 and the metamathematics of forcing.

(2.1) b ∈ G0 where b ∈ B∞N is that element given by u1.

(2.2) There exists G ⊂ B(2)
∞ ∩ N such that G is N-generic and such that if

(xG
0 , y

G
0 ) ∈ (ωω × ωω)N[G]

is the element given by G then:

a) x0 = xG
0 .

b) yG
0 ∈ (Aw0)

N[G] where w0 is the interpretation of τ by G0.

The equivalence of (2.1) and (2.2), together with the equivalence of (1.1) and (1.2),
implies that

{w ∈ B∞ ∩ N[x] | Aw , ∅}

is definable in the structure (N[x],N, ∈) from the parameter B(2)
∞ ∩ N. By Lemma 1.51,

this implies that N[x] is (∼∞)-closed.
It now follows easily that N[x] is strongly (∼∞)-closed. To see this, let T (2)

N be the
class of all

τ ∈ NB
∞
N

such that τ is a term for an element of B(2)
∞ (with Boolean value 1).

Fix τ ∈ T (2)
N and let A be the set of all (x0, y0, z0) ∈ ωω × ωω × ωω such that

(y0, z0) ∈ Aw0

where Gx0 is the N-generic ultrafilter on B∞N given by x0 and w0 is the interpretation of
τ by Gx0.
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There exists u0 ∈ B
(3)
∞ ∩ N such that Au0 = A. Since N is strongly (∼∞)-closed, there

exists u1 ∈ B
(2)
∞ ∩ N such that

B = Au1

where B = {(x0, y0) ∈ ωω × ωω | (x0, y0, z0) ∈ A for some z0 ∈ ω
ω}.

The key point is the u1 naturally defines σ ∈ TN . If G0 ⊂ N
∞
N is N-generic and if

x0 ∈ (ωω)N[G0] is the element given by G0, then σ is the term for the ∞Borel-code w
obtained from u1 and x0 for the set of all y ∈ (ωω)N[G0] such that

(x0, y) ∈ (Au1)
N[G0].

Now let Gx ⊂ B
∞
N be the N-generic filter given by x. Let w be the interpretation of τ

by Gx and let u be the interpretation of σ by Gx. Then w ∈ B(2)
∞ , u ∈ B(1)

∞ , and
Au = {t0 ∈ ωω | (t0, t1) ∈ Aw for somet1 ∈ ωω} .

Thus since N[x] is (∼∞)-closed, N[x] is strongly (∼∞)-closed. ut

Theorem 1.58 (ZF). Suppose N is an inner model of ZFC and that N is strongly (∼∞)-
closed. Then

N(ωω)

is a symmetric forcing extension of N.

Proof. Let
B
<ω
∞ = ∪k<ωB

(k)
∞

For each w ∈ B<ω∞ let k(w) denote k where
w ∈ B(k)

∞ .

Thus Aw ⊆ (ωω)k(w).
Define a partial order on B<ω∞ by w1 ≤ w2 if:

(1.1) k(w2) ≤ k(w1).

(1.2)
{
x|k(w2) | x ∈ Aw1

}
⊆ Aw2.

Let P∞ be the induced partial order on the equivalence classes [w] given by ∼(k(w))
∞

and let
P∞N = P∞|N.

Since N is strongly (∼∞)-closed, P∞N ∈ N.
We now come to the key claim. Suppose

G ⊆ Coll(ω,ωω)
be V-generic. Let GN be the maximal filter on P∞N given by the class of w ∈ B<ω∞ ∩ N
such that

G|k(w) ∈ Aw.

Then:
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(2.1) GN is N-generic.

Suppose D ⊂ P∞N is open dense and D ∈ N. Assume toward a contradiction that

D ∩GN = ∅.

Then there exist k < ω such that G|k forces this. Let G(k)
N be the set of all w ∈ B(k)

∞ ∩ N
such that

G|k ∈ Aw.

Thus G(k)
N defines an N-generic filter on B(k)

∞ |N. Therefore there must exist w ∈ G(k)
N

such that for all u ∈ D with k(u) > k,

{ f |k | f ∈ Au ∩ N} ∩ Aw = ∅.

But D is open dense and so there must exist u0 ∈ D such that k(u0) > k and such that{
f |k | f ∈ Au0 ∩ N

}
⊆ Aw.

But this contradicts the choice of w and this proves (2.1).
Fix k < ω. Again let G(k)

N be the set of all w ∈ B(k)
∞ ∩ N such that

G|k ∈ Aw.

Thus
N[G|k] = N[G(k)

N ]

and by Theorem 1.57, N[G|k] is strongly (∼∞)-closed. Let G(k) be the tail of G so that

G(k)(i) = G(k + i).

Thus G(k) is V-generic for Coll(ω,ωω).
Let G(k)

N[G|k] be the maximal filter on P∞N[G|k] given by the class of w ∈ B<ω∞ ∩ N[G|k]
such that

G(k)|k(w) ∈ Aw.

Thus G(k)
N[G|k] is N[G|k]-generic.

By the definability of forcing we claim the following. Suppose H ⊆ P∞N is N-generic
and let

gH : ω→ (ωω)N[H]

be the function naturally given by H. Let (ωω)H be the range of gH. Then the following
hold.

(3.1) (ωω)H = (ωω)N[H] ∩ N((ωω)H).

(3.2) gH is N((ωω)H)-generic for Coll(ω, (ωω)H).

(3.3) N is strongly (∼|in f ty)-closed in N((ωω)H) and

P∞N =
(
P∞N

)N((ωω)H) .

(3.4) For each k < ω, let g(k)
H (i) = gH(k + i) for i < ω. Then
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a) g(k)
H is N[gH |k]((ωω)H)-generic for Coll(ω, (ωω)H).

b) Let
H(k) ⊂

(
P∞N[gH |k]

)N((ωω)H)

be the filter given by g(k)
H . Then H(k) is an N[gH |k]-generic filter.

Suppose not. Then some w ∈ P∞N must force that either (3.1), (3.2), or (3.3) fails. Let
k = k(w) and choose G ⊂ Coll(ω,ωω) such that G is V-generic with G|k ∈ Aw.

Let H = GN as above. Then H ⊆ P∞N , H is N-generic, and w ∈ H. Further gH = G
and (ωω)H = (ωω)V . But then (3.1), (3.2), and (3.3) all hold for H and this contradicts
the choice of w. Replacing N by N[gH |k] yields (3.4).

The theorem now follows by standard arguments using finite permutations of ω to
generate automorphisms of Coll(ω,ωω) and of the partial order P∞N . ut

As a corollary of the (proof of) Theorem 1.58, we obtain the following.

Theorem 1.59 (ZF). Suppose N is an inner model of ZFC and that N is strongly (∼∞)-
closed.

(1) Suppose A ∈ P(ωω) ∩ N(ωω) and A is definable in

(N(ωω),N, ∈)

from ordinal parameters. Then
A = Aw

for some w ∈ B∞ ∩ N.

(2) Suppose A ∈ P(ωω) ∩ N(ωω). Then

A = Aw

for some w ∈ B∞ ∩ N(ωω).

Definition 1.60 (ZF + DC). Suppose U is an ultrafilter on Pω1(ω
ω).

(1) U is fine if for all x ∈ ωω, {
σ ∈ Pω1(ω

ω) | x ∈ σ
}
∈ U.

(2) U is normal if for all functions

F : Pω1(ω
ω)→ Pω1(ω

ω),

if
{
σ ∈ Pω1(ω

ω) | F(σ) ⊆ σ
}
∈ U then for some x ∈ ωω,{

σ ∈ Pω1(ω
ω) | x ∈ F(σ)

}
∈ U. ut

Definition 1.61 (HOD relativized to a set Z). (ZF) Suppose Z is a set. Then HODZ is
the class of all sets X such that for some ordinal α the following hold where Y = TC(X).
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(1) Z ∈ Vα.

(2) Y ∈ Vα.

(3) Suppose A ∈ Y . Then A is definable in the structure
(Vα, ∈)

from ordinal parameters and parameters from Z. ut

Remark 1.62. (1) HODZ is a transitive class and HODZ � ZF\Powerset.

(2) If there exists an ordinal α such that Z ∈ Vα and such that Z is definable in Vα with
parameters from α ∪ Z, then

HODZ � ZF.

In this case, HODZ = HODX where X = Z ∪ {Z}.

(3) For any finite set Z, HODZ is an inner model of ZFC. ut

We shall be mostly interested in the case of HODZ in the case where Z is finite.

Theorem 1.63 (ZF + DC). Suppose that U is a fine ultrafilter on Pω1(ω
ω). Then for all

sets X,
HOD(U,X)

is strongly (∼∞)-closed.

Proof. Trivially, HOD(U,X) is (∼∞)-closed. Therefore we only have to verify that for
w ∈ B(2)

∞ ∩ HOD(U,X), there exists u ∈ B(1)
∞ ∩ HOD(U,X) such that

Au = { f ∈ ωω | ( f , h) ∈ Aw for some h ∈ ωω} .

Fix w ∈ B(2)
∞ ∩ HOD(U,X) . Suppose σ ∈ Pω1(ω

ω). Suppose w1 and w2 are ∞Borel-
codes. Define

w1 ∼σ w2

if Aw1 ∩ σ = Aw2 ∩ σ. Thus HOD(U,X,σ),σ is (∼σ)-closed in the natural sense that for all
ordinals α,

{(w1,w2) ∈ B∞ ×B∞ | w1 ∼σ w2} ∩ Vα ∩ HOD(U,X,σ) ∈ HOD(U,X),σ.

Let Bσ be the complete Boolean algebra of HOD(U,X,σ) given by
HOD(U,X,σ) ∩B

∞/∼σ.

For each f ∈ σ, let Gσ
f be the ultrafilter on Bσ given by the class of all

U ∈ B∞ ∩ HOD(U,X,σ)

such that f ∈ Au. Thus Gσ
f is a HOD(U,X,σ)-generic filter and

HOD(U,X, f )[ f ] = HOD(U,X, f )[Gσ
f ].

Let,
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(1.1) H∞ =
∏

σ HOD(U,X,σ)/U,

(1.2) B∞ =
∏

σ Bσ/U,

(1.3) w∞ =
∏

σ w/U,

(1.4) and for each f ∈ ωω, let G∞f =
∏

σ Gσ
f /U;

where the ultraproducts are computed using all functions, F : ωω → V .
Thus for all f ∈ ωω,

(2.1) w∞ ∈ B
(2)
∞ .

(2.2) G∞f is an H∞-generic ultrafilter in B∞.

(2.3) H∞[ f ] = H∞[G∞f ].

Suppose f0, f1 ∈ ωω and ( f0, f1) ∈ Aw. Let f ∈ ωω be the function where
f (2k) = f0(k) and f (2k + 1) = f1(k) for all k < ω. Then

(3.1) ( f0, f1) ∈ Aw∞.

(3.2) H∞[G∞f ] = H∞[ f ] = H∞[ f0][ f1] = H∞[G∞f0][ f1].

So by factoring, f1 is H∞[G∞f0]-generic for a Boolean algebra,

B
f0
f1
∈ H∞[ f0].

such that
|B

f0
f1
|H∞[ f0] ≤ |B∞|

H∞[ f0].

Let
κ∞ = |B∞|

H∞.

We come to the key point.

(4.1) (H∞[ f0])Coll(ω,κ∞) � “There exists f ∗ ∈ ωω such that ( f0, f ∗) ∈ Aw∞”.

For each σ ∈ Pω1(ω
ω), let

κσ = |Bσ|
HOD(U,X,σ).

Thus

κ∞ =

∏
σ

κσ

 /U
We prove the following. Suppose that f0 ∈ ωω. Then the following are equivalent.

(5.1) There exists f1 ∈ ωω such that ( f0, f1) ∈ Aw.

(5.2) (H∞[ f0])Coll(ω,κ∞) � “There exists f ∗ ∈ ωω such that ( f0, f ∗) ∈ Aw∞”.
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(5.3) There exists Z ∈ U such that for all σ ∈ U, f0 ∈ σ and(
HOD(U,X,σ)[ f0]

)Coll(ω,κσ) � “There exists f ∗ ∈ ωω such that ( f0, f ∗) ∈ Aw”.

(5.4) There exists Z ∈ U such that for all σ ∈ U, f0 ∈ σ and if

G ⊂ Coll(ω, κσ)

is HOD(U,X,σ)[ f0]-generic with G ∈ V , then there exists

f1 ∈ ωω ∩ HOD(U,X,σ)[ f0][G]

such that ( f0, f1) ∈ Aw.

We have already proved that (5.1) implies (5.2). By Łos, (5.2) is equivalent to (5.3)
and trivially (5.3) implies (5.4). Thus we just have to show that (5.4) implies (5.1). The
issue is that (5.4) might be vacuously true since there may be no such G in V .

Let
π : Pω1(ω

ω1)→ ω1

be the function π(σ) = sup {ηx | x ∈ σ} where for each x ∈ ωω, ηx is the least ordinal
admissible relative to x.

Let Uπ be the ultrafilter on ω1 defined by I ∈ Uπ if{
σ ∈ Pω1(ω

ω) | π(σ) ∈ I
}
.

Since U is a fine ultrafilter, it follows that Uπ is a countable complete uniform ultrafilter
on ω1. Clearly Uπ is definable from U and so for all σ ∈ Pω1(ω

ω),

Uπ ∩ HOD(U,X,σ) ∈ HOD(U,X,σ).

Thus for all σ ∈ Pω1(ω
ω), ωV

1 is a measurable cardinal in HOD(U,X,σ). But this implies:

(6.1) For all σ ∈ Pω1(ω
ω), κσ < ω1,

(6.2) For all σ ∈ Pω1(ω
ω), for all f ∈ σ, there exists a filter

G ⊂ Coll(ω, κσ)

such that G ∈ V and such that G is HOD(U,X,σ)[ f ]-generic.

Now assume (5.4). Choose σ ∈ Z and choose a filter

G ⊂ Coll(ω, κσ)

such that G is HOD(U,X,σ)[ f0]-generic. Then there exists f1 ∈ ωω ∩ HOD(U,X,σ)[ f0][G]
such that ( f0, f1) ∈ Aw. This shows (5.4) implies (5.1).

There must exist b ∈ B∞ such that (and using the informal language of forcing), the
following are equivalent for all G such that G is H∞-generic for B∞.

(7.1) b ∈ G.

24



(7.2) Let fG ∈ (ωω)H∞[G] be the element given by G. Suppose g is H∞[G]-generic for
Coll(ω, κ∞). Then there exists f ∗ ∈ (ωω)H∞[G][g] such that

( fG, f ∗) ∈ (Aw∞)H∞[G][g].

Let
∼∞ =

(∏
∼σ ∩ HOD(U,X,σ)

)
/U

noting that this in general is not the equivalence relation ∼∞. Thus ∼∞ ⊂ H∞, ∼∞ is an
equivalence relation on B∞ ∩ H∞, and

B∞ = B∞ ∩ H∞/∼∞.

Thus there exists u ∈ B∞ ∩ H∞ such that

b = [u]∼∞.

where [u]∼∞ denotes the equivalence class of u relative to ∼∞. Thus

Au = { f ∈ ωω | ( f , h) ∈ Aw for some h ∈ ωω} .

Thus proves the theorem. ut

Definition 1.64 (L relativized to (S , ωω) where S ⊂ Ord). (ZF). Suppose S ⊂ Ord.

(1) The sets Lα(S , ωω) are defined by induction on the ordinal α as follows.

a) L0(S , ωω) = ωω.

b) Lα+1(S , ωω) = PDef (Lα(S , ωω) ∪ {S ∩ α}).

c) If α is a limit ordinal then Lα(S , ωω) = ∪
{
Lβ(S , ωω) | β < α

}
.

(2) L(S , ωω) is the class of all sets X such that X ∈ Lα(S , ωω) for some ordinal α. ut

Theorem 1.65 (ZF + DC). Suppose that there is a fine ultrafilter on Pω1(ω
ω). Then for

all sets S ⊂ Ord, every set
A ∈ P(ωω) ∩ L(S , ωω)

is ∞Borel.

Proof. Let U a fine ultrafilter on Pω1(ω
ω) and let Let

N = HOD(U,S ).

By Theorem 1.63, N is strongly (∼∞)-closed and so by Theorem 1.59, every set

A ∈ P(ωω) ∩ N(ωω)

is ∞Borel. Finally
L(S , ωω) ⊆ N(ωω)

and this proves the theorem ut
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Suppose w ∈ B∞ and ωV
1 is strongly inaccessible in L[w]. Then Aw is Lebesgue

measurable and has the property of Baire. In fact Aw has all the regularity properties
connected to forcing.

Suppose that U a fine countably complete ultrafilter on Pω1(ω
ω). Then one can show

(in fact without using countable choice) that ω1 must be a regular cardinal and further
for all sets X, ωV

1 is a measurable cardinal in HOD(U,X). Thus for all w ∈ B∞, ωV
1 is

strongly inaccessible in L[w].
Thus the following theorem is an immediate corollary of Theorem 1.63.

Theorem 1.66 (ZF + DC). Suppose that there is a fine countably complete ultrafilter
on Pω1(ω

ω). Then for all sets S ⊂ Ord, every set

A ∈ P(ωω) ∩ L(S , ωω)

is Lebesgue measurable and has the property of Baire. ut

1.7 Determinacy axioms and AD+

Let (D,≤T ) denote the partial order of the Turing degrees.

Definition 1.67 (Turing Determinacy). Turing Determinacy is the assertion that for all
X ⊂ D, there exists d0 ∈ D such that either

{d ∈ D | d0 ≤T d} ⊂ X

or
{d ∈ D | d0 ≤T d} ⊂ D\X. ut

Note that (assuming countable choice) if Turing Determinacy holds then there is a
definable fine countably complete ultrafilter on Pω1(ω

ω).

Theorem 1.68 (ZF + DCR). Assume Turing Determinacy. Suppose S ⊂ Ord. Then the
following hold.

(1) Suppose A ∈ P(ωω) and A is definable in L(S , ωω) from S and ordinal parameters.
Then there exists

w ∈ B∞ ∩ HODL(S ,ωω)
{S }

such that A = Aw.

(2) Every
A ∈ P(ωω) ∩ L(S , ωω)

is ∞Borel with an ∞Borel-code in L(S , ωω). ut
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Suppose A ⊂ Xω. Then A defines a game on X where the players choose elements
of X, defining f ∈ Xω after ω-many moves. Player I wins if f ∈ A and Player II wins if
f < A.

The game GA is determined if there is a function

τ : X<ω → X

which is a winning strategy for either Player I or Player II.
Here, τ is a winning strategy for Player I if for all f ∈ Xω, if

f (2k) = τ( f |2k)

for all k < ω, then f ∈ A. Similarly, τ is a winning strategy for Player II if for all
f ∈ Xω, if

f (2k + 1) = τ( f |(2k + 1))

for all k < ω, then f < A.
If X = ω then winning strategies are in essence elements of ωω.
The Axiom of Determinacy, AD, is the axiom that for every set A ⊆ ωω the corre-

sponding game GA on ω is determined. This axiom, like Turing Determinacy, contra-
dicts the Axiom of Choice and the context is ZF + DCR.

Lemma 1.69 (Martin). Assume AD. Then Turing Determinacy holds. ut

ADR is the axiom which asserts that for every A ⊂ (ωω)ω, the game on ωω given by
A is determined–so here strategies are in essence elements of P(ωω). What about other
generalizations of AD?

Lemma 1.70 (ZF). There exists a set A ⊆ ωω
1 such that A is not determined. ut

Definition 1.71. Θ denotes the supremum of the ordinals α such that there is a surjec-
tion

π : ωω → α. ut

Assuming the Axiom of Choice, Θ = c+. But assuming AD, Θ is always a limit
cardinal. This is an immediate corollary of the Moschovakis Coding Lemma which
yields the following lemma as an immediate corollary.

Lemma 1.72 (Moschovakis). Assume AD and that α < Θ. Then there is a surjection

π : ωω → P(α). ut

The axiom AD+ is the following technical variation of AD. The axiom AD+ is in
essence simply a “structural” enhancement of AD.

Definition 1.73 (AD+). Assume ZF + DCR. Then AD+ is the conjunction of the fol-
lowing.
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(1) Suppose A ⊆ ωω, λ < Θ, and that

π : λω → ωω

is a continuous function. Then the game on λ given by π−1[A] is determined.

(2) Suppose A ⊆ ωω. Then A is ∞Borel. ut

Remark 1.74. It is conjectured that assuming ZF + DCR, AD and AD+ are actually
equivalent. The following summarizes roughly what is known at present.

(1) Assume ZF + DC + ADR. Then AD+ holds.

(2) Assume ZF + DCR + AD + ¬AD+. Then ZF + DC + ADR is consistent.

Thus if ZF + DCR + AD is consistent with (¬AD+), that theory is much stronger that
just ZF + DCR + AD. ut

2 Universally Baire sets and the axiom V = Ultimate-L

Definition 2.1. Suppose A ⊆ ωω. Then A is universally Baire if for all topological
spaces Ω and for all continuous functions

π : Ω→ ωω,

the set π−1[A] has the property of Baire in the topological space Ω. ut

The notion of being universally Baire is more usefully formulated in terms of Suslin
representations and forcing. We fix some standard notation.

Suppose X is a set. A tree T on X is a set T ⊆ X<ω which is closed under initial
segments, more precisely for all s ∈ T ,

s|k ∈ T

for all k ∈ dom(s).
If T is a tree on X then [T ] is the set of all f ∈ Xω such that

f |k ∈ X

for all k < ω. The set [T ] is the set of infinite branches of the tree T .
Suppose λ is an ordinal and that T is a tree on ω × λ. Then:

(1) We view [T ] as the set of all pairs (x, f ) such that

(x, f ) ∈ ωω × λω

and such that 〈(x(i), f (i)) : i ≤ k〉 ∈ T for all k < ω.

(2) p[T ] = {x ∈ ωω | (x, f ) ∈ [T ] for some f ∈ λω}.
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Definition 2.2. Suppose A ⊆ ωω and λ ∈ Ord. Then A is λ-Suslin if there is a tree T on
ω × λ such that A = p[T ]. ut

Lemma 2.3. Suppose that A ⊆ ωω. Then the following are equivalent.

(1) A is universally Baire.

(2) For all partial orders P there exist λ and trees S ,T on ω×λ such that the following
hold.

(a) p[S ] = A and p[T ] = ωω\A.
(b) Suppose G ⊂ P is V-generic. Then in V[G]:

p[S ] = (ωω)V[G]\p[T ]. ut

Theorem 2.4. Suppose that there is a proper class of Woodin cardinals and that
A ⊆ ωω is universally Baire. Then

(1) Every set B ∈ P(ωω) ∩ L(A, ωω) is universally Baire.

(2) L(A, ωω) � AD+. ut

Definition 2.5 (V = Ultimate-L). (1) There is a proper class of Woodin cardinals.

(2) For each Σ2-sentence φ, if φ holds in V then there exists a universally Baire set
A ⊆ R such that

HODL(A,ωω) � φ. ut

The axiom V = Ultimate-L implies a number of L-like consequences, and these are
proved by using the connections with the theory of AD+.

Theorem 2.6. Assume V = Ultimate-L. Then the following hold.

(1) CH.

(2) V = HOD.

(3) V is not a generic extension of any inner model. ut

Assuming V = Ultimate-L one also has what is arguably the simplest possible
wellordering of the reals, in the context of a proper class of Woodin cardinals.

Theorem 2.7. Assume V = Ultimate-L. Then the following hold.

(1) Suppose x ∈ R. Then x ∈ HODL(A,R) for some universally Baire set A ⊂ R.

(2) There is a wellordering of R which is Σ1-definable from R is the structure
〈Hc+),Γ∞, ∈〉

where Γ∞ is the set of all the universally Baire sets A ⊆ R. ut
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3 The HOD Hypothesis and the HOD Conjecture

Suppose that κ is an uncountable regular cardinal and S ⊆ κ is a stationary set. Then
by the Solovay Splitting Theorem, there is a partition

〈S α : α < κ〉

of S into stationary subsets of S . But the proof is not effective.

Question 3.1. Suppose that κ is an uncountable regular cardinal and let

S = {η < κ | cof(η) = ω} .

Is there a partition of S into two stationary sets each of which is in HOD? ut

This question is really the simplest case of the effective splitting problem.

Lemma 3.2. Suppose that κ is an uncountable regular cardinal and let

S = {η < κ | cof(η) = ω} .

Suppose there is no splitting of S into two stationary sets each of which is in HOD.
Then κ is a measurable cardinal in HOD.

Proof. Let F be the club filter on κ. Then

F ∩ HOD ∈ HOD.

Clearly S ∈ HOD. Thus
F ∩ P(S ) ∩ HOD

is an ultrafilter if and only if there is no partition of S into two stationary sets each of
which is in HOD.

But F ∩ HOD is a κ-complete filter in HOD since F is a κ-complete filter in V . ut

We recall some definitions from [7].

Definition 3.3. Suppose that κ is an uncountable regular cardinal. Then κ is ω-
strongly measurable in HOD if there exists λ < κ such that the following hold where
S = {α < κ | cof(α) = ω}.

(1) (2λ)HOD < κ.

(2) There is no partition
〈Tα : α < λ〉 ∈ HOD

of S into stationary sets. ut
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Remark 3.4. If κ is ω-strongly measurable in HOD then the Boolean algebra,

(P(S ) ∩ HOD) /I,

is atomic (with fewer than λ many atoms for each λ with (2λ)HOD < κ) where

S = {α < κ | cof(α) = ω}

and where I is the nonstationary ideal at κ. Since S ∈ HOD and since I∩HOD ∈ HOD,
necessarily κ is a measurable cardinal in HOD. ut

Remark 3.5. Key questions arise:

(1) How many regular cardinals can there be which are ω-strongly measurable in
HOD?

(2) Suppose γ is a singular strong limit cardinal and cof(γ) > ω. Can γ+ ever be
ω-strongly measurable in HOD?

(3) Suppose δ is supercompact. Can there exist any regular cardinal κ > δ such that κ
is ω-strongly measurable in HOD? What if δ is an extendible cardinal? ut

Definition 3.6. (1) (HOD Hypothesis) There is a proper class of regular cardinals
which are not ω-strongly measurable in HOD.

(2) (Weak HOD Conjecture) The HOD Hypothesis is provable from

ZFC + “There is an extendible cardinal”.

(3) (HOD Conjecture) The HOD Hypothesis is provable from

ZFC + “There is a supercompact cardinal”.

(4) (Strong HOD Conjecture) The HOD Hypothesis is provable from ZFC. ut

Remark 3.7. The HOD Hypothesis is from [7] but there it is referred to as the
HOD Conjecture. In [10], we altered the definitions to make clear the potential am-
biguities. Of course similar issues arise with both the Ultimate-L Conjecture and the
Ω Conjecture and moreover these conjectures are really only interesting if their conclu-
sions are provable from (some) large cardinal hypotheses. This is particularly true for
the Ultimate-L Conjecture.

However the HOD Hypothesis is easily verified to be consistent with the existence
of an extendible cardinal (by forcing V = HOD) whereas for both the Ultimate-L Con-
jecture and the Ω Conjecture even the consistency of the statements with the existence
of extendible cardinal is open. Therefore the situation for the HOD Conjecture is really
quite different. ut
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We note the following weak version of the HOD Dichotomy Theorem of [10]. This
theorem shows that if there is an extendible cardinal then either V is very “close” to
HOD, or V is very “far” from HOD. We will sketch a proof of this theorem on page 54.

Theorem 3.8 (HOD Dichotomy Theorem). Suppose that δ is an extendible cardinal.
Then one of the following hold.

(1) Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

(2) No regular cardinal κ ≥ δ is ω-strongly measurable in HOD. ut

If any of the HOD Conjectures are true then the “far” option in the HOD Dichotomy
Theorem is vacuous and so one obtains that large cardinals imply that HOD is close to
V . This would suggest that there is some generalization of the axiom V = L for which
there is no generalization of Scott’s Theorem.

4 The sealing theorems

Remark 4.1. Suppose A ⊆ ωω is universally Baire and V[G] is a generic extension of
V . Then A has a canonical interpretation AG as a universally Baire set in V[G]. This is
defined as follows. Choose trees S ,T ∈ V on ω × λ for some λ such that

(1) A = p[S ] and A\ωω = p[T ].

(2) (p[S ])V[G] = (ωω)V[G]\(p[S ])V[G].

Then AG = (p[S ])V[G]. This is well-defined. ut

It is convenient to fix the following notation and from now on R denotes ωω.

Definition 4.2. Suppose that there is a proper class of Woodin cardinals.

(1) Γ∞ denotes the set of all A ⊂ R such that A is universally Baire.

(2) Suppose V[g] is a set-generic extension of V . Then

(Γ∞g ,Rg) = ((Γ∞)V[g],RV[g]). ut

The following theorem shows that L(Γ∞,R) can be sealed in a very strong sense
relative to set-generic extensions.

Theorem 4.3 (Sealing Theorem). Suppose that δ is supercompact and that there is a
proper class of Woodin cardinals. Suppose V[G] ⊂ V[H] are set-generic extensions of
V and Vδ+1 is countable in V[G]. Then the following hold.

(1) Γ∞G = P(RG) ∩ L(Γ∞G ,RG).
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(2) Suppose that γ is a limit of Woodin cardinals in V and that G is V-generic for some
partial P ∈ Vγ. Then

(Γ∞)Vγ[G] = Γ∞G .

(3) Γ∞H = P(RH) ∩ L(Γ∞H ,RH).

(4) There is an elementary embedding

j : L(Γ∞G ,RG)→ L(Γ∞H ,RH)

such that for all A ∈ Γ∞G , j(A) = (A)V[H], where (A)V[H] is the interpretation of A in
V[H]. ut

Remark 4.4. Theorem 4.3 raises the key question of whether the conclusion is prov-
able (more precisely that there is no requirement that V[G] be different that V) from
some large cardinal hypothesis such as the existence of a proper class of Vopěnka car-
dinals or something stronger such as the existence of a proper class of λ such that the
Axiom I0 holds at λ. Any such theorem would be a very strong anti inner model theo-
rem. In particular, such a theorem would give a generalization of Scott’s Theorem for
the axiom V = Ultimate-L. This is because if V = Ultimate-L then necessarily

L(Γ∞,R) � AC

and so P(R) ∩ L(Γ∞,R) , Γ∞, see Theorem 2.7.
Before dismissing this possibility it is prudent to note that there is a version of Theo-

rem 4.3 for the projective sets, this is the Projective Sealing Theorem, and the hypothe-
sis only requires that there are infinitely many strong cardinals below δ. Here projective
sealing is the assertion that if V[G] ⊂ V[H] are generic extensions of V then

V[G]ω+1 ≺ V[H]ω+1.

The Projective Sealing Theorem shows that if δ is a limit of strong cardinals and V[G]
is a generic extension of V in which δ is countable, then projective sealing holds in
V[G].

The point here is that the existence of even a proper class of strong cardinals is
consistent with the existence of a projective wellordering of the reals, and so cannot
imply projective sealing.

But by increasing this large cardinal hypothesis through requiring in addition that δ
be a limit of Woodin cardinals, or even just assuming there is a proper class of Woodin
cardinals, one obtains the conclusion that projective sealing holds in V (and so without
having to pass to a generic extension of V). ut

Theorem 4.3 shows that if there is a proper class of Woodin cardinals and there is a
supercompact cardinal, then associated to V there is a canonical model of AD+.
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Theorem 4.5. Suppose that δ is supercompact and that there is a proper class of
Woodin cardinals. Suppose V[G] is a generic extension of V in which Vδ+1 is countable.
Then

L(Γ∞G ,RG) � ZF + ADR + “Θ is regular”. ut

There is a weak version of the Sealing Theorem which is important formulating
stronger versions of the Ultimate-L Conjecture. We fix some additional notation.

Definition 4.6. Suppose that there is a proper class of Woodin cardinals and that

V[G] ⊆ V[H]

are generic extensions of V . Then

πG
H : LΘG(Γ∞G ,RG)→ LΘH(Γ∞H ,RH)

is the Σ0-embedding defined by
πG

H(A) = AH

for all A ∈ Γ∞G , where:

(1) ΘG = sup
{
ΘL(A,RG) | A ∈ Γ∞G

}
.

(2) ΘH = sup
{
ΘL(A,RH) | A ∈ Γ∞H

}
.

(3) LΘG(Γ∞G ,RG) = ∪
{
LΘG(A,RG) | A ∈ Γ∞G

}
(4) LΘH(Γ∞H ,RH) = ∪

{
LΘH(A,RH) | A ∈ Γ∞H

}
. ut

Remark 4.7. Suppose that there is a proper class of Woodin cardinals and that

V[G] ⊆ V[H]

are generic extensions of V . Then by AD+-theory, πG
H is necessarily a Σ1-embedding.

If V[G] seals Γ∞ then of course πG
H is fully elementary and much more. ut

Definition 4.8. Suppose that there is a proper class of Woodin cardinals and that V[G]
is a set generic extension of V . Then V[G] weakly seals Γ∞ if for all generic extensions
V[H] of V[G], πG

H is a Σ2-embedding. ut

Suppose there is a proper class of Woodin cardinals and that δ is supercompact. The
following theorem shows that if

G ⊂ Coll(ω, <δ)

is V-generic, than V[G] very nearly seals Γ∞.

Theorem 4.9 (Weak Sealing Theorem). Suppose that there is a proper class of Woodin
cardinals, δ is supercompact, and that G ⊂ Coll(ω, <δ) is V-generic. Then:

34



(1) V[G] weakly seals Γ∞.

(2) Γ∞G = P(RG) ∩ L(Γ∞G ,RG).

(3) Suppose V[H] is a generic extension of V, G ∈ V[H], and that Vδ+1 is countable in
V[H]. Then (

L(Γ∞G ,RG), A : A ∈ Γ∞G
)
≡

(
L(Γ∞H ,RH), AH : A ∈ Γ∞G

)
where for each A ∈ Γ∞G , AH ∈ Γ∞H is the interpretation of A in V[H]. ut

The following version of sealing involves the generic elementary embeddings asso-
ciated to the stationary towers, P<δ and Q<δ, where δ is a Woodin cardinal, [4]. The
partial orders have a remarkable property which is summarized in the following theo-
rems, [4].

Theorem 4.10. Suppose δ is a Woodin cardinal and that G is V-generic for P<δ. Then
in V[G] there is a V-extender E of length δ such that if

jE : V → ME � Ult0(V, E)
is the associated ultrapower embedding then the following hold:

(1) jE(δ) = δ.

(2) M<δ
E ⊂ N in V[G].

(3) δ is a Woodin cardinal in V[G].

Further for each regular uncountable cardinal γ < δ, there is a condition p ∈ P<δ such
that if p ∈ G then CRT( jE) = γ. ut

Theorem 4.11. Suppose δ is a Woodin cardinal and that G is V-generic for Q<δ. Then
in V[G] there is a V-extender E of length δ such that if

jE : V → ME � Ult0(V, E)
is the associated ultrapower embedding then the following hold:

(1) CRT( jE) = ωV
1 and jE(ωV

1 ) = δ.

(2) Mω
E ⊂ N in V[G]. ut

Definition 4.12 (Tower Sealing). Suppose that there is a proper class of Woodin car-
dinals and that δ is a Woodin cardinal. Then Tower Sealing holds at δ if whenever G is
V-generic for either the P<δ-stationary tower at δ or the Q<δ-stationary tower at δ, then

j(Γ∞) = Γ∞G

where
j : V → M ⊂ V[G]

is the generic elementary embedding given by G. ut
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Lemma 4.13. Suppose that δ is a Woodin cardinal which is a limit of Woodin cardinals,
and that Tower Sealing holds at δ. Then Γ∞ = P(R) ∩ L(Γ∞,R).

The following theorem shows that after collapsing Vδ+1 where δ is an extendible
cardinal, one obtains a much stronger version of the Sealing Theorem, Theorem 4.3.

Theorem 4.14 (Strong Sealing Theorem). Suppose that δ is an extendible cardinal and
that λ > δ. Then there is a proper class of κ such that:

(1) κ is a measurable Woodin cardinal and κ > λ.

(2) Suppose G is V-generic for some P ∈ Vλ and Vδ+1 is countable in V[G]. Then
Tower Sealing holds at κ in V[G].

The sealing theorems motivate the following sealing hypotheses, formulated using
the notion of grounds, due to Hamkins. A inner model N is a ground of V if V is a
generic extension of N.

By the Definability Theorem, Theorem 6.15 on page 46, grounds are uniformly Σ2-
definable classes from parameters. Thus these sealing hypotheses are first order.

Definition 4.15 (Sealing Hypothesis). There exists a ground N of V and there exists δ
such that

(1) δ is an supercompact cardinal in N,

(2) N ∩ Vδ+1 is countable in V . ut

Definition 4.16 (Strong Sealing Hypothesis). There exists a ground N of V and there
exists δ such that

(1) δ is an extendible cardinal in N,

(2) N ∩ Vδ+1 is countable in V . ut

5 The Ultimate-L Conjecture

The key question for the axiom V = Ultimate-L is whether there is a generalization
Scott’s Theorem for this axiom. More precisely whether some large cardinal hypothesis
implies the axiom V = Ultimate-L does not hold.

It turns out that there is an explicit conjecture, this is the Ultimate-L Conjec-
ture, which implies that there is no generalization of Scott’s Theorem for the axiom
V = Ultimate-L. The statment of this conjecture requires the following definition.
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Definition 5.1. Suppose δ > ω is a supercompact cardinal and that N is an inner model
of ZFC such that Ord ⊂ N. Then N is a weak extender model of δ is supercompact if
for all λ > δ there exists a δ-complete, normal, fine, ultrafiter U on Pδ(λ) such that:

(1) Pδ(λ) ∩ N ∈ U,

(2) U ∩ N ∈ N. ut

We will see in Section 6 that if N is a weak extender model of δ is supercompact
then necessarily N is very close to V . This motivates the Ultimate-L Conjecture which
if true then by virtue of the necessarily closeness of weak extender models of δ is
supercompact to V , implies (as claimed above) that there can be no Scott Theorem for
the axiom, V = Ultimate-L.

Definition 5.2 (Ultimate-L Conjecture). Suppose that there is an extendible cardinal.
Then (provably) there exists δ and there exists a weak extender model N of δ is super-
compact such that the following hold.

(1) N � “V = Ultimate-L”.

(2) N has the δ-genericity property. ut

An inner model N has the δ-genericity property if for every bounded set σ ⊂ δ, σ is
N-generic for some partial order P ∈ N with |P|N < δ.

The δ-genericity property and the related δ-approximation and δ-cover properties of
Hamkins, are the subject of Section 6, as are weak extender models of δ is supercom-
pact.

The following theorem shows that the Ultimate-L Conjecture implies the Weak
HOD Conjecture.

Theorem 5.3 (Ultimate-L Conjecture). Suppose that δ is an extendible cardinal. Then
the HOD Hypothesis holds. ut
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6 δ-cover, δ-approximation, and δ-genericity

Hamkins [3] , motivated by the relationship between V and V[G], abstracted out two
general properties that one can naturally impose on an inner model N ⊆ V such that
Ord ⊂ N and N � ZFC. Coincidentally, this turns out to be closely related to (and more
general than) the notion that N be a weak extender model of δ is supercompact for some
δ, which while implicit in [7], first appears in [9], but primarily as an expository device.

Suitable extender models, the version of weak extender models defined and analyzed
in [7], add a key additional condition. But this additional condition can also be naturally
simplified to a more abstract condition.

Putting everything together, one obtains what seems to be a very useful criterion for
the closeness of an inner model N to V , for which one can both obtain all the results
Hamkins proved and all those results proved for suitable extender models, in a single
unified approach.

We begin with Hamkins’ conditions.

Definition 6.1 (Hamkins, [3]). Suppose that δ > ω is a regular cardinal and that N is a
transitive inner model of ZFC containing the ordinals. Then:

(1) N has the δ-cover property if for all σ ⊂ N with |σ| < δ, there exists τ ∈ N such
that σ ⊂ τ and such that |τ| < δ.

(2) N has the δ-approximation property if for all X ⊂ N the following are equivalent.

a) X ∈ N.

b) X ∩ τ ∈ N for all τ ∈ N with |τ| < δ. ut

Remark 6.2. Defining when N has the ω-cover property and the ω-approximation
property in the natural way and assuming N is a transitive inner model of ZFC such
that Ord ⊂ N:

(1) N has the ω-cover property.

(2) N has the ω-approximation property if and only if N = V . ut

Suppose that for some regular uncountable cardinal δ, V = N[G] where G ⊂ P is
N-generic and P is δ-cc in V . Then N has the δ-cover property and the δ-approximation
property in V . The following remarkable theorem of Bukovský [1] (see also [2]) re-
inforces the motivation for the definitions of δ-cover and δ-approximation, from the
perspective of the relationship between V and N. The theorem requires the following
definition.
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Definition 6.3. Suppose that δ > ω is a regular cardinal and that N is a transitive inner
model of ZFC containing the ordinals. Then N has the uniform δ-cover property if for
all ordinals θ and all functions

F : θ → Pδ(N)

there exists a function
H : θ → Pδ(N)

such that

(1) H ∈ N,

(2) F(α) ⊆ H(α) for all α < θ. ut

Remark 6.4. Suppose V[G] is a δ-cc extension of V . Then V fails to have the δ-
approximation property in V[G] if and only if there is a Suslin tree T in V at δ such that
V[G] adds a cofinal branch of T . Thus V has the κ-approximation property in V[G] for
all regular cardinals κ > δ. ut

Theorem 6.5 (Bukovský). Suppose that δ > ω is a regular cardinal and that N is a
transitive inner model of ZFC containing the ordinals. Then the following are equiva-
lent.

(1) N has the uniform δ-cover property.

(2) There exist a partial order P ∈ N and an N-generic filter G ⊆ P such that V = N[G]
and such that P is δ-cc in N.

Proof. We first prove the following.

(1.1) Suppose A ⊂ Ord. Then N[A] is a δ-cc generic extension of N.

Fix A and fix γ such that A ⊂ γ. Let LN be infinitary language Lγ+,ω as defined in N
with constants cα for the ordinals α < γ, a unary predicate P, and a binary predicate E.
Thus in V , the set of sentences of LN such that

(γ, A, <) � φ

defines a complete LN-theory (interpreting each cα by α, P by A, and E by <).
Let SN be the set of all sentences of LN . By absoluteness for each set T ⊆ SN with

T ∈ N, T is consistent in V if and only if T is consistent in N. Here we can simply
define T to be consistent if T has a model after collapsing T × γ to be countable. The
absoluteness then is just the absoluteness of Σ∼

1
1.

Working in N, let I be the set of all consistent theories T ∈ N of LN such that for all
φ ∈ SN if T ∪ {φ} is inconsistent then (¬φ) ∈ T .
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For each T ∈ I, (SN ,T ) defines in N, a γ+-complete Boolean algebra BT . This is just
the quotient of the (infinitary) Lindenbaum algebra associated to the infinitary language
LN , using the filter defined by T .

To prove (1.1) it suffices to prove that for some T ∈ I:

(2.1) BT is δ-cc in N.

(2.2) (γ, A, <) � φ for each φ ∈ T .

To see this suppose T ∈ I satisfies (2.1) and (2.2). Let

G = {φ ∈ SN | (γ, A, <) � φ}

Then by (2.1), BT is a complete Boolean algebra in N (since BT is a γ+-complete
Boolean algebra in N) and by (2.2), G defines an ultrafilter on BT which is necessarily
N-generic. Finally N[A] = N[G].

Assume toward a contradiction no such T ∈ I exists. Let

e : I → N

be a partial function such that

(3.1) dom(e) is the set of T ∈ I such that BT is not δ-cc in N.

(3.2) e(T ) ⊂ SN and defines a maximal δ-antichain in BT , more precisely:

a) |e(T )|N = δ, e(T ) ∩ T = ∅, and
∨
{φ | φ ∈ e(T )} ∈ T ,

b) for all φ1, φ2 ∈ e(T ), if φ1 , φ2 then (¬(φ1 ∧ φ2)) ∈ T .

Choose (in V) a function
F : I → N

such that for all T ∈ I, either

(4.1) F(T ) ∈ T and (γ, A, <) � (¬F(T )), or

(4.2) (γ, A, <) � T , T ∈ dom(e), F(T ) ∈ e(T ), and (γ, A, <) � F(T ).

Since N has the uniform δ-cover property, there exists a function

H : I → Pδ(SN)

such that H ∈ N and such that F(T ) ∈ H(T ) for all T ∈ I.
For each T ∈ I\dom(e), let φT be the sentence

φT =
∨{

(¬φ) | φ ∈ H(T ) ∩ T
}

and for each T ∈ dom(e), let φT be the sentence

φT =

(∨{
(¬φ) | φ ∈ H(T ) ∩ T

})
∨

(∨
(H(T ) ∩ e(T ))

)
.

The key point is that:
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(5.1) For each T ∈ I, (γ, A, <) � φT .

Let T ∗ = {φT | T ∈ I}. Thus T ∗ ∈ N and by (5.1), T ∗ is a consistent LN-theory. Let T0

be the set of all φ ∈ SN such that T ∗ ∪ {(¬φ)} is not consistent. Thus by (5.1)

(6.1) (γ, A, <) � T0,

and so T0 ∈ I. But then since T ∗ ⊆ T0,
φT0 ∈ T0.

By (6.1) and the definition of F, T0 ∈ dom(e) and F(T0) is defined according to (4.2).
But then by the definition of φT0 and since (γ, A, <) � T0, necessarily∨

(H(T0) ∩ e(T0)) ∈ T0

which is a contradiction, since |H(T0)|N < δ.
Thus as claimed, there exists T ∈ I such that (2.1) and (2.2) both hold. This proves

(1.1).
Choose A ⊂ Ord such that P(δ) ⊂ L[A]. We prove

(7.1) V = N[A].

Assume toward a contradiction that V , N[A]. Choose A∗ ⊂ Ord such that A ∈ L[A∗]
and A∗ < N[A]. By (1.1), N[A∗] is a δ-cc extension of N. But A ∈ L[A∗] and so by
factoring, N[A∗] is a δ-cc extension of N[A]. Thus by the choice of A,

P(δ) ∩ N[A] = P(δ) ∩ N[A∗]
and this implies N[A] = N[A∗], which is a contradiction.

The key point here is the general fact that a nontrivial δ-cc forcing extension must
add a new subset of δ. To see this let P be δ-cc and suppose G ⊂ P is V-generic. Let λ
be least such that there exists Z ⊂ λ such that Z ∈ V[G], Z < V , and Z ∩ α ∈ V for all
α < λ. We must show λ ≤ δ. Assume toward a contradiction that λ > δ.

Fix a term τ for Z and we can (by replacing P with P|p for some p ∈ G if necessary)
reduce to the case that (τ, λ) does not depend on G.

Fix X ≺ Vγ for large enough γ with (δ, τ, λ, P) ∈ X, δ ⊂ X, and |X|V = δ. Clearly we
can reduce to the case that G ∩ X ∈ V for otherwise λ ≤ δ.

Note that G ∩ X is X-generic for P. If cof(λ)V ≤ δ then Z ∈ V[X ∩ G] which
contradicts that Z < V . Therefore cof(λ)V > δ and so P is not δ-cc in V[G∗] for all
V-generic filters G∗ ⊂ P since (τ, λ) does not depend on G. (One could also just note
that X[G] ≺ Vγ[G] and just use that P is not δ-cc in V[G]). But then P ∩ X is not δ-cc
in X[G] which contradicts that X ∩G ∈ V since P is δ-cc.

The theorem is an immediate corollary of (1.1) and (7.1). ut

For Lemma 6.7 it is convenient to make the following definition. Note that N has the
weak δ-cover property if and only if N has the δ+-cover property.
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Definition 6.6. Suppose that δ ≥ ω is a cardinal and that N is a transitive inner model
of ZFC containing the ordinals. Then N has the weak δ-cover property if for all σ ⊂ N
with |σ| = δ, there exists τ ∈ N such that σ ⊆ τ and such that |τ| = δ.

The following lemma (proved several times by Hamkins and Reitz) is useful.

Lemma 6.7 (Hamkins–Reitz). Suppose that δ > ω is a regular cardinal and that N is
a transitive inner model of ZFC containing the ordinals. Then the following hold.

(1) Suppose that N has the δ-approximation property. Then N has the κ-approximation
property for all regular cardinals κ > δ.

(2) Suppose that N has the δ-approximation property and the δ-cover property. Then
N has the weak κ-cover property for all cardinals κ ≥ δ.

(3) Suppose that N has the δ-approximation property and the δ-cover property. Then
N has the κ-cover property for all regular cardinals κ ≥ δ.

Proof. Since N has the δ-approximation property, trivially N has the κ-approximation
property for all regular cardinals κ > δ. We prove (2). Assume toward a contradiction
that (2) fails and let κ0 be the least cardinal for which (2) fails. Let σ ⊂ N witness that
(2) fails for κ0.

Let κ = cof(κ0). Thus there is an increasing sequence

〈σα : α < κ〉

of increasing subsets of σ such that

(1.1) σ = ∪ {σα | α < κ},

(1.2) |σα| < κ0 for all α < κ.

By induction on α, the choice of κ0, and since κ = cof(κ0), there is an increasing
sequence

〈τα : α < κ〉

of subsets of N such that for all α < κ:

(2.1) |τα| < κ0 and σα ⊆ τα,

(2.2) τα ∈ N.

Let τ = ∪ {τα : α < κ}. Thus |τ| = κ0.
There are two cases.

Case 1: δ ≤ κ.

Thus τ ∩ X ∈ N for all X ∈ N such that |X| < δ. This implies τ ∈ N by the
δ-approximation property.
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Case 2: κ < δ.

Then by the δ-cover property, there exists X ∈ N such that |X| < δ and such that

{τα | α < κ} ⊆ X.

Let
τ = ∪ {Z ∈ X | |Z| < κ0} = ∪

{
Z ∈ X | |Z|N < κ0

}
.

Then τ ∈ N, σ ⊆ τ and |τ| = κ0.
Thus in each case the required cover of σ exists and this contradicts the choice of

(κ0, σ). This proves (2).
Finally (2) trivially implies (3). ut

As an immediate corollary of Lemma 6.7, we obtain the following theorems on
cardinals and their successors.

Theorem 6.8. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC con-
taining the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose γ > δ is a singular cardinal. Then γ is a singular cardinal in N and

γ+ = (γ+)N .

Proof. Let κ = max(cof(γ), δ) < γ. By Lemma 6.7, N has the κ+-cover property. Thus
there is a cofinal set σ ⊂ γ such that σ ∈ N and such that |σ| = κ. Therefore

(cof(γ))N ≤ |σ|N < γ.

We finish by proving γ+ = (γ+)N . Let

λ = (γ+)N

and assume toward a contradiction that λ < δ+. Then since γ is singular,

cof(λ) < γ.

But then arguing exactly as above but with κ = max(cof(λ), δ),

(cof(λ))N < γ

and this is a contradiction. ut

The proof of Theorem 6.8 easily adapts to prove the following version of that theo-
rem for regular cardinals.

Theorem 6.9. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC con-
taining the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose γ ≥ δ is a regular cardinal and that

γ+ , (γ+)N .

Then cof
(
(γ+)N

)
= γ. ut
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Remark 6.10. Both Theorem 6.8 and Theorem 6.9 are corollaries of the following the-
orem which also easily follows from Lemma 6.7(2). This is the theorem for weak
extender models proved in [9] but by a very different argument. ut

Theorem 6.11. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC
containing the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose λ ≥ δ and that λ is a regular cardinal in N . Then

(cof(λ))V = |λ|V . ut

We prove the following lemma which will have a number of corollaries.

Lemma 6.12. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC con-
taining the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose Ord ⊂ M ⊂ V is an inner model of ZFC such that

Mδ ⊂ M,

and that N0 ⊂ M has the δ-cover property and the δ-approximation property in M.
Suppose

H(δ+) ∩ N0 ⊆ H(δ+) ∩ N.

Then N0 ⊆ N.

Proof. Note that N0 has the δ-cover property in V (since M<δ ⊂ M and since N0 has the
δ-cover property in M).

Clearly, it suffices to prove:

(1.1) For all α ∈ Ord, P(α) ∩ N0 ⊂ N.

Fix α ∈ Ord and fix X ∈ P(α) ∩ N0 such that X ∩ β ∈ N for all β < α. It suffices to
prove X ∈ N. Since N has the δ-approximation property we can reduce to the case that
cof(α) < δ.

Fix a strong limit cardinal λ > δ such that α < λ. Let

〈(τη,N ∩ τη,N0 ∩ τη) : η < δ〉

be an increasing sequence of elementary substructures of (H(λ),N ∩ H(λ),N0 ∩ H(λ))
together with

〈(τN0
η , τ

N
η ) : η < δ〉

such that for all η < δ:

(2.1) X ∈ τ0 and τ0 ∩ α is cofinal in α.

(2.2) |τη| < δ

(2.3) τN0
η ≺ H(λ) ∩ N0 and τN0

η ∈ N0.
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(2.4) τN
η ≺ H(λ) ∩ N and τN

η ∈ N.

(2.5) τη ∩ N0 ⊂ τ
N0
η ⊂ τη+1

(2.6) τη ∩ N ⊂ τN
η ⊂ τη+1

The sequence exists since N and N0 have the δ-cover property. Let

τ = ∪
{
τη | η < δ

}
.

Since N has the δ-approximation property, τ ∩ N ∈ N. Since

(H(λ) ∩ M)δ ⊂ M,

it follows that
〈τN0
η : η < δ〉 ∈ M

and so τ ∩ N0 ∈ N0 since
τ ∩ N0 = ∪

{
τN0
η | η < δ

}
and since N0 as the δ-approximation property in M.

Let Mτ be the transitive collapse of τ and let (λτ, ατ) be the image of (λ, α) under the
transitive collapse of τ. For each β ∈ τ ∩ α, let Xτ

β be the image of X ∩ β under the
transitive collapse of τ, and let

Xτ = ∪
{
Xτ
β | β ∈ τ ∩ α

}
.

Thus Xτ ⊆ ατ, ατ < δ+, and Xτ ∈ N0. Finally

N0 ∩ H(δ+) ⊆ N ∩ H(δ+)

and therefore Xτ ∈ N.
For each ξ < ατ,

X ∩ β = π(Xτ ∩ ξ) = π(Xτ
β)

where π inverts the transitive collapse of τ∩N and where β = π(ξ). This implies X ∈ N
since τ ∩ α is cofinal in α.

This proves (1.1). ut

An immediate corollary of Lemma 6.12 is the uniqueness theorem of [3] for inner
models with the δ-cover property and the δ-approximation property. One simply ap-
peals to Lemma 6.12 in the case where M = V .

Theorem 6.13 (Hamkins Uniqueness Theorem). Suppose δ > ω is a regular cardinal
and that N0,N1 are transitive inner models with the δ-cover property and with the δ-
approximation property. Suppose

N0 ∩ H(δ+) = N1 ∩ H(δ+).

Then N0 = N1. ut
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Remark 6.14. A natural question is whether the Hamkins Uniqueness Theorem can be
strengthened by only requiring that

N0 ∩ H(δ) = N1 ∩ H(δ).

Note that if either δ+ = (δ+)N0 or δ+ = (δ+)N1, then this strengthened version of the
Hamkins Uniqueness Theorem must hold, since necessarily

N0 ∩ H(δ+) = N1 ∩ H(δ+)

by the δ-approximation property.
Similarly, if

Pδ(δ+) ∩ N0 = Pδ(δ+) ∩ N1

then again N0 ∩ H(δ+) = N1 ∩ H(δ+) by the δ-approximation property. ut

The proof of Lemma 6.12 immediately yields the following definability theorem
(also proved by Laver [5] and in [8] in the case where V is a generic extension of N)
for inner models N with the δ-approximation property and the δ-cover property.

Theorem 6.15 (Definability Theorem). Suppose δ > ω is a regular cardinal, N is an
inner model of ZFC containing the ordinals, and that N has the δ-cover property and
the δ-approximation property. Then N ∩ H(γ) is uniformly definable in H(γ) from
N ∩ H(δ+), for all strong limit cardinals γ > δ. ut

Remark 6.16. An immediate corollary of Theorem 6.15 is that if N has the δ-
approximation property and the δ-cover property then N is Σ2-definable in V from
N ∩ H(δ+). Thus the theory of such inner models is part of the first order theory of
V . ut

The following universality theorem is a slight refinement of the universality theorems
of [3]. The corollaries, such as Theorem 6.36 and Theorem 6.38, are immediate from
the version of the universality theorem proved in [3]. We first prove a weak version
which only requires the δ-approximation property.

Theorem 6.17 (Weak Universality Theorem: Hamkins [3]). Suppose δ > ω is a regu-
lar cardinal, N is an inner model of ZFC containing the ordinals, and that N has the
δ-approximation property. Suppose that λ ≥ δ and that U is a δ-complete ultrafilter on
λ. Then U ∩ N ∈ N.

Proof. Fix σ ∈ N with |σ| < δ. Since N has the δ-approximation property, it suffices to
prove that

U ∩ σ ∈ N.

By enlarging σ is necessary we can suppose that

λ\A ∈ σ,
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for each A ∈ P(λ) ∩ σ.
But U is δ-complete and so there exists ξ < λ such that

U ∩ σ = {A ∈ σ ∩ P(λ) | ξ ∈ A} .

Therefore U ∩ σ ∈ N. ut

Theorem 6.18 (Universality Theorem). Suppose δ > ω is a regular cardinal, N is an
inner model of ZFC containing the ordinals, and that N has the δ-cover property and
the δ-approximation property. Suppose that E is an N-extender of length η with critical
point κE ≥ δ. Let

πE : N → ME � Ult0(N, E)

be the ultrapower embedding. Then the following are equivalent.

(1) For each A ⊂ P(η<ω) ∩ N, πE(A) ∩ η<ω ∈ N.

(2) E ∈ N.

Proof. Clearly (2) implies (1) and so it suffices to assume (1) and prove (2).
Let F be the function

F : P(η<ω) ∩ N → V

where F(A) = πE(A) ∩ η<ω. To show that E ∈ N, it suffices to show that F ∈ N.
Clearly dom(F) ∈ N and by (1), F ⊂ N. Thus since N has the δ-approximation

property, to show that F ∈ N, it suffices to prove:

(1.1) F|σ ∈ N for all σ ∈ N such that σ ⊂ dom(F) and |σ| < δ.

Fix σ ∈ N such that σ ⊂ dom(F) and |σ| < δ. Fix a bijection

ρ : |σ|N → σ

such that ρ ∈ N. Choose A ∈ P(η<ω) ∩ N such that for all ξ < |σ|N and for all s ∈ η<ω,
ξ_s ∈ A if and only if s ∈ ρ(ξ). By (1)

πE(A) ∩ η<ω ∈ N.

By the elementarity of πE, and since κE ≥ δ, for each ξ < |σ|N ,

πE(ρ(ξ)) =
{
s ∈ πE(η)<ω | ξ_s ∈ πE(A)

}
.

Thus for each ξ < |σ|N ,

F(ρ(ξ)) =
{
s ∈ η<ω | ξ_s ∈ F(A)

}
,

and so F|σ ∈ N since F(A) ∈ N. This proves (1.1).
Therefore F ∈ N and so E ∈ N. ut
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Suppose N has the δ-cover property and the δ-approximation property. Then by
Theorem 6.18, subject only to a fairly weak constraint, N contains all N-extenders E
with associated critical point κE ≥ δ.

The following theorem greatly amplifies the utility of this by showing that for many
extenders E of V , this constraint (which is condition (1) of Theorem 6.18) is necessarily
satisfied for the induced N-extender. Thus

E ∩ N ∈ N

for all such extenders E ∈ V .

Theorem 6.19. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC
containing the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose γ > δ is a strong limit cardinal with cof(γ) ≥ δ, and that

j : V → M

is an elementary embedding such that CRT( j) > δ and such that H(γ) ⊂ M. Let E be
the N-extender of length γ given by E and let

jE : N → NE � Ult0(N, E)

be the ultrapower embedding. Then:

(1) NE ∩ H(γ) = N ∩ H(γ).

(2) E ∈ N.

Proof. Let A = N ∩ H(δ+). Since CRT( j) > δ, j(A) = A. Therefore by the Definability
Theorem, Theorem 6.15,

(1.1) j(N) ∩ H(γ) = N ∩ H(γ).

This implies (1) since j(N) ∩ H(γ) = jE(N) ∩ H(γ).
Suppose that X ∈ P(γ<ω) ∩ N. By (1.1),

jE(X) ∩ ξ<ω ∈ N

for all ξ < γ. Thus since cof(γ) ≥ δ,

jE(X) ∩ γ<ω ∩ σ<ω ∈ N

for all σ ∈ N with |σ| < δ. Therefore since N has the δ-approximation property,

jE(X) ∩ γ<ω ∈ N.

Thus by the Universality Theorem, Theorem 6.18, necessarily

E ∈ N,

and this proves (2). ut
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Remark 6.20. (1) If one drops the requirement that cof(γ) ≥ δ then the conclusion of
Theorem 6.19 can fail.

(2) It is not clear if one can weaken the requirement on the critical point of j to just
CRT( j) ≥ δ, as is the case in the Universality Theorem. This seems unlikely, but
the case where one also assumes both

H(γ) ≺Σ2 V

and
H(γ) ≺Σ2 M

is an interesting one. ut

One can strengthen the conclusion of Theorem 6.19 considerably in the case where
κE > δ and cof(γ) > δ, and this stronger version is a corollary of the main theorem of
[3].

Remark 6.21. We will prove a stronger version of Theorem 6.22. The stronger theo-
rem is Theorem 6.66 and this theorem shows that if the given embedding

j : V → M

is given by an extender then the induced embedding on N is also an (internal) N-
ultrapower embedding by an N-extender. ut

Theorem 6.22 (Hamkins, [3]). Suppose δ > ω is a regular cardinal, N is an inner
model of ZFC containing the ordinals, and that N has the δ-cover property and the
δ-approximation property. Suppose that

j : V → M

is an elementary embedding such that CRT( j) > δ and such that Mδ ⊂ M. Then

(1) j(N) ⊂ N.

(2) For all α ∈ Ord, j|(N ∩ Vα) ∈ N.

Proof. It suffices to prove:

(1.1) Suppose γ > δ is a strong limit cardinal such that cof(γ) > δ. Let E be the
extender of length γ given by j. Then E ∩ N ∈ N.

Fix a strong limit cardinal γ > δ such that cof(γ) > δ.
Let

jE : V → ME � Ult0(V, E)

be the ultrapower embedding.
By the Universality Theorem, Theorem 6.18, it suffices to prove:
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(2.1) jE(X) ∩ γ<γ ∈ N for each X ∈ P(γ<ω) ∩ N.

For this it suffices to show

(3.1) jE(N) ⊂ N.

Note that
ME =

{
jE( f )(s) | f : [γ]<ω → V and s ∈ [γ]<ω

}
and so since cof(γ) > δ and since CRT( j) > δ, necessarily

Mδ
E ⊂ ME.

Further by the elementarity of jE and since CRT( jE) > δ:

(4.1) jE(N) has the δ-cover and δ-approximation properties in ME.

(4.2) H(δ+) ∩ jE(N) ⊆ H(δ+) ∩ N (in fact H(δ+) ∩ jE(N) = H(δ+) ∩ N).

Therefore (3.1) is an immediate corollary of Lemma 6.12. ut

Theorem 6.19 and Theorem 6.22 shows that most large cardinal notions are down-
ward absolute from V to N above δ, where N is an inner model with the δ-cover property
and the δ-approximation property. We give several examples below, all due to Hamkins
[3], after first defining the notion of a weak extender model of δ is supercompact.

Whether one uses Theorem 6.19 or Theorem 6.22, for example in the case of super-
compact cardinals, is more a matter of personal preference, though Theorem 6.22 is
ultimately far more useful.

Weak extender models of δ is supercompact, implicitly defined in [7], are formally
defined in [9].

Definition 6.23. Suppose δ > ω is a supercompact cardinal and that N is an inner
model of ZFC such that Ord ⊂ N. Then N is a weak extender model of δ is supercom-
pact if for all λ > δ there exists a δ-complete, normal, fine, ultrafiter U on Pδ(λ) such
that:

(1) Pδ(λ) ∩ N ∈ U,

(2) U ∩ N ∈ N. ut

The following lemma of Magidor gives a useful alternative formulation of super-
compactness.

Lemma 6.24 (Magidor). Suppose that δ is strongly inaccessible. Then the following
are equivalent.

(1) δ is supercompact.
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(2) For all λ > δ there exist δ̄ < λ̄ < δ and an elementary embedding

π : Vλ̄+1 → Vλ+1

such that CRT(π) = δ̄ and such that π(δ̄) = δ. ut

The following theorem from [7] generalizes Magidor’s lemma to weak extender
models of δ is supercompact.

Theorem 6.25. Suppose that N is a weak extender model of δ is supercompact. Then
for all λ > δ, for all A ∈ Vλ, there exist δ̄ < λ̄ < δ, Ā ∈ Vλ̄, and there exists an
elementary embedding

π : Vλ̄+1 → Vλ+1

such that:

(1) CRT(π) = δ̄, π(δ̄) = δ, and π(Ā) = A.

(2) π(N ∩ Vλ̄) = N ∩ Vλ.

(3) π|(N ∩ Vλ̄) ∈ N. ut

Theorem 6.26. Suppose that N is a weak extender model of δ is supercompact. Then
N has the δ-approximation property and the δ-cover property.

Proof. The δ-cover property is immediate from Definition 6.23(1), together with the
δ-completeness and fineness of U (referring to Definition 6.23).

Fix a set X ⊂ N such that

(1.1) X ∩ σ ∈ N for all σ ∈ N with |σ| < δ.

We must prove that X ∈ N.
Fix λ large enough such that X ∈ Vλ. By Theorem 6.25, there exist δ̄ < λ̄ < δ,

X̄ ∈ Vλ̄, and there exists an elementary embedding

π : Vλ̄+1 → Vλ+1

such that:

(2.1) CRT(π) = δ̄, π(δ̄) = δ, and π(X̄) = X.

(2.2) π(N ∩ Vλ̄) = N ∩ Vλ.

(2.3) π|(N ∩ Vλ̄) ∈ N.

Let σ = π[Vλ̄ ∩ N]. Thus |σ| < δ and by (2.3), σ ∈ N. Thus by (1.1), X ∩ σ ∈ N. But

X̄ =
{
a ∈ Vλ̄ ∩ N | π(a) ∈ X ∩ σ

}
.

Therefore by (2.3), X̄ ∈ N and so π(X̄) ∈ N. This proves that X ∈ N. ut
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As an immediate corollary of Theorem 6.8 and Theorem 6.26 we obtain the follow-
ing theorems on cardinals and their successors, relative to weak extender models.

Theorem 6.27. Suppose that N is a weak extender model of δ is supercompact. Sup-
pose γ > δ is a singular cardinal. Then γ is a singular cardinal in N and

γ+ = (γ+)N . ut

Theorem 6.28. Suppose that N is a weak extender model of δ is supercompact. Sup-
pose γ ≥ δ is a regular cardinal and that

γ+ , (γ+)N .

Then cof
(
(γ+)N

)
= γ. ut

Further, as an immediate corollary of Theorem 6.18 and Theorem 6.26 we obtain the
universality theorems for weak extender models.

Theorem 6.29 (Weak Universality Theorem for weak extender models). Suppose that
N is a weak extender model of δ is supercompact. Suppose that λ ≥ δ and that U
is a δ-complete ultrafilter on λ. Then U ∩ N ∈ N. ut

Theorem 6.30 (Universality Theorem for weak extender models). Suppose that N is a
weak extender model of δ is supercompact. Suppose that E is an N-extender of length
η with critical point κE ≥ δ. Let

πE : N → ME � Ult0(N, E)

be the ultrapower embedding. Then the following are equivalent.

(1) For each A ∈ P(η<ω) ∩ N, πE(A) ∩ η<ω ∈ N.

(2) E ∈ N. ut

Theorem 6.31. Suppose that N is a weak extender model of δ is supercompact. Sup-
pose γ > δ is a strong limit cardinal with cof(γ) ≥ δ, and that

j : V → M

is an elementary embedding such that CRT( j) > δ and such that H(γ) ⊂ M. Let E be
the extender of length γ given by E and let

jE : N → NE � Ult0(N, E)

be the ultrapower embedding. Then:

(1) NE ∩ H(γ) = N ∩ H(γ).

(2) E ∩ N ∈ N. ut
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Remark 6.32. Theorem 6.27, Theorem 6.28, and Theorem 6.30 were proved in [7] by
somewhat different arguments. ut

The following corollary of the HOD Dichotomy Theorem, Theorem 3.29 on page 25
of [10], shows the utility of the HOD Hypothesis. We give the proof and then use this
theorem to give a proof of the HOD Dichotomy Theorem.

Theorem 6.33. Suppose that δ is an extendible cardinal. Then the following are equiv-
alent.

(1) The HOD Hypothesis.

(2) HOD is a weak extender model of δ is supercompact.

Proof. We sketch the proof. If suffices to show that (1) implies (2), since if (2) holds
then by Theorem 6.27,

γ+ = (γ+)HOD

for all singular cardinals γ > δ.
Fix λ > δ such that Vλ ≺Σ3 V . Thus the following hold.

(1.1) HODVλ = HOD ∩ Vλ.

(1.2) For all γ < λ, there exists a regular cardinal κγ and a partition
〈S γ

α : α < γ〉 ∈ HOD
of

{
η < κγ | cof(η) = ω

}
into stationary sets, such that γ < κγ < λ.

Since δ is an extendible cardinal there exists and elementary embedding
π : Vλ+1 → Vπ(λ)+1

such that CRT(π) = δ and π(δ) > λ.
We prove that for all γ < λ,

(2.1) π[γ] ∈ (HOD)Vπ(λ).

Let S =
{
η < κγ | cof(η) = ω

}
. Thus

π(S ) =
{
η < π(κγ | cof(η) = ω

}
.

Let θ = sup(π[κγ]) and let
〈Tα : α < π(γ)〉 = π(〈S γ

α : α < γ〉).
Thus 〈Tα : α < π(γ)〉 is a partition of π(S ) into stationary sets and

〈Tα : α < π(γ)〉 ∈ π(HOD ∩ Vλ) = π(HODVλ) = HODVπ(λ).

The key point is that for all η < λ, if cof(η) = ω then
π(η) = sup(π[η]).

Thus for all α < π(γ), the following are equivalent.
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(3.1) Tα ∩C , ∅ for all closed cofinal sets C ⊂ θ.

(3.2) α = π(β) for some β < γ.

But this implies π[γ] is definable in Vπ(λ) from θ and

〈Tα : α < π(γ)〉 ∈ (HOD)Vλ.

This proves (2.1).
Since |Vλ| = λ, for all ε < λ, there exists γ < λ and a surjection

F : γ → HOD ∩ Vε

such that F ∈ HOD ∩ Vλ. Therefore

π(F)[π[γ]] = π[HOD ∩ Vε]

and π(F) ∈ (HOD)Vλ. Thus:

(4.1) For all X ∈ HOD ∩ Vλ, π[X] ∈ HODVλ.

For each δ < γ < λ, let Uγ be the δ-complete normal fine ultrafilter on Pδ(γ) given
by π:

Uγ = {X ⊆ Pδ(γ) | π[γ] ∈ π(X)} .

By (4.1), for all γ < λ,

(5.1) HOD ∩ Pδ(γ) ∈ Uγ.

(5.2) Uγ ∩ HOD ∈ HOD.

Finally Vλ ≺Σ3 V and so for all cardinals γ > δ, there exists a δ-complete normal fine
ultrafilter U on Pδ(γ) such that

(6.1) HOD ∩ Pδ(γ) ∈ U.

(6.2) U ∩ HOD ∈ HOD.

This proves (2). ut

As a corollary we obtain the HOD Dichotomy Theorem.

Theorem 6.34 (HOD Dichotomy Theorem). Suppose that δ is an extendible cardinal.
Then one of the following hold.

(1) Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD and there is no
inner model N ⊆ HOD such that N has the δ-approximation property and the
δ-cover property.

(2) No regular cardinal κ ≥ δ is ω-strongly measurable in HOD and HOD has the
δ-approximation property and the δ-cover property.
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Proof. We first show that the following are equivalent.

(1.1) The HOD Hypothesis.

(1.2) There exists a regular cardinal κ ≥ δ such that κ is not ω-strongly measurable in
HOD.

It suffices to assume (1.2) and prove (1.1) Fix κ ≥ δ such that κ is not ω-strongly
measurable in HOD. Suppose η > κ and let

Vλ ≺Σ3 V

be such that η < λ. Let
π : Vλ+1 → Vπ(λ)+1

be an elementary embedding such that CRT(π) = δ and δ > λ. Thus

HOD ∩ Vλ = (HOD)Vλ

and this implies that κ is not ω-strongly measurable in (HOD)Vλ. Therefore π(κ) is not
ω-strongly measurable in

π (HOD ∩ Vλ) = (HOD)Vπ(λ) ⊂ HOD.

Therefore π(κ) is not ω-strongly measurable in HOD. But π(κ) > η and this proves
(1.1).

Thus by Theorem 6.33, the following are equivalent.

(2.1) There exists a regular cardinal κ ≥ δ such that κ is not ω-strongly measurable in
HOD.

(2.2) HOD is a weak extender model of δ is supercompact.

By Theorem 6.26, if HOD is a weak extender model of δ is supercompact then HOD
has the δ-approximation property and the δ-cover property. Therefore by Theorem 6.27
and the equivalence of (2.1) with (2.2), the following are equivalent.

(3.1) There exists an inner model N ⊆ HOD such that N has the δ-approximation
property and the δ-cover property.

(3.2) There exists a regular cardinal κ ≥ δ such that κ is not ω-strongly measurable in
HOD.

(3.3) HOD is a weak extender model of δ is supercompact.

Therefore it suffies to prove that if HOD is a weak extender model of δ is supercom-
pact then there is no regular cardinal κ > δ which is ω-strongly measurable in HOD.

Assume toward a contradiction that κ > δ and κ is ω-strongly measurable in HOD.
Let

S = {α < κ | cof(α) = ω} .
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There must exist a stationary set T ⊆ S such that T ∈ HOD and such that T cannot be
partitioned into 2 stationary sets, each of which is in HOD. Let calF be the club filter
at κ. Thus F ∩HOD ∈ HOD and so F |T yields and ultrafilter U on κ in HOD such that
S ∈ U and such that in HOD, U a κ-complete uniform normal ultrafilter on κ.

But HOD has the δ-cover property and so for all α ∈ S , cof(α)HOD < δ. But this
contradicts that S ∈ U since κ > δ. ut

The following theorem is a curious corollary of Theorem 6.33.

Theorem 6.35. Suppose that δ is an extendible cardinal. Then every measurable car-
dinal κ ≥ δ is a measurable cardinal in HOD.

Proof. By the (weak) HOD Dichotomy Theorem, Theorem 6.34, one of the following
hold.

(1.1) Every regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

(1.2) No regular cardinal κ ≥ δ is ω-strongly measurable in HOD.

If (1.1) holds then every regular cardinal κ ≥ δ is a measurable cardinal and if (1.2)
holds then by Theorem 6.33, HOD is a weak extender model of δ is supercompact. But
then by Theorem 6.29, every measurable cardinal κ ≥ δ is a measurable cardinal in
HOD. ut

By Theorem 6.19, extendible cardinals above δ are downward absolute to inner mod-
els N with the δ-cover property and the δ-approximation property, and hence to weak
extender models of δ is supercompact.

Theorem 6.36 (Hamkins [3]). Suppose δ > ω is a regular cardinal, N is an inner
model of ZFC containing the ordinals, and that N has the δ-cover property and the
δ-approximation property. Suppose that κ > δ and that κ is an extendible cardinal.
Then

N � “κ is an extendible cardinal”. ut

Theorem 6.19 also shows that the downward absoluteness of large cardinals to weak
extender models of supercompactness is really quite a local result.

For example it applies to ω-extendible cardinals (with an extra step appealing to ab-
soluteness), and using Magidor’s lemma, Lemma 6.24, it also applies to supercompact
cardinals.

Lemma 6.37. Suppose that N is a weak extender model of δ is supercompact, κ > δ,
and that κ is a Vopěnka cardinal. Then

N � “κ is a Vopěnka cardinal”. ut
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By Lemma 6.24 and Theorem 6.19 one easily obtains the version of Theorem 6.36
for supercompact cardinals, reformulated below in terms of weak extender models.

Theorem 6.38 (Hamkins [3]). Suppose δ > ω is a regular cardinal, N is an inner
model of ZFC containing the ordinals, and that N has the δ-cover property and the
δ-approximation property. Suppose that κ > δ and that κ is a supercompact cardinal.
Then N is a weak extender model of κ is supercompact. ut

Thus we obtain the following equivalence.

Theorem 6.39. Suppose that there is a proper class of supercompact cardinals and that
N is a transitive inner model of ZFC containing the ordinals. Then the following are
equivalent.

(1) N is a weak extender model of δ is supercompact, for some δ.

(2) N has the δ-cover property and the δ-approximation property, for some regular
cardinal δ > ω. ut

Remark 6.40. Theorem 6.39 suggests the following questions. Suppose that δ is su-
percompact and that N has the δ-cover property and the δ-approximation property.

(1) Must N be a weak extender model of δ is supercompact?

(2) Suppose δ is supercompact in N. Must N be a weak extender model of δ is super-
compact?

The following theorem of Goldberg, Theorem 6.41, gives a strong negative answer to
the first question. The proof of Theorem 6.44 below shows that N must be a weak
extender model for δ is strongly compact (where this is defined in the obvious fashion),
and so in some sense Theorem 6.41 is as strong a counter-example as possible.

However, if one modifies the first question by also requiring that N has the δ-
genericity property (Definition 6.46) then the proof of Theorem 6.41 no longer applies,
see Remark 6.48. ut

Theorem 6.41 (Goldberg). Suppose that δ is supercompact. Then there exists an inner
model N such that:

(1) N has the δ-approximation property and the δ-cover property.

(2) δ is the least measurable cardinal of N. ut

Definition 6.42. Suppose λ > ω is a cardinal and that U is an ultrafilter on P(λ) (and
so U ⊂ P(P(λ))).
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(1) U is fine if for all α < λ, {σ ⊂ λ | α ∈ σ} ∈ U.

(2) U is normal if for all functions

f : P(λ)→ λ,

if {σ ⊆ λ | f (σ) ∈ σ} ∈ U then there exists α < λ such that

{σ ⊆ λ | f (σ) = α} ∈ U. ut

The following corollary of Theorem 6.22 covers the downward absoluteness for es-
sentially all large cardinal notions expressed in terms of normal fine ultrafilters. This
includes supercompact, huge, n-huge for n < ω, etc. It also covers the related notions
such as almost huge etc. This theorem is implicit in [3].

Theorem 6.43. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC
containing the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose that λ > δ and that U is a normal fine (δ+)-complete ultrafilter on
P(λ). Then:

(1) N ∩ P(λ) ∈ U.

(2) U ∩ N ∈ N.

Proof. Let
jU : V → MU � Ult0(V,U)

be the ultrapower embedding. Thus

(1.1) jU[λ] ∈ MU ,

(1.2) CRT( jU) > δ,

(1.3) (MU)δ ⊂ MU .

By Theorem 6.22:

(2.1) jU(N) ⊆ N,

(2.2) jU |(N ∩ Vγ) ∈ N for all γ ∈ Ord.

By (1.2) and (2.2):

(3.1) jU(N) has the δ-approximation property in MU .

(3.2) jU[λ] ∈ N.

We claim:

(4.1) jU[λ] ∈ jU(N).
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Suppose σ ∈ jU(N) and |σ| < δ. Then since jU[λ] ∈ N, jU(N) ⊂ N, and since

P(δ) ∩ N = P(δ) ∩ jU(N),

necessarily,
P(σ) ∩ N = P(σ) ∩ jU(N).

Thus σ ∩ jU[λ] ∈ jU(N).
Therefore by (3.1), jU[λ] ∈ jU(N) and this proves (4.1). Thus by (2.2), this also

proves (1). (2) follows by the Weak Universality Theorem, or alternatively by (2.2)
again. ut

As an immediate corollary of the Weak Universality Theorem (Theorem 6.17) and
Lemma 6.7, we obtain the downward absoluteness of strongly compact cardinals, even
at δ itself.

Theorem 6.44. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC
containing the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose that κ ≥ δ and that κ is a strongly compact cardinal. Then κ is
strongly compact in N.

Proof. By Lemma 6.7, N has the κ-cover property.
Fix λ > κ and let

I = Pκ(λ) ∩ N.

Let F be the filter on I generated by the sets

Aσ = {τ ∈ I | σ ⊂ τ}

where σ ∈ Pκ(λ). Since N has the κ-cover property, F is a κ-complete filter, and since
κ is strongly compact, there is a κ-complete ultrafilter, U, on I such that F ⊂ U.

By the Weak Universality Theorem, and since N has the δ-approximation property,
U ∩ N ∈ N, and so κ is λ-strongly compact in N. ut

The local version of Theorem 6.44 (but only for κ > δ) is a corollary of Lemma 6.7
and Theorem 6.22. This verifies a conjecture of [3], but Lemma 6.7 is the only addi-
tional ingredient here (exactly as it is for Theorem 6.44 in the case that κ > δ).

Theorem 6.45 (Hamkins–Reitz). Suppose δ > ω is a regular cardinal, N is an inner
model of ZFC containing the ordinals, and that N has the δ-cover property and the
δ-approximation property. Suppose that λ > κ > δ and that κ is a λ-strongly compact
cardinal. Then κ is λ-strongly compact in N.

Proof. Fix a κ-complete fine ultrafilter U on Pκ(λ). Let

jU : V → MU � Ult0(V,U)
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be the ultrapower embedding. Thus there exists σ ∈ MU such that

jU[λ] ⊂ σ

and such that |σ|MU < jU(κ).
By Theorem 6.22:

(1.1) jU(N) ⊂ N,

(1.2) jU |(N ∩ Vα) ∈ N for all α < Ord.

By Lemma 6.7:

(2.1) For all regular cardinals ε > δ, N has the ε-approximation property and the
ε-cover property.

Therefore by the elementarity of jU , jU(N) has the jU(κ)-cover property in MU . This
implies that there exists τ ∈ jU(N) such that

(3.1) jU[λ] ⊂ σ ⊂ τ,

(3.2) |τ|MU < jU(κ).

Therefore jU |N witnesses in N that κ is λ-strongly compact. ut

The main focus of [7] is on weak extender models N of δ is supercompact which
satisfy a key additional requirement, see the definition of a Suitable Extender Model,
Definition 161 in [7]. This requirement implies that if σ ∈ Pδ(N) then N[σ] is a
generic extension of N for some partial order P ∈ N ∩ Vδ. This motivates the following
definition.

Definition 6.46. Suppose that δ > ω is a regular cardinal and that N is a transitive inner
model of ZFC containing the ordinals. Then N has the δ-genericity property if for each
σ ⊂ δ with |σ| < δ, there exists a partial order P ∈ N and an N-generic filter G ⊂ P
such that

σ ∈ N[G]

and such that |P| < δ. ut

Remark 6.47. The Ultimate-L Conjecture of [7] is arguably in essence just the con-
jecture that if there is an extendible cardinal then (provably) there is an inner model N
such that for some δ:

(1) N has the δ-approximation property, the δ-cover property, and the δ-genericity
property;

(2) N � V = Ultimate-L.
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Further this version is equivalent to the version where one requires in addition that
N ⊆ HOD, if one assumes there is a proper class of extendible cardinals.

In any case, this weaker version of the Ultimate-L Conjecture suffices for essentially
all of the main absoluteness results between N and V , and so for essentially all of the
main applications.

The only possible exception is the strong absoluteness of Ω-logic, see Theorem 6.67.
For this one really seems to need to match δ-genericity with being a weak extender
model of δ is supercompact, or at the very least with δ is supercompact in both N and
V , and not just with δ-approximation and δ-cover. ut

Remark 6.48. Suppose that δ is supercompact and that N has the δ-cover property and
the δ-approximation property. By Theorem 6.41, N need not be a weak extender model
of δ is supercompact.

However if one adds either that N has the δ-genericity property or that δ is super-
compact in N, then that counterexample no longer apples.

This is illustrated by Lemma 6.55 which strongly suggests that completely differ-
ent approach is needed to generalize Theorem 6.41 to the case where N also satisfies
the δ-genericity property. The reason is that the proof of Theorem 6.41 uses (linear)
iterations. ut

By the results of [7]:

Theorem 6.49. Suppose that N is a suitable extender model. Let δ be least such that N
is a weak extender model of δ is supercompact. Then N has the δ-genericity property.ut

Remark 6.50. Suppose that δ is strongly inaccessible. Then by Vopěnka’s theorem,
HOD has the δ-genericity property. ut

Remark 6.51. Suppose that δ is supercompact and that there is a proper class of
strongly inaccessible cardinals. Let V[G] be the backward Easton extension of V where
at each strongly inaccessible cardinal κ of V ,

V[Gκ+1] = V[Gκ][g]
where g is V[Gκ]-generic for adding a generic subset of κ (by initial segments).

Then in V[G], V is a weak extender model of δ is supercompact and V has the δ-
genericity property. But V[G] is not a set-generic extension of V . ut

We note the following trivial lemmas.

Lemma 6.52. Suppose that N is a transitive inner model of ZFC containing the ordi-
nals and that δ is an uncountable regular cardinal. Then the following are equivalent.

(1) N has the δ-cover property and the δ-genericity property.
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(2) For each σ ⊂ N with |σ| < δ, there exists a partial order P ∈ N and an N-generic
filter G ⊂ P such that

σ ∈ N[G]

and such that |P| < δ. ut

Lemma 6.53. Suppose that N is a weak extender model of δ is supercompact. Then the
following are equivalent.

(1) N has the δ-genericity property.

(2) For each σ ⊂ δ with |σ| < δ, there exists a partial order P ∈ N and an N-generic
filter G ⊂ P such that

σ ∈ N[G]. ut

Note that if r is a random real over L, then in L[r], L has the ω1-cover property and
the ω1-approximation property, but L does not have the ω1-genericity property in L[r]
since in L[r] there are no L-generic Cohen reals.

The following lemma follows from the results of [7] and this lemma shows that
the δ-genericity property does not follow from δ-cover property together with the δ-
approximation property, even if one assumes that N is a weak extender model of δ is
supercompact.

Remark 6.54. Lemma 6.55(2) identifies a new class of examples of weak extender
models of δ is supercompact, and hence of inner models N with the δ-approximation
property and the δ-cover property.

We show in Lemma 6.57 below that the conclusion Lemma 6.55(1) can fail without
the assumption that δ is supercompact. ut

Suppose E is an extender and that jE : V → ME � Ult(V, E) is the associated
elementary embedding. Then κE = CRT( jE) and ιE denotes the least cardinal γ such
that

ME =
{
jE( f )(s) | f ∈ V, s ∈ [γ]<ω

}
.

Lemma 6.55. Suppose that δ is supercompact and that E ∈ Vδ is an extender. Let

N = Ult0(V, E)

Then:

(1) N has the δ-cover property and the δ-approximation property.

(2) N is a weak extender model of δ is supercompact.

(3) If κE = ιE and if NκE ⊂ N then E is not set generic over N, and so N does not have
the δ-genericity property.
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Proof. (2) implies (1) by Theorem 6.26 and (2) follows immediately from Lemma 6.59
below, which is Corollary 148 on page 157 of [7]. Thus it suffices to prove (3). We
prove:

(1.1) V = N[E].

Let
kE : N[E]→ Ult0(N[E], E)

be the ultrapower embedding. Since NκE ⊂ N and since κE = ιE,

jE |Ord = kE |Ord.

Thus for each A ⊂ Ord,

A = {α ∈ Ord | kE(α) ∈ jE(A)}

and this implies A ∈ N[E]. Therefore V = N[E] and this proves (1.1).
By (1.1), E is not set-generic over N since there are cofinally many cardinals of N

which are not cardinals in V . By the hypothesis of the lemma, E ∈ Vδ, and so N does
not have the δ-genericity property. ut

Remark 6.56. Suppose that N is a weak extender model of δ is supercompact, κ < δ is
a measurable cardinal, and that U is a normal uniform ultrafilter on κ. Let (Mω,Uω) be
the ω-th iterate of (V,U) and let

j : V → Mω

be the associated iterated ultrapower embedding. Then

jU(Mω) = Mω

where
jU : V → MU � Ult0(V,U)

is the ultrapower embedding.
There is an extender E ∈ Vδ such that

Mω = Ult0(V, E).

Thus by Lemma 6.55, Mω is a weak extender model of δ is supercompact.
Let 〈κi : i < ω〉 be the critical sequence of jU . Thus:

(1) 〈κi : i < ω〉 is an Mω-generic Prikry sequence for j(U);

(2) (Mω[〈κi : i < ω〉])κ ⊂ Mω[〈κi : i < ω〉].

By (2) and the proof of Lemma 6.55(3), N does not have the δ-genericity property
where

N = Mω[〈κi : i < ω〉].

This in turn implies that Mω does not have the δ-genericity property.
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This example, which is from [7], shows that there can exist elementary embeddings

j : N → N

where N is a weak extender model of δ is supercompact, and so shows that the restric-
tion κE ≥ δ is necessary in the Universality Theorem. In fact with N as above one also
has Nω ⊂ N and much more.

An interesting question in the case that N is a weak extender model of δ is super-
compact for which there is an elementary embedding

j : N → N,

is whether N can ever have the δ-genericity property. ut

The following lemma shows that Lemma 6.55(1) essentially requires the hypothesis
that δ be supercompact. This raises a second question. How strong is the existence of
a nontrivial elementary embedding

j : N → N

such that N has the δ-cover property and the δ-approximation property, for some regular
cardinal δ > ω?

The only examples we know use Lemma 6.55(1), as described above.

Lemma 6.57. Suppose that U is a normal (uniform) ultrafilter on κ and that η > κ.
Then there is a generic extension V[G] of V such that the following hold.

(1) Vη ⊂ V in V[G].

(2) Let MG
U = Ult0(V[G],U). Then MG

U does not have the δ-approximation property in
V[G] for any δ < η.

Proof. Let λ > η be a strong limit cardinal such that cof(λ) = κ and such that

λ = |Vλ|.

Let
〈λα : α < κ〉

be an increasing cofinal closed sequence of cardinals below λ. For each α < κ, let Pα
be the partial order for adding a generic subset of λ+

α. Let

P = (Πα<κ Pα) /U.

The key claim is:

(1.1) P is (λ,∞)-distributive.

Since λ is singular it suffices to prove that for each γ < λ:

(2.1) P is (γ,∞)-distributive.
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Fix γ and clearly we can reduce to the case that γ+ < λ0 by replacing the sequence
〈λα : α < κ〉 with the sequence 〈λα0+α : α < κ〉 were λα0 > γ

+.
Fix a sequence 〈Dα : α < γ〉 of open dense subsets of P and fix

f ∈ Πξ<κ Pξ.

Each partial order Pξ is γ+-closed and so there a sequence

〈 fα : α ≤ γ〉

of functions in Πξ<κ Pξ such that:

(3.1) f0(ξ) ≤ f (ξ) in Pξ for all ξ < κ.

(3.2) For all α < β ≤ γ, fβ(ξ) ≤ fα(ξ) in Pξ for all ξ < κ.

(3.3) For all α < γ, fα/U ∈ Dα.

Thus
fγ/U ∈ Dα

for all α < γ and
fγ/U ≤ f /U

This proves (1.1).
Let

j : V → MU � Ult0(V,U)

be the ultrapower embedding.
Let G ⊂ P be V-generic and let

jG : V[G]→ MG
U � Ult0(V[G],U)

be the ultrapower embedding as computed in V[G].
Since Vλ ⊂ V in V[G]:

(4.1) jU = jGU |V .

(4.2) H(λ+)V = H(λ+)V[G].

(4.3) λ = sup( jU[λ]) = sup( jGU[λ]).

(4.4) (λ+)V = (λ+)V[G] = (λ+)MU = (λ+)MG
U .

Therefore by the definition of P, in V[G] there is an MG
U-generic filter for adding a

generic subset of λ+.
This implies that MG

U does not even have the λ+-approximation property in V[G],
and so MG

U does not have the δ-approximation property in V[G] for any δ < λ+.
The point of course is that for any inner model N, if N has the δ-approximation

property then N has the κ-approximation property for all κ > δ. ut
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A key question arises. Does the assumption that N is an inner model of ZFC which
satisfies the δ-approximation property and the δ-cover property, imply that N is “gen-
uinely” close to V? In particular:

(1) Are all large cardinals downward necessarily downward absolute to N, if there is a
proper class of such (or even stronger) large cardinals in V?

(2) Must every elementary embedding j : N → N be trivial?

(3) Is Ω-logic absolute between V and N?

If V is a generic extension of N then for all three questions, the answer is yes.
We have already answered the second question (negatively) if there is a supercom-

pact cardinal. Nevertheless, the universality theorems would seem to suggest that the
answer to the first question is still yes. But there is a serious issue here at the upper
regions of the large cardinal hierarchy.

For example, it is not clear if the existence of a proper class of λ for which the Axiom
I0 holds at λ must be downward absolute to N, or even that the Axiom I1 must hold in
N for some λ.

The δ-genericity property allows one to prove (assuming in addition that the δ-cover
and δ-approximation properties also hold) that the existence of a proper class of λ for
which the Axiom I0 holds at λ is downward absolute to N. It is open whether this
downward absolutness holds for all weak extender models of δ is supercompact.

The subtle aspect of this downward absoluteness is that the Axiom I0 can hold at
λ > δ while the Axiom I3 fails to hold at λ in N. This can happen even if N is a weak
extender model of δ is supercompact with the δ-genericity property.

By unpublished results of Scott Cramer, if Axiom I#
0 holds at λ then the Axiom I0

holds at γ for cofinally many γ < λ, where the Axiom I#
0 holds at ε if there is an

elementary embedding
j : L

(
(Vε+1)#

)
→ L

(
(Vε+1)#

)
such that CRT( j) < ε.

Therefore the following theorem yields the situation where one can have N with the
δ-approximation, δ-cover, and δ-genericity properties, the Axiom I0 holds at λ for a
proper class of λ, and for all λ if the Axiom I0 holds at λ then λ is not even ω-huge in
N, or even that for all cardinals λ, λ is not ω-huge in N.

Theorem 6.58. Suppose that Axiom I#
0 holds at λ. Then there is a generic extension

V[G] such that in V[G] the following hold.

(1) ωV
1 is countable and ωV

2 = ωV[G]
1 .

(2) Axiom I#
0 holds at λ.
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(3) V has the ωV[G]
1 -approximation property and the ωV[G]

1 -cover property.

(4) V has the ωV[G]
1 -genericity property.

(5) Suppose γ < λ and γ is an uncountable limit cardinal. Then cof(γ)V > ω. ut

Suppose that N is a weak extender model of δ is supercompact for some δ < λ. Note
that if Axiom I0 holds at λ but fails to hold in N at λ, then necessarily

N ∩ H(λ+) < L(Vλ+1).
This is because if N ∩ H(λ+) ∈ L(Vλ+1) then N ∩ H(λ+) must be definable in L(Vλ+1)
from N ∩ H(δ+), in which case

j(N ∩ H(λ+)) = N ∩ H(λ+)
for any elementary

j : L(Vλ+1)→ L(Vλ+1)

with CRT( j) > δ, and by Theorem 6.30 this implies j|(N ∩Vλ) ∈ N. This in turn implies
that there is an elementary embedding

jN : L(N ∩ Vλ+1)→ L(N ∩ Vλ+1)
which is Σ∼2-definable in N, [7]. This contradicts that the Axiom I0 does not hold at λ
in N.

This example also shows that while the Definability Theorem can be refined to show,
assuming N is a weak extender model of δ is supercompact and that δ < λ, that
N ∩ H(λ++) is definable in H(λ++) from N ∩ H(δ+), this improvement is best possi-
ble.

The conclusion (2) of Lemma 6.55 is a special case of the following lemma which is
an immediate corollary of Lemma 147 on page 156 in [7]. Lemma 6.59 is the generic
version of Lemma 6.55.

If δ is supercompact then δ is a limit of Woodin cardinals. Therefore (E,P) can be
chosen to satisfy the hypothesis of Lemma 6.59 with any given uncountable regular
cardinal of Vδ as the critical point associated to E, and much more.

Lemma 6.59. Suppose that δ is supercompact, G is V-generic for some partial order
P ∈ Vδ, and that E ∈ V[G]δ is a V-extender. Let

N = Ult0(V, E)
Then in V[G], N is a weak extender model of δ is supercompact. ut

A stronger version of Lemma 6.59 is the following and the proof is the same.

Lemma 6.60. Suppose that N is a weak extender model of δ is supercompact and that
N has the δ-genericity property. Suppose E ∈ Vδ is an N-extender. Then Ult0(N, E) is
is a weak extender model of δ is supercompact. ut
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Lemma 6.59 (applied to Vλ) combined with the Universality Theorem, Theo-
rem 6.30, yields the following theorem, which is Theorem 177 on page 179 in [7].

Theorem 6.61. Suppose λ is a singular strong limit cardinal, (Vλ+1)# exists, P ∈ Vλ,
and that

V[G] � “The Axiom I0 holds at λ”

where G ⊂ P is V-generic. Then one of the following hold.

(1) The Axiom I0 holds in V at λ.

(2) For cofinally many λ∗ < λ, the Axiom I0 holds in V at λ∗.

Proof. We sketch the proof which appeals to the generic elementary embeddings given
by the stationary tower Q<δ associated to δ where δ is a Woodin cardinal, [4].

Fix a Woodin cardinal δ < λ such that P ∈ Vδ. Let g ⊂ Q<δ and let

Jg : V → Mg ⊂ V[g]

be the associated generic elementary embedding. Thus

(1.1) CRT(Jg) = ωV
1 .

(1.2) (Mg)ω ⊂ Mg in V[g].

(1.3) Mg ∩ V[g]λ+1 ∈ L(V[g]λ+1).

Thus since (Vλ+1)# exists in V:

(2.1) (Mg ∩ V[g]λ+1)# exists in V[g],

(2.2) (Mg ∩ V[g]λ+1)# ∈ Mg.

Choose G ⊂ P such that

(3.1) G ∈ V[g] and G is V-generic,

(3.2) the Axiom I0 holds at λ in V[G].

Let
j : L(V[G]λ+1)→ L(V[G]λ+1)

witness that Axiom I0 holds at λ in V[G]. By replacing j by a finite iterate if necessary,
we can assume that CRT( j) > δ. By factoring, V[G][g] is a generic extension of V[G]
for some V[G]-generic filter on some partial order P ∈ V[G]CRT( j).

Thus j lifts in V[G] to an elementary embedding

jg : L(V[G]λ+1)[g]→ L(V[G]λ+1)[g].

Let κ0 = CRT( j). Since κ > δ, V has the κ0-cover and κ0-approximation property in
V[g], and so Vλ has the κ0-cover and κ0-approximation property in V[g]λ.
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The elementary embedding jg witnesses that κ0 is supercompact in V[g]λ and so by
Hamkin’s Universality theorem, κ0 is supercompact in Vλ.

But Vλ is definable in V[g]λ from parameters in V[g]κ0 and so κ0 is a limit of super-
compact cardinals. Fix δ < κ < κ0 such that κ is supercompact in Vλ.

Therefore by Lemma 6.59,

(4.1) Mg ∩ V[g]λ is a weak extender model of κ is supercompact in V[g]λ.

By Theorem 6.19,

(5.1) For all α < λ, jg|(Mg ∩ V[g]α) ∈ Mg.

(5.2) For all α < λ, jg(Mg ∩ V[g]α) = Mg ∩ V[g] jg(α).

Since Mω
g ⊂ Mg in V[g]

jg|(Mg ∩ V[g]λ) ∈ Mg.

Thus by (1.3),
jg(Mg ∩ V[g]λ+1) = Mg ∩ V[g]λ+1

and so jg restricts to define an elementary embedding

kg : L
(
Mg ∩ V[g]λ+1

)
→ L

(
Mg ∩ V[g]λ+1

)
such that

kg|
(
Mg ∩ V[g]λ+1

)
∈ Mg.

For each n < ω, let Tn be the theory of

L
(
Mg ∩ V[g]λ+1

)
with parameters from M[g] ∩ V[g]λ+1 and first n-many Silver indiscernables of
L
(
Mg ∩ V[g]λ+1

)
(coded naturally as a subset of Mg ∩ V[g]λ+1).

Clearly Tn does not depend on the choice of Silver indiscernibles and so kg(Tn) = Tn

for all n < ω. Thus
kg| (M[g] ∩ V[g]λ+1)

together 〈Tn : n < ω〉 induces and elementary embedding

k∗g : L
(
Mg ∩ V[g]λ+1

)
→ L

(
Mg ∩ V[g]λ+1

)
such that k∗g ∈ Mg.

Thus

(6.1) The Axiom I0 holds at λ in Mg.

We now appeal to the generic elementary embedding

Jg : V → Mg ⊂ V[g].

If Jg(λ) = λ then the Axiom I0 holds at λ in V , and if

Jg(λ) > λ
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then since
λ = sup(JG[λ]),

necessarily, for cofinally many λ∗ < λ, the Axiom I0 holds in V at λ∗. This proves the
theorem. ut

We prove a preliminary and technical version of the theorem on the downward abso-
luteness of the Axiom I0 to inner models with the δ-cover property, the δ-approximation
property, and the δ-genericity property.

Theorem 6.62. Suppose that N has the δ-cover property, the δ-approximation property,
and the δ-genericity property. Suppose that λ > δ, the Axiom I0 holds at λ, and that
(Nλ+1)# exists. Then one of the following hold.

(1) N � “(Vλ+1)# exists and the Axiom I0 holds at λ”.

(2) N � “For cofinally many λ∗ < λ, the Axiom I0 holds at λ∗”.

Proof. Let
j : L(Vλ+1)→ L(Vλ+1)

be an elementary embedding with CRT( j) < λ. By replacing j with a finite iterate we
can assume δ < CRT( j).

Let
G ⊂ Coll(ω, <δ)

be V-generic and let
RG = (R)V[G].

Let H be V(RG)-generic for
(
Coll(ωV(RG)

1 ,RG)
)V(RG)

. Thus

V(RG)[H] � Axiom of Choice

(and so V(RG)[H] = V[G∗] where G∗ is V-generic for a (canonical) partial order P ∈ V).
Thus since N has the δ-cover property and the δ-genericity property:

(1.1) N(RG) is a symmetric generic extension of N for Coll(ω, <δ);

(1.2) N(RG) is closed under ω-sequences in V[G];

(1.3) H is N(RG)-generic for
(
Coll(ωN(RG)

1 ,RG)
)N(RG)

;

(1.4) N(RG)[H] is closed under ω-sequences in V(RG)[H].

The elementary embedding j lifts to an elementary embedding

jGH : L(Vλ+1)(RG)[H]→ L(Vλ+1)(RG)[H].

We come to the key points:
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(2.1) Since CRT( j) > δ, by the Definability Theorem, j(N ∩ Vλ) = N ∩ Vλ.

(2.2) Since N(RG)[H] is closed under ω-sequences in V(RG)[H],

N(RG)[H]λ+1 ∈ L(Vλ+1)(RG)[H].

Thus
j (N(RG)[H]λ+1) = j (N(RG)[H]λ+1)

and so j restricts to define an embedding

kG
H : L (N(RG)[H]λ+1)→ L (N(RG)[H]λ+1) .

Here the distinction between

L (N(RG)[H]λ+1) = (L(Vλ+1))N(RG)[H]

versus L(Nλ+1)[RG][H] is critical.
Since N has the δ-cover property, δ < λ, and since (Nλ+1)# exists, necessarily

(Nλ+1)# ∈ N.

This implies
(N(RG)[H]λ+1)# ∈ N(RG)[H].

Now arguing exactly as on page 69 in the proof of Theorem 6.61, letting Tn be the
theory of

L (N(RG)[H]λ+1)

with parameters from
N(RG)[H]λ+1 ∪ I

where I is the set of the first n Silver indiscernibles of L (N(RG)[H]λ+1), the Axiom I0

holds at λ in N(RG)[H].
Therefore again since (Nλ+1)# ∈ N, by Theorem 6.61, one of the following must

hold.

(3.1) N � “(Vλ+1)# exists and the Axiom I0 holds at λ”.

(3.2) N � “For cofinally many λ∗ < λ, the Axiom I0 holds at λ∗”. ut

As an immediate corollary to Theorem 6.62 we obtain the following theorem. As
we have already noted, without the assumption that N has the δ-genericity property, it
is open whether the conclusion holds even if one assumes that N is a weak extender
model of δ is supercompact.

Theorem 6.63. Suppose that N has the δ-cover property, the δ-approximation property,
and the δ-genericity property. Suppose that the Axiom I0 holds at λ, for a proper class
of λ. Then:

N � “The Axiom I0 holds at λ, for a proper class of λ”. ut
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Another application of the δ-genericity property concerns the correctness of N with
respect to Ω-logic and we prove a very strong version of this.

The proof requires yet another variation of the universality theorem. The following
definition simplifies the statement of that variation.

Definition 6.64. Suppose that E is an extender, δ is a cardinal, and that

ME � Ult0(V, E).

Then E is δ-closed if (LTH(E))δ ⊂ ME. ut

Note that if δ ≤ κE and E is δ-closed then Mδ
E ⊂ ME where ME = Ult0(V, E).

Therefore if E∗ is the extender of length γ given by the ultrapower embedding

jE : V → ME � Ult0(V, E),

then E∗ is δ-closed.
One can strengthen the properties of Goldberg’s counterexample, see Theorem 6.41,

and obtain the following. Note that assuming δ is supercompact, conclusion (3) in
Theorem 6.65 implies that if N has the δ-cover property then N must have the δ-
approximation property. Given that δ is supercompact, it is a little surprising that N
can satisfy (3) and yet have δ be the least measurable cardinal of N.

Theorem 6.65. Suppose that δ is supercompact. Then there exists an inner model N
such that:

(1) N has the δ-approximation property and the δ-cover property.

(2) δ is the least measurable cardinal of N.

(3) Suppose E is an extender with κE ≥ δ such that E is κ-closed for all κ < δ. Then
E ∩ N ∈ N. ut

Theorem 6.66(1) is just Theorem 6.22. Theorem 6.66(2) improves Theorem 6.66(1)
by showing that the induced embedding on N is itself an (internal) N-ultrapower em-
bedding by an N-extender. Finally Theorem 6.66(3) and Theorem 6.66(4) generalize
this to towers of ultrapower embeddings by extenders, defined in the natural sense. The
latter is the main part of the theorem.

Theorem 6.66. Suppose δ > ω is a regular cardinal, N is an inner model of ZFC
containing the ordinals, and that N has the δ-cover property and the δ-approximation
property. Suppose:

(i) E is a δ-closed extender such that κE > δ and that

jE : V → ME � Ult0(V, E)

is the ultrapower embedding.
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(ii) F is a δ-closed extender such that κF > δ and that

jF : V → MF � Ult0(V, F)

is the ultrapower embedding.

(iii) Suppose that
π : ME → MF � Ult0(V, F)

is an elementary embedding with CRT(π) > δ such that

jF = π ◦ jE.

Then:

(1) jE(N) ⊂ N and jE |(N ∩ Vγ) ∈ N for all γ < Ord.

(2) Suppose that γ > LTH(E) is a strong limit cardinal. Let E∗ be the N-extender of
length γ given by jE |N and let

jN
E∗ : N → NE∗ � Ult0(N, E∗)

be the ultrapower embedding. Then

(a) NE∗ = jE(N),

(b) jN
E∗ = jE |N.

(3) π ◦ jE(N) ⊂ N and π|( jE(N) ∩ Vγ) ∈ N for all γ < Ord.

(4) Suppose that γ > LTH(F) is a strong limit cardinal such that

γ > sup(π[LTH(E)]).

Let E∗ be the N-extender of length γ given by jE |N and let

jN
E∗ : N → NE∗ � Ult0(N, E∗)

be the ultrapower embedding. Let F∗ be the N extender of length γ given by jF |N
and let

jN
F∗ : N → NF∗ � Ult0(NE∗, F∗)

be the ultrapower embedding. Let H be the NE∗-extender of length γ given by π|NE∗

and let
π∗ : NE∗ → NE∗

H � Ult0(NE∗,H)

be the ultrapower embedding. Then

(a) NE∗ = jE(N) and jN
E∗ = jE |N.

(a) NF∗ = jF(N) and jN
F∗ = jF |N.

(c) H ∈ N, NE∗
H = jF(N), and π∗ = π|NE∗.
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Proof. (1) follows immediately by Theorem 6.22. We prove (2). Let

k : NE∗ → jE(N)

be the natural factor embedding. To prove (2), it suffices to prove:

(1.1) k is the identity.

Assume toward a contradiction that (1.1) fails. Then

CRT(k) ≥ γ.

By Lemma 6.7, since N has the δ-cover property and the δ-approximation property,
N has the ε-cover property and the ε-approximation property, for all regular cardinals
ε > δ. Therefore N has the (ι+E)-cover property.

We have that
jE(N) =

{
jE( f )(α) | f : ιE → N, α < jE(ι+E)

}
.

Further jE(ιE) < γ since LTH(E) < γ and since γ is a strong limit cardinal. Therefore,
there exists

f : ιE → Ord

such that CRT(k) = jE( f )(α) for some α < γ. Let

σ = range( f )

and choose τ ∈ N such that σ ⊂ τ and |τ| ≤ ιE. Thus

CRT(k) ∈ jE(τ).

But
sup( jE[γ]) = γ

and so
jE(τ) = k[ jN

E∗(τ)]

and this is a contradiction. This proves (1.1).
We finish by proving (4) which implies (3). By (2) applied to both E and F:

(2.1) NE∗ = jE(N) and jN
E∗ = jE |N.

(2.2) NF∗ = jF(N) and jN
F∗ = jF |N.

Thus it suffices to just prove (4)(c). Since

jF = π ◦ jE

and since
γ = sup( jE[γ]) = sup( jF[γ]),

by (2.1) and (2.2) it suffices to just prove that H ∈ N.
Note that since γ = sup( jF[γ]), necessarily H ⊂ NE∗ ∩ H(γ). Thus since N has the

δ-approximation property and since NE∗ ⊂ N, it suffices to prove
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(3.1) H ∩ σ ∈ N for all σ ⊂ NE∗ ∩ H(γ) such that |σ| < δ.

Fix σ ⊂ NE∗ ∩H(γ) such that |σ| < δ and such that σ ∈ N. Choose τ ∈ NE∗ such that
σ ⊂ τ and |τ| < δ. The covering set τ exists since NE = NE∗ = jE(N),

Mδ
E ⊂ ME,

and since jE(N) has the δ-cover property in ME.
Thus π(τ) = π[τ]. Therefore π[τ] ∈ NF∗ and so π[σ] ∈ N since τ ∈ N. This implies

that H ∩ σ ∈ N which proves (3.1). ut

The following theorem follows from Theorem 185 of [7], but only by assuming in
addition that N is a suitable extender model for which there is a cardinal κ > δN such
that κ is (ω+2)-extendible, where δN is the least δ such that N is a weak extender model
of δ is supercompact.

Thus Theorem 6.67 strengthens Theorem 185 of [7] by reducing the hypothesis to
essentially the best possible. Note that the conclusion Theorem 6.67(1) implies that N
has the δ-genericity property.

Theorem 6.67 implies, by the generic invariance of the Ω-proof relation, that for all
sentences φ and for all theories T ∈ N, V � “T `Ω φ” if and only if N � “T `Ω φ”.

Theorem 6.67. Suppose that there is a proper class of Woodin cardinals, N is a weak
extender model of δ is supercompact and that N has the δ-genericity property. Suppose

G ⊂ Coll(ω, <δ)

is V-generic. Then in V[G] the following hold where RG = RV[G] and Γ∞G = (Γ∞)V[G].

(1) N(RG) is a symmetric extension of N for Coll(ω, <δ).

(2) Γ∞G = (Γ∞)N(RG) = (Γ∞)N(RG)[H] where H ⊂ Coll(ωV[G]
1 ,RG) is V[G]-generic.

Proof. (1) is an immediate consequence of the assumption that N has the δ-genericity
property, and the characterization of when N(RG) is a symmetric extension of N for
Coll(ω, <δ).

Thus since N has the δ-cover property:

(1.1) Nω ⊂ N(RG) in V[G].

Since δ is supercompact in V and since there is a proper class of Woodin cardinals:

(2.1) Γ∞G is the set of all A ∈ P(RG) ∩ V(RG) such that A is Suslin and co-Suslin in
V(RG).

Similarly, since δ is supercompact in N and since in N there is a proper class of Woodin
cardinals,
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(3.1) (Γ∞)N(RG) is the set of all A ∈ P(RG)∩N(RG) such that A is Suslin and co-Suslin
in N(RG).

(3.2) (Γ∞)N(RG) = (Γ∞)N(RG)[H] where H ⊂ Coll(ωV[G]
1 ,RG) is V[G]-generic.

(2.1) and (3.1) follow by the Derived Model Theorem which is from the general theory
of AD+, and (3.2) follows by the Martin-Steel Theorem, [6].

For (3.2), one can also simply use the characterization of the universally Baire sets
as those sets which are κ-weakly homogeneously Suslin for all κ. This characterization
holds whenever there is a proper class of Woodin cardinals.

Thus to prove (2), it suffices to prove:

(4.1) Suppose A ∈ Γ∞G . Then A is Suslin and co-Suslin in N(RG).

Suppose that
A ∈ Γ∞G .

By the Martin-Steel Theorem [6], and since there is a proper class of Woodin cardinals:

(5.1) For all γ > δ, A is γ-homogeneously Suslin in V[G].

Fix γ > δ. Let
πA : ω<ω → V[G]

witness that A is γ-homogeneously Suslin. Thus:

(6.1) For each s ∈ ω<ω, πA(s) is a γ-complete ultrafilter on ηdom(s) for some η.

(6.2) For each s ∈ ω<ω and for each k < dom(s), πA(s) projects to πA(s|k).

(6.3) For each x ∈ RG, x ∈ A if and only if the tower 〈πA(x|k) : k < ω〉 is wellfounded.

The key point is:

(7.1) For each s ∈ ω<ω, πA(s) is generated by πA(s) ∩ V and πA(s) ∈ V .

For each s ⊂ t in ω<ω define:

(8.1) Ms � Ult0(V, πA(s))

(8.2) js : V → Ms is the ultrapower embedding.

(8.3) j(s,t) : Ms → Mt is the factor embedding.

(8.4) Ns = js(N).

(8.5) k(s,t) = j(s,t)|Ns.
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Thus by Theorem 6.66, there exists

eA : ω<ω → N

and
ρA : ω<ω × ω<ω → N

such that for all s ⊂ t in ω<ω:

(9.1) eA(s) is an N-extender, Ns = Ult0(N, eA(s)), and jN
eA(s) = js|N.

(9.2) Let jN
(s,t) : Ns → Nt � Ult0(Ns, ρA(s, t)) be the ultrapower embedding. Then:

jN
s,t = k(s,t).

By (1.1),
(eA, ρA) ∈ N(RG).

By (6.3) and the agreements specified in (9.1)–(9.2), this implies that RG\A is κ-Suslin
in N(RG) for some κ.

Similarly since RG\A ∈ Γ∞G , A is κ-Suslin in N(RG) for some κ.
This proves (4.1). ut

Remark 6.68. Suppose that δ is supercompact, there is a proper class of Woodin car-
dinals, and that G ⊂ Coll(ω, <δ) is V-generic. Then by Theorem 4.9, Γ∞ is very nearly
sealed in V[G].

As a corollary, if N is a weak extender model of δ is supercompact and N has the
δ-genericity property, then by Theorem 4.9 and Theorem 6.67, the first order theory of
L(Γ∞,R) after sealing, is the same computed in V or in N.

This absoluteness is the starting point for the formulation of stronger versions of the
Ultimate-L Conjecture. ut
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