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Description

Fix a bounded set Ω ⊂ Zd .

Let ∂Ω = {x ∈ Zd \ Ω : ‖x − y‖ = 1 for some y ∈ Ω} denote the boundary.

We then define the law over spins σ ∈ {±1}Ω with + boundary conditions as

P+
Ω (σ) =

1

Z +
Ω

exp (−βHΩ(σ))
∏
x∈∂Ω

1{σx=1}

where

HΩ(σ) = −
∑
x∼y

σxσy , and Z +
Ω =

∑
σ

exp (−βHΩ(σ))
∏
x∈∂Ω

1{σx=1}

are the Hamiltonian and the partition function respectively.

Consider the ferromagnetic case; that is, the inverse temperature β ≥ 0.

We can consider different boundary conditions by modifying slightly.
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Infinite volume limits

It is well known that as Ω ↑ Zd the sequence of probability measures P+
Ω has an infinite

volume limit P+
Zd .

The limiting measure depends on β and, in particular,

E +
Zd [σ0] > 0 ⇐⇒ β > βc

where

1) if d = 1 then βc =∞;

2) if d ≥ 2 then βc ∈ (0,∞).

Of course, this depends on the boundary conditions as well.

A similar result holds for the model with − boundary conditions and we see that

E +
Zd [σ0] = E−Zd [σ0] ⇐⇒ β ≤ βc .

There is a unique infinite volume limit if and only if β ≤ βc .

We say there is a first order phase transition for β > βc .

Adam Bowditch, NUS The two dimensional random field Ising model SASI, May 2019 4 / 18



Infinite volume limits

It is well known that as Ω ↑ Zd the sequence of probability measures P+
Ω has an infinite

volume limit P+
Zd .

The limiting measure depends on β and, in particular,

E +
Zd [σ0] > 0 ⇐⇒ β > βc

where

1) if d = 1 then βc =∞;

2) if d ≥ 2 then βc ∈ (0,∞).

Of course, this depends on the boundary conditions as well.

A similar result holds for the model with − boundary conditions and we see that

E +
Zd [σ0] = E−Zd [σ0] ⇐⇒ β ≤ βc .

There is a unique infinite volume limit if and only if β ≤ βc .

We say there is a first order phase transition for β > βc .

Adam Bowditch, NUS The two dimensional random field Ising model SASI, May 2019 4 / 18



Infinite volume limits

It is well known that as Ω ↑ Zd the sequence of probability measures P+
Ω has an infinite

volume limit P+
Zd .

The limiting measure depends on β and, in particular,

E +
Zd [σ0] > 0 ⇐⇒ β > βc

where

1) if d = 1 then βc =∞;

2) if d ≥ 2 then βc ∈ (0,∞).

Of course, this depends on the boundary conditions as well.

A similar result holds for the model with − boundary conditions and we see that

E +
Zd [σ0] = E−Zd [σ0] ⇐⇒ β ≤ βc .

There is a unique infinite volume limit if and only if β ≤ βc .

We say there is a first order phase transition for β > βc .

Adam Bowditch, NUS The two dimensional random field Ising model SASI, May 2019 4 / 18



Infinite volume limits

It is well known that as Ω ↑ Zd the sequence of probability measures P+
Ω has an infinite

volume limit P+
Zd .

The limiting measure depends on β and, in particular,

E +
Zd [σ0] > 0 ⇐⇒ β > βc

where

1) if d = 1 then βc =∞;

2) if d ≥ 2 then βc ∈ (0,∞).

Of course, this depends on the boundary conditions as well.

A similar result holds for the model with − boundary conditions and we see that

E +
Zd [σ0] = E−Zd [σ0] ⇐⇒ β ≤ βc .

There is a unique infinite volume limit if and only if β ≤ βc .

We say there is a first order phase transition for β > βc .

Adam Bowditch, NUS The two dimensional random field Ising model SASI, May 2019 4 / 18



Disorder

Is this picture changed by the addition of a small random external field?

For ω = (ωx)x∈Zd and ε > 0 define the disordered Hamiltonian by

Hε,ωΩ (σ) = −
∑
x∼y

σxσy − ε
∑
x∈Ω

ωxσx .

Suppose ω is an i.i.d. family of standard Gaussian random variables, then

Bricmont and Kupiainen (1988)

For d ≥ 3, β sufficiently large and ε sufficiently small, there is a first order phase
transition.

Aizenman and Wehr (1990)

For d ≤ 2, any ε > 0 and almost every ω, there is a unique infinite volume limit.
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Mesh refinement

Fix a bounded, simply connected domain with piecewise smooth boundary Ω ⊂ Rd .

For a > 0, define Ωa := Ω ∩ aZd and Pa
Ω := PΩa .

For the remainder of the talk we restrict to d = 2 at β = βc = log(1 +
√

2)/2.

In 1984 Belavin, Polyakov and Zamolodchikov conjectured that the scaling limit of the
Ising model at criticality should be conformally invariant.

Loosely, for any conformal map ϕ : Ω→ Ω′

scaling limit of the model on Ω′ = ϕ(scaling limit of the model on Ω).

In 2006 Smirnov introduced fermionic observables and established conformal covariance
properties that have led to much recent progress.
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Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points u, v ∈ ∂Ω and set σx = −1 for x in the boundary arc
(u, v) and 1 in the boundary arc (v , u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the
left and −1 on the right.

Chelkak, Duminil-Copin, Hongler, Kemppainen and Smirnov (2014)

Consider the critical Ising model with Dobrushin boundary. The unique Ising interface
converges weakly to the chordal SLE(3).

Benoist and Hongler (2016+)

Consider the critical Ising model with + boundary. The set of all Ising loops converges to
CLE(3).
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Spin correlations

An immediate consequence of the phase transition is that

lim
a→0

E a,+
Ω [σ0] = 0

however, we wish to obtain more precise estimates on the correlations.

Chelkak, Hongler and Izyurov (2015)

For any k ≥ 1 and x1, ..., xk ∈ Ω distinct,

lim
a→0

a−
k
8 E a,+

Ω

[
k∏

i=1

σxi

]
= Ckφ+

Ω(x1, ..., xk).

We have that

i) the convergence holds uniformly over x1, ..., xk of distance at least ε > 0 from each
other and the boundary;

ii) for any conformal map ϕ : Ω→ Ω′

φ+
Ω(x1, ..., xk) = φ+

Ω′(ϕ(x1), ..., ϕ(xk))
k∏

i=1

|ϕ′(xi )|.
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Magnetisation field

We define the magnetisation field as

Φa
Ω = a15/8

∑
x∈Ωa

σxδx .

Camia, Garban and Newman (2015)

Consider the critical Ising model with + boundary. The magnetisation field Φa
Ω converges

in law to a limiting random distribution ΦΩ.

Moreover, for a conformal map ϕ : Ω→ Ω′ with inverse ψ : Ω′ → Ω, the pushforward
distribution ϕ ∗ ΦΩ has the same law as the random distribution |ψ′|15/8ΦΩ′ .

The field can be represented as

ΦΩ =
∑
j

ηjµ
FK
j

where ηj are i.i.d. signs and µFK
j are rescaled area measures associated to FK-Ising

clusters.
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Random field Ising model

Let ω = (ωx)x∈Z2 be i.i.d. with,

- E[ωx ] = 0;

- VarP(ωx) = 1;

- E[euωx ] <∞ for all u ∈ R.

For x ∈ Ωa, let λa = (λa
x)x∈Ωa and ha = (ha

x)x∈Ωa be deterministic.

For ω fixed we define the random field Ising model as

Pω,a,+Ω;λ,h (σ) =
exp

(∑
x∈Ωa

(λa
xωxa−1 + ha

x)σx

)
Zω,a,+

Ω;λ,h

Pa,+
Ω (σ)

where

Zω,a,+
Ω;λ,h = E a,+

Ω

[
exp

(∑
x∈Ωa

(λa
xωxa−1 + ha

x)σx

)]

is the random partition function.
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Partition functions

Using a high temperature expansion,

Zω,a,+
Ω;λ,h = cosh(λa

·ω·a−1 + ha
· )

Ωa
∑
I⊆Ωa

E a,+
Ω [σI

· ] tanh(λa
·ω·a−1 + ha

· )
I

≈ e
1
2 (‖λa‖2

l2
+‖ha‖2

l2
)
∑
I⊆Ωa

φ+
Ω(x I
· )aI/8(λa

·ω·a−1 + ha
· )

I .

Choose λa
x := a7/8λ(x) and ha

x := a15/8h(x) where λ, h ∈ C 1(Ω) are fixed with λ > 0 and

Z̃ω,a,+
Ω;λ,h := θaZω,a,+

Ω;λ,h where θa := e−
1
2
a−1/4‖λ‖2

L2 .

Caravenna, Sun and Zygouras (2017)

The rescaled partition function Z̃ω,a,+
Ω;λ,h converges in P-distribution to the Wiener chaos

expansion

ZW ,+
Ω;λ,h = 1 +

∞∑
n=1

Cn

n!

∫
· · ·
∫

Ωn

φ+
Ω(x1, ..., xn)

n∏
i=1

(λ(xi )W (dxi ) + h(xi )dxi )

where W is white noise and φ+
Ω is the spin correlation function.
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Magnetisation field I

Denote by µω,a,+Ω;λ,h , the quenched law over the magnetisation

Φa
Ω = a15/8

∑
x∈Ωa

σxδx .

Does the magnetisation still converge under the influence of the random field?

Let ϕ ∈ C∞c (Ω) and write ϕa
x := a15/8ϕ(x) then

Eω,a,+Ω;λ,h [exp (i 〈ϕ,Φa
Ω〉)] =

E a,+
Ω

[
exp

(∑
x∈Ωa

(λa
xω

a
x + ha

x + iϕa
x)σx

)]
Zω,a,+

Ω;λ,h

=
Zω,a,+

Ω;λ,h+iϕ

Zω,a,+
Ω;λ,h

.

We want to consider joint convergence of Z̃ω,a,+
Ω;λ,h+iϕ for ϕ ∈ C∞c . We should have

marginal limits

ZW ,+
Ω;λ,h+iϕ = 1 +

∞∑
n=1

Cn

n!

∫
· · ·
∫

Ωn

φ+
Ω(x1, ..., xn)

n∏
j=1

(λ(xj)W (dxj) + (h(xj) + iϕ(xj))dxj).
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x := a15/8ϕ(x) then

Eω,a,+Ω;λ,h [exp (i 〈ϕ,Φa
Ω〉)] =

E a,+
Ω

[
exp

(∑
x∈Ωa

(λa
xω

a
x + ha

x + iϕa
x)σx

)]
Zω,a,+

Ω;λ,h

=
Zω,a,+

Ω;λ,h+iϕ

Zω,a,+
Ω;λ,h

.

We want to consider joint convergence of Z̃ω,a,+
Ω;λ,h+iϕ for ϕ ∈ C∞c . We should have

marginal limits

ZW ,+
Ω;λ,h+iϕ = 1 +

∞∑
n=1

Cn

n!

∫
· · ·
∫

Ωn

φ+
Ω(x1, ..., xn)

n∏
j=1

(λ(xj)W (dxj) + (h(xj) + iϕ(xj))dxj).
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Magnetisation field II

Write

W ω,a = a
∑
x∈Ωa

ωxa−1δx and W ω,a
ψ = 〈W ω,a, ψ〉 .

Then, W ω,a converges in P-distribution to white noise W .

B, Caravenna, Sun and Zygouras (2019+)

Let A,B ⊂ C∞c (Ω) be finite. Then,
(

(Z̃ω,a,+
Ω;λ,h+iϕ)ϕ∈A, (W ω,a

ψ )ψ∈B
)

converges in

P-distribution to
(

(ZW ,+
Ω;λ,h+iϕ)ϕ∈A, (Wψ)ψ∈B

)
as a→ 0.

In particular, µω,a,+Ω;λ,h converges in P-distribution to a random probability measure µW ,+
Ω;λ,h as

a→ 0.

Furthermore, this shows that W 7−→ µW ,+
Ω;λ,h is a well defined probability map.
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Relation to the case without disorder I

B, Caravenna, Sun and Zygouras (2019+)

For P-a.e. W , the probability measure µW ,+
Ω;λ,h is singular with respect to µ+

Ω .

Let FN := σ

({〈
Φ, λ21BN

i,j

〉}N

i,j=1

)
where {BN

i,j}Ni,j=1 is a partition of Ω.

It suffices to show that for P-a.e. W ,

RN := ZW ,+ dµW ,+

dµ+

∣∣∣∣
FN

converges to 0 in µ+ probability.

In particular, it suffices to show that

lim
N→∞

E
[
E +
[
(RN)1/2

]]
= 0.
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Relation to the case without disorder II

Using Fatou’s lemma and Skorohod’s representation it suffices to show that

lim
N→∞

lim
a→0

E
[
E +
[
(Ra

N)1/2
]]

= 0.

Let g a
N = g a

N(W ω,a,Φa) > 0 be such that for each fixed W ω,a we have that g a
N ∈ FN .

By the Cauchy-Schwarz inequality we have

E
[
E +
[
(Ra

N)1/2
]]

= E
[
E +
[
(g a

N)1/2(Ra
N)1/2(g a

N)−1/2
]]

≤ E
[
E + [g a

NRa
N ]
]1/2 E

[
E +
[
(g a

N)−1
]]1/2

≤ E +

[
E
[
g a
N Z̃

ω,a,+ dµω,a,+

dµa,+

]]1/2

E +
[
E
[
(g a

N)−1
]]1/2

.

We want to choose g a
N such that the first term converges to 0 and the second term is

bounded.
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Relation to the case without disorder III

We now consider the change of measure P̃ on the disorder defined by

dP̃
dP

(ωa) = (1 + o(1)) Z̃ω,a,+
dµω,a,+

dµa,+
.

By universality, we choose ωa
x to be i.i.d. N(0, 1) with respect to P.

Under P̃ for σ fixed, ωa
x are independent N(λa

xσx , 1) random variables.

We now choose a suitable choice of g a
N in such a way that

lim
N→∞

lim
a→0

E +
[
Ẽ [g a

N ]
]

= 0 and lim sup
N→∞

lim sup
a→0

E +
[
E
[
(g a

N)−1
]]
≤ C .

For some Ma
N ,K

a
N ↗∞, we choose

g a
N(W ω,a,Φa) := exp

(
−K a

N1{X a
N
≥Ma

N
}

)
where X a

N = X a
N(W ω,a,Φa) ≈ Z̃ω,a,+ dµω,a,+

dµa,+ and belongs to FN for each W ω,a fixed.
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Ẽ [g a

N ]
]

= 0 and lim sup
N→∞

lim sup
a→0

E +
[
E
[
(g a

N)−1
]]
≤ C .

For some Ma
N ,K

a
N ↗∞, we choose

g a
N(W ω,a,Φa) := exp

(
−K a

N1{X a
N
≥Ma

N
}

)
where X a

N = X a
N(W ω,a,Φa) ≈ Z̃ω,a,+ dµω,a,+

dµa,+ and belongs to FN for each W ω,a fixed.

Adam Bowditch, NUS The two dimensional random field Ising model SASI, May 2019 16 / 18



Relation to the case without disorder IV
We have

Z̃ω,a,+
dµω,a,+

dµa,+
= exp

 N∑
i,j=1

∑
x∈BN,a

i,j

σxλ
a
xω

a
x

 .

We wish to approximate σx by a random variable in FN ; for x ∈ BN,a
i,j we choose

ψN,a
i,j (Φa) :=


1, if

〈
Φa, λ21

B
N,a
i,j

〉
≥ 0,

−1, if

〈
Φa, λ21

B
N,a
i,j

〉
< 0

so that

X a
N(W ω,a,Φa) := exp

 N∑
i,j=1

ψN,a
i,j

∑
x∈BN,a

i,j

λa
xω

a
x

 .

Reduces the problem to showing that

lim
N→∞

lim
a→0

N∑
i,j=1

N−15/8

∣∣∣∣∣∣∣
∑

x∈BN,a
i,j

(Na)15/8λ(x)2σx

∣∣∣∣∣∣∣ =∞.
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