The two dimensional random field Ising model

Adam Bowditch, NUS

Based on joint work with F. Caravenna, R. Sun and N. Zygouras

SASI, May 2019

Contents

1 The Ising model

- i The basic model
- ii Infinite volume limits
- iii Introducing disorder

2 Recent progress

- i Ising loops and interfaces
- ii Spin correlations
- iii Magnetisation
- 3 The random field Ising model
 - i Disorder relevance
 - ii Convergence of partition functions
 - iii Magnetisation
 - iv Comparison with the pure model

Description

Fix a bounded set $\Omega \subset \mathbb{Z}^d$.

Let $\partial \Omega = \{x \in \mathbb{Z}^d \setminus \Omega : \|x - y\| = 1 \text{ for some } y \in \Omega\}$ denote the boundary.

Description

Fix a bounded set $\Omega \subset \mathbb{Z}^d$.

Let $\partial \Omega = \{x \in \mathbb{Z}^d \setminus \Omega : \|x - y\| = 1 \text{ for some } y \in \Omega\}$ denote the boundary.

We then define the law over spins $\sigma \in \{\pm 1\}^{\Omega}$ with + boundary conditions as

$$P_{\Omega}^{+}(\sigma) = \frac{1}{Z_{\Omega}^{+}} \exp\left(-\beta \mathcal{H}_{\Omega}(\sigma)\right) \prod_{x \in \partial \Omega} \mathbf{1}_{\{\sigma_{x}=1\}}$$

where

$$\mathcal{H}_{\Omega}(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y, \quad \text{and} \quad Z_{\Omega}^+ = \sum_{\sigma} \exp\left(-\beta \mathcal{H}_{\Omega}(\sigma)\right) \prod_{x \in \partial \Omega} \mathbf{1}_{\{\sigma_x = 1\}}$$

are the Hamiltonian and the partition function respectively.

Description

Fix a bounded set $\Omega \subset \mathbb{Z}^d$.

Let $\partial \Omega = \{x \in \mathbb{Z}^d \setminus \Omega : \|x - y\| = 1 \text{ for some } y \in \Omega\}$ denote the boundary.

We then define the law over spins $\sigma \in \{\pm 1\}^\Omega$ with + boundary conditions as

$$P_{\Omega}^{+}(\sigma) = \frac{1}{Z_{\Omega}^{+}} \exp\left(-\beta \mathcal{H}_{\Omega}(\sigma)\right) \prod_{x \in \partial \Omega} \mathbf{1}_{\{\sigma_{x}=1\}}$$

where

$$\mathcal{H}_{\Omega}(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y, \quad \text{and} \quad Z_{\Omega}^+ = \sum_{\sigma} \exp\left(-\beta \mathcal{H}_{\Omega}(\sigma)\right) \prod_{x \in \partial \Omega} \mathbf{1}_{\{\sigma_x = 1\}}$$

are the Hamiltonian and the partition function respectively.

Consider the ferromagnetic case; that is, the *inverse temperature* $\beta \ge 0$. We can consider different boundary conditions by modifying slightly.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

The limiting measure depends on β and, in particular,

$$E^+_{\mathbb{Z}^d}[\sigma_0] > 0 \iff \beta > \beta_c$$

where

- 1) if d = 1 then $\beta_c = \infty$;
- 2) if $d \geq 2$ then $\beta_c \in (0, \infty)$.

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

The limiting measure depends on β and, in particular,

$$E^+_{\mathbb{Z}^d}[\sigma_0] > 0 \iff \beta > \beta_c$$

where

- 1) if d = 1 then $\beta_c = \infty$;
- 2) if $d \geq 2$ then $\beta_c \in (0, \infty)$.

Of course, this depends on the boundary conditions as well.

A similar result holds for the model with - boundary conditions and we see that

$$\mathsf{E}^+_{\mathbb{Z}^d}[\sigma_0] = \mathsf{E}^-_{\mathbb{Z}^d}[\sigma_0] \iff \beta \leq \beta_c.$$

It is well known that as $\Omega \uparrow \mathbb{Z}^d$ the sequence of probability measures P_{Ω}^+ has an infinite volume limit $P_{\mathbb{Z}^d}^+$.

The limiting measure depends on β and, in particular,

$$E^+_{\mathbb{Z}^d}[\sigma_0] > 0 \iff \beta > \beta_c$$

where

- 1) if d = 1 then $\beta_c = \infty$;
- 2) if $d \geq 2$ then $\beta_c \in (0, \infty)$.

Of course, this depends on the boundary conditions as well.

A similar result holds for the model with - boundary conditions and we see that

$$E^+_{\mathbb{Z}^d}[\sigma_0] = E^-_{\mathbb{Z}^d}[\sigma_0] \iff \beta \leq \beta_c.$$

There is a *unique infinite volume limit* if and only if $\beta \leq \beta_c$. We say there is a *first order phase transition* for $\beta > \beta_c$.

Disorder

Is this picture changed by the addition of a small random external field? For $\omega = (\omega_x)_{x \in \mathbb{Z}^d}$ and $\varepsilon > 0$ define the disordered Hamiltonian by

$$\mathcal{H}^{arepsilon,\omega}_{\Omega}(\sigma) = -\sum_{x\sim y}\sigma_x\sigma_y - arepsilon\sum_{x\in\Omega}\omega_x\sigma_x.$$

Disorder

Is this picture changed by the addition of a small random external field? For $\omega = (\omega_x)_{x \in \mathbb{Z}^d}$ and $\varepsilon > 0$ define the disordered Hamiltonian by

$$\mathcal{H}^{arepsilon,\omega}_{\Omega}(\sigma) = -\sum_{x\sim y}\sigma_x\sigma_y - arepsilon\sum_{x\in\Omega}\omega_x\sigma_x.$$

Suppose ω is an i.i.d. family of standard Gaussian random variables, then

Bricmont and Kupiainen (1988)

For $d \ge 3$, β sufficiently large and ε sufficiently small, there is a first order phase transition.

Disorder

Is this picture changed by the addition of a small random external field? For $\omega = (\omega_x)_{x \in \mathbb{Z}^d}$ and $\varepsilon > 0$ define the disordered Hamiltonian by

$$\mathcal{H}^{arepsilon,\omega}_{\Omega}(\sigma) = -\sum_{x\sim y}\sigma_x\sigma_y - arepsilon\sum_{x\in\Omega}\omega_x\sigma_x.$$

Suppose ω is an i.i.d. family of standard Gaussian random variables, then

Bricmont and Kupiainen (1988)

For $d \ge 3$, β sufficiently large and ε sufficiently small, there is a first order phase transition.

Aizenman and Wehr (1990)

For $d \leq 2$, any $\varepsilon > 0$ and almost every ω , there is a unique infinite volume limit.

Mesh refinement

Fix a bounded, simply connected domain with piecewise smooth boundary $\Omega \subset \mathbb{R}^d.$

For a > 0, define $\Omega_a := \Omega \cap a\mathbb{Z}^d$ and $P_{\Omega}^a := P_{\Omega_a}$.

Mesh refinement

Fix a bounded, simply connected domain with piecewise smooth boundary $\Omega \subset \mathbb{R}^d$.

For a > 0, define $\Omega_a := \Omega \cap a\mathbb{Z}^d$ and $P_{\Omega}^a := P_{\Omega_a}$.

For the remainder of the talk we restrict to d = 2 at $\beta = \beta_c = \log(1 + \sqrt{2})/2$.

In 1984 Belavin, Polyakov and Zamolodchikov conjectured that the scaling limit of the lsing model at criticality should be conformally invariant.

Loosely, for any conformal map $\varphi:\Omega \to \Omega'$

scaling limit of the model on $\Omega' = \varphi(\text{scaling limit of the model on } \Omega)$.

Mesh refinement

Fix a bounded, simply connected domain with piecewise smooth boundary $\Omega \subset \mathbb{R}^d$.

For a > 0, define $\Omega_a := \Omega \cap a\mathbb{Z}^d$ and $P_{\Omega}^a := P_{\Omega_a}$.

For the remainder of the talk we restrict to d = 2 at $\beta = \beta_c = \log(1 + \sqrt{2})/2$.

In 1984 Belavin, Polyakov and Zamolodchikov conjectured that the scaling limit of the lsing model at criticality should be conformally invariant.

Loosely, for any conformal map $\varphi:\Omega\to\Omega'$

scaling limit of the model on $\Omega' = \varphi(\text{scaling limit of the model on } \Omega)$.

In 2006 Smirnov introduced fermionic observables and established conformal covariance properties that have led to much recent progress.

Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points $u, v \in \partial \Omega$ and set $\sigma_x = -1$ for x in the boundary arc (u, v) and 1 in the boundary arc (v, u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the left and -1 on the right.

Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points $u, v \in \partial \Omega$ and set $\sigma_x = -1$ for x in the boundary arc (u, v) and 1 in the boundary arc (v, u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the left and -1 on the right.

Chelkak, Duminil-Copin, Hongler, Kemppainen and Smirnov (2014)

Consider the critical Ising model with Dobrushin boundary. The unique Ising interface converges weakly to the chordal SLE(3).

Ising loops and interfaces

An Ising configuration corresponds uniquely to a loop configuration in the dual graph.

Dobrushin boundary: fix two points $u, v \in \partial \Omega$ and set $\sigma_x = -1$ for x in the boundary arc (u, v) and 1 in the boundary arc (v, u).

There is a unique Ising interface from u to v - a simple curve from u to v with +1 on the left and -1 on the right.

Chelkak, Duminil-Copin, Hongler, Kemppainen and Smirnov (2014)

Consider the critical Ising model with Dobrushin boundary. The unique Ising interface converges weakly to the chordal SLE(3).

Benoist and Hongler (2016+)

Consider the critical Ising model with + boundary. The set of all Ising loops converges to CLE(3).

Spin correlations

An immediate consequence of the phase transition is that

$$\lim_{a\to 0} E_{\Omega}^{a,+}[\sigma_0] = 0$$

however, we wish to obtain more precise estimates on the correlations.

Spin correlations

An immediate consequence of the phase transition is that

$$\lim_{a\to 0} E_{\Omega}^{a,+}[\sigma_0] = 0$$

however, we wish to obtain more precise estimates on the correlations.

Chelkak, Hongler and Izyurov (2015)

For any $k \geq 1$ and $x_1, ..., x_k \in \Omega$ distinct,

$$\lim_{a\to 0} a^{-\frac{k}{8}} E_{\Omega}^{a,+} \left[\prod_{i=1}^k \sigma_{x_i} \right] = \mathcal{C}^k \phi_{\Omega}^+(x_1,...,x_k).$$

Spin correlations

An immediate consequence of the phase transition is that

$$\lim_{a\to 0} E_{\Omega}^{a,+}[\sigma_0] = 0$$

however, we wish to obtain more precise estimates on the correlations.

Chelkak, Hongler and Izyurov (2015)

For any $k \geq 1$ and $x_1, ..., x_k \in \Omega$ distinct,

$$\lim_{a\to 0} a^{-\frac{k}{8}} E_{\Omega}^{a,+} \left[\prod_{i=1}^k \sigma_{x_i} \right] = \mathcal{C}^k \phi_{\Omega}^+(x_1,...,x_k).$$

We have that

- ii) for any conformal map $\varphi:\Omega
 ightarrow \Omega'$

$$\phi^+_\Omega(x_1,...,x_k) = \phi^+_{\Omega'}(\varphi(x_1),...,\varphi(x_k)) \prod_{i=1}^k |\varphi'(x_i)|.$$

Magnetisation field

We define the magnetisation field as

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Magnetisation field

We define the magnetisation field as

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Camia, Garban and Newman (2015)

Consider the critical Ising model with + boundary. The magnetisation field Φ^a_{Ω} converges in law to a limiting random distribution Φ_{Ω} .

Moreover, for a conformal map $\varphi: \Omega \to \Omega'$ with inverse $\psi: \Omega' \to \Omega$, the pushforward distribution $\varphi * \Phi_{\Omega}$ has the same law as the random distribution $|\psi'|^{15/8} \Phi_{\Omega'}$.

Magnetisation field

We define the magnetisation field as

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Camia, Garban and Newman (2015)

Consider the critical Ising model with + boundary. The magnetisation field Φ^a_{Ω} converges in law to a limiting random distribution Φ_{Ω} .

Moreover, for a conformal map $\varphi: \Omega \to \Omega'$ with inverse $\psi: \Omega' \to \Omega$, the pushforward distribution $\varphi * \Phi_{\Omega}$ has the same law as the random distribution $|\psi'|^{15/8} \Phi_{\Omega'}$.

The field can be represented as

$$\Phi_{\Omega} = \sum_{j} \eta_{j} \mu_{j}^{FK}$$

where η_j are i.i.d. signs and μ_j^{FK} are rescaled area measures associated to FK-Ising clusters.

Random field Ising model

Let $\omega = (\omega_x)_{x\in\mathbb{Z}^2}$ be i.i.d. with,

- $\mathbb{E}[\omega_x] = 0;$
- $\operatorname{Var}_{\mathbb{P}}(\omega_x) = 1;$
- $\mathbb{E}[e^{u\omega_x}] < \infty$ for all $u \in \mathbb{R}$.

Random field Ising model

Let $\omega = (\omega_x)_{x\in\mathbb{Z}^2}$ be i.i.d. with,

- $\mathbb{E}[\omega_x] = 0;$
- $\operatorname{Var}_{\mathbb{P}}(\omega_x) = 1;$
- $\mathbb{E}[e^{u\omega_x}] < \infty$ for all $u \in \mathbb{R}$.

For $x \in \Omega_a$, let $\lambda^a = (\lambda^a_x)_{x \in \Omega_a}$ and $h^a = (h^a_x)_{x \in \Omega_a}$ be deterministic.

For ω fixed we define the random field Ising model as

$$P_{\Omega;\lambda,h}^{\omega,a,+}(\sigma) = \frac{\exp\left(\sum_{x \in \Omega_a} (\lambda_x^a \omega_{xa^{-1}} + h_x^a) \sigma_x\right)}{Z_{\Omega;\lambda,h}^{\omega,a,+}} P_{\Omega}^{a,+}(\sigma)$$

where

$$Z^{\omega,a,+}_{\Omega;\lambda,h} = E^{a,+}_{\Omega} \left[\exp\left(\sum_{x \in \Omega_a} (\lambda^a_x \omega_{xa^{-1}} + h^a_x) \sigma_x \right) \right]$$

is the random partition function.

Partition functions

Using a high temperature expansion,

$$\begin{split} Z^{\omega,a,+}_{\Omega;\lambda,h} &= \cosh(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^{\Omega_a} \sum_{I \subseteq \Omega_a} E^{a,+}_{\Omega} [\sigma^I_{\cdot}] \tanh(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^I \\ &\approx e^{\frac{1}{2} \left(\|\lambda^a\|_{l^2}^2 + \|h^a\|_{l^2}^2 \right)} \sum_{I \subseteq \Omega_a} \phi^+_{\Omega} (x^I_{\cdot}) a^{I/8} (\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^I. \end{split}$$

Partition functions

Using a high temperature expansion,

$$Z_{\Omega;\lambda,h}^{\omega,a,+} = \cosh(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^{\Omega_a} \sum_{I \subseteq \Omega_a} E_{\Omega}^{a,+} [\sigma^I_{\cdot}] \tanh(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^I$$
$$\approx e^{\frac{1}{2} \left(\|\lambda^a\|_{l^2}^2 + \|h^a\|_{l^2}^2 \right)} \sum_{I \subseteq \Omega_a} \phi_{\Omega}^+ (X^I_{\cdot}) a^{I/8} (\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^I.$$

Choose $\lambda_x^{\mathfrak{a}} := \mathfrak{a}^{7/8}\lambda(x)$ and $h_x^{\mathfrak{a}} := \mathfrak{a}^{15/8}\mathfrak{h}(x)$ where $\lambda, h \in C^1(\Omega)$ are fixed with $\lambda > 0$ and $\tilde{Z}_{\Omega;\lambda,h}^{\omega,\mathfrak{a},\mathfrak{a},\mathfrak{a}} := \theta_{\mathfrak{a}} Z_{\Omega;\lambda,h}^{\omega,\mathfrak{a},\mathfrak{a},\mathfrak{a}}$ where $\theta_{\mathfrak{a}} := e^{-\frac{1}{2}\mathfrak{a}^{-1/4} \|\lambda\|_{L^2}^2}$.

Partition functions

Using a high temperature expansion,

$$egin{aligned} Z^{\omega,a,+}_{\Omega;\lambda,h} &= \cosh(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^{\Omega_a}\sum_{I\subseteq\Omega_a}E^{a,+}_{\Omega}[\sigma^I_{\cdot}]\tanh(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^I \ &pprox e^{rac{1}{2}\left(\|\lambda^a\|^2_{l^2}+\|h^a\|^2_{l^2}
ight)}\sum_{I\subseteq\Omega_a}\phi^+_{\Omega}(x^I_{\cdot})a^{I/8}(\lambda^a_{\cdot}\omega_{\cdot a^{-1}} + h^a_{\cdot})^I. \end{aligned}$$

Choose $\lambda_x^a := a^{7/8}\lambda(x)$ and $h_x^a := a^{15/8}h(x)$ where $\lambda, h \in C^1(\Omega)$ are fixed with $\lambda > 0$ and $\tilde{Z}_{\Omega;\lambda,h}^{\omega,a,+} := \theta_a Z_{\Omega;\lambda,h}^{\omega,a,+}$ where $\theta_a := e^{-\frac{1}{2}a^{-1/4}\|\lambda\|_{L^2}^2}$.

Caravenna, Sun and Zygouras (2017)

The rescaled partition function $\tilde{Z}^{\omega,a,+}_{\Omega;\lambda,h}$ converges in \mathbb{P} -distribution to the Wiener chaos expansion

$$\mathcal{Z}^{W,+}_{\Omega;\lambda,h} = 1 + \sum_{n=1}^{\infty} \frac{\mathcal{C}^n}{n!} \int \cdots \int_{\Omega^n} \phi_{\Omega}^+(x_1,...,x_n) \prod_{i=1}^n (\lambda(x_i)W(\mathrm{d} x_i) + h(x_i)\mathrm{d} x_i)$$

where W is white noise and ϕ_{Ω}^+ is the spin correlation function.

Magnetisation field I

Denote by $\mu^{\omega, {\rm a}, +}_{\Omega; \lambda, h},$ the quenched law over the magnetisation

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Does the magnetisation still converge under the influence of the random field?

Magnetisation field I

Denote by $\mu^{\omega,\mathbf{a},+}_{\Omega;\lambda,h},$ the quenched law over the magnetisation

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Does the magnetisation still converge under the influence of the random field? Let $\varphi \in C_c^{\infty}(\Omega)$ and write $\varphi_x^a := a^{15/8}\varphi(x)$ then

$$E_{\Omega;\lambda,h}^{\omega,a,+}\left[\exp\left(i\left\langle\varphi,\Phi_{\Omega}^{a}\right\rangle\right)\right] = \frac{E_{\Omega}^{a,+}\left[\exp\left(\sum_{x\in\Omega_{a}}\left(\lambda_{x}^{a}\omega_{x}^{a}+h_{x}^{a}+i\varphi_{x}^{a}\right)\sigma_{x}\right)\right]}{Z_{\Omega;\lambda,h}^{\omega,a,+}} = \frac{Z_{\Omega;\lambda,h+i\varphi}^{\omega,a,+}}{Z_{\Omega;\lambda,h}^{\omega,a,+}}$$

Magnetisation field I

Denote by $\mu^{\omega,\mathbf{a},+}_{\Omega;\lambda,h},$ the quenched law over the magnetisation

$$\Phi_{\Omega}^{a} = a^{15/8} \sum_{x \in \Omega_{a}} \sigma_{x} \delta_{x}.$$

Does the magnetisation still converge under the influence of the random field? Let $\varphi \in C_c^\infty(\Omega)$ and write $\varphi_x^a := a^{15/8}\varphi(x)$ then

$$E_{\Omega;\lambda,h}^{\omega,a,+}\left[\exp\left(i\left\langle\varphi,\Phi_{\Omega}^{a}\right\rangle\right)\right] = \frac{E_{\Omega}^{a,+}\left[\exp\left(\sum_{x\in\Omega_{a}}\left(\lambda_{x}^{a}\omega_{x}^{a}+h_{x}^{a}+i\varphi_{x}^{a}\right)\sigma_{x}\right)\right]}{Z_{\Omega;\lambda,h}^{\omega,a,+}} = \frac{Z_{\Omega;\lambda,h+i\varphi}^{\omega,a,+}}{Z_{\Omega;\lambda,h}^{\omega,a,+}}.$$

We want to consider joint convergence of $\tilde{Z}^{\omega,a,+}_{\Omega;\lambda,h+i\varphi}$ for $\varphi \in \mathcal{C}^{\infty}_{c}$. We should have marginal limits

$$\mathcal{Z}^{W,+}_{\Omega;\lambda,h+i\varphi} = 1 + \sum_{n=1}^{\infty} \frac{\mathcal{C}^n}{n!} \int \cdots \int_{\Omega^n} \phi^+_{\Omega}(x_1,...,x_n) \prod_{j=1}^n (\lambda(x_j)W(\mathrm{d} x_j) + (h(x_j) + i\varphi(x_j)) \,\mathrm{d} x_j).$$

Magnetisation field II

Write

$$W^{\omega,a} = a \sum_{x \in \Omega_a} \omega_{xa^{-1}} \delta_x$$
 and $W^{\omega,a}_{\psi} = \langle W^{\omega,a}, \psi \rangle$.

Then, $W^{\omega,a}$ converges in \mathbb{P} -distribution to white noise W.

Magnetisation field II

Write

$$W^{\omega,a} = a \sum_{x \in \Omega_a} \omega_{xa^{-1}} \delta_x$$
 and $W^{\omega,a}_{\psi} = \langle W^{\omega,a}, \psi \rangle$.

Then, $W^{\omega,a}$ converges in \mathbb{P} -distribution to white noise W.

B, Caravenna, Sun and Zygouras (2019+) Let $A, B \subset C_c^{\infty}(\Omega)$ be finite. Then, $\left((\tilde{Z}_{\Omega;\lambda,h+i\varphi}^{\omega,a,+})_{\varphi \in A}, (W_{\psi}^{\omega,a})_{\psi \in B} \right)$ converges in \mathbb{P} -distribution to $\left((\mathcal{Z}_{\Omega;\lambda,h+i\varphi}^{W,+})_{\varphi \in A}, (W_{\psi})_{\psi \in B} \right)$ as $a \to 0$.

In particular, $\mu_{\Omega;\lambda,h}^{\omega,a,+}$ converges in \mathbb{P} -distribution to a random probability measure $\mu_{\Omega;\lambda,h}^{W,+}$ as $a \to 0$.

Magnetisation field II

Write

$$W^{\omega,a} = a \sum_{x \in \Omega_a} \omega_{xa^{-1}} \delta_x$$
 and $W^{\omega,a}_{\psi} = \langle W^{\omega,a}, \psi \rangle$.

Then, $W^{\omega,a}$ converges in \mathbb{P} -distribution to white noise W.

B, Caravenna, Sun and Zygouras (2019+) Let $A, B \subset C_c^{\infty}(\Omega)$ be finite. Then, $\left((\tilde{Z}_{\Omega;\lambda,h+i\varphi}^{\omega,a,+})_{\varphi \in A}, (W_{\psi}^{\omega,a})_{\psi \in B} \right)$ converges in \mathbb{P} -distribution to $\left((\mathcal{Z}_{\Omega;\lambda,h+i\varphi}^{W,+})_{\varphi \in A}, (W_{\psi})_{\psi \in B} \right)$ as $a \to 0$.

In particular, $\mu_{\Omega;\lambda,h}^{\omega,a,+}$ converges in \mathbb{P} -distribution to a random probability measure $\mu_{\Omega;\lambda,h}^{W,+}$ as $a \to 0$.

Furthermore, this shows that $W \mapsto \mu_{\Omega;\lambda,h}^{W,+}$ is a well defined probability map.

Relation to the case without disorder I

B, Caravenna, Sun and Zygouras (2019+)

For \mathbb{P} -a.e. W, the probability measure $\mu_{\Omega;\lambda,h}^{W,+}$ is singular with respect to μ_{Ω}^+ .

Relation to the case without disorder I

B, Caravenna, Sun and Zygouras (2019+)

For \mathbb{P} -a.e. W, the probability measure $\mu_{\Omega;\lambda,h}^{W,+}$ is singular with respect to μ_{Ω}^+ .

Let
$$\mathcal{F}_{N} := \sigma \left(\left\{ \left\langle \Phi, \lambda^{2} \mathbf{1}_{B_{i,j}^{N}} \right\rangle \right\}_{i,j=1}^{N} \right)$$
 where $\{B_{i,j}^{N}\}_{i,j=1}^{N}$ is a partition of Ω .

It suffices to show that for \mathbb{P} -a.e. W,

$$\mathcal{R}_{N} := \mathcal{Z}^{W,+} \frac{\mathrm{d}\mu^{W,+}}{\mathrm{d}\mu^{+}} \Big|_{\mathcal{F}_{\Lambda}}$$

converges to 0 in μ^+ probability.

Relation to the case without disorder I

B, Caravenna, Sun and Zygouras (2019+)

For \mathbb{P} -a.e. W, the probability measure $\mu_{\Omega;\lambda,h}^{W,+}$ is singular with respect to μ_{Ω}^+ .

Let
$$\mathcal{F}_{N} := \sigma \left(\left\{ \left\langle \Phi, \lambda^{2} \mathbf{1}_{B_{i,j}^{N}} \right\rangle \right\}_{i,j=1}^{N} \right)$$
 where $\{B_{i,j}^{N}\}_{i,j=1}^{N}$ is a partition of Ω .

It suffices to show that for \mathbb{P} -a.e. W,

$$\mathcal{R}_{N} := \mathcal{Z}^{W,+} \frac{\mathrm{d}\mu^{W,+}}{\mathrm{d}\mu^{+}} \Big|_{\mathcal{F}_{N}}$$

converges to 0 in μ^+ probability.

In particular, it suffices to show that

$$\lim_{N\to\infty}\mathbb{E}\left[E^{+}\left[\left(\mathcal{R}_{N}\right)^{1/2}\right]\right]=0.$$

Relation to the case without disorder II

Using Fatou's lemma and Skorohod's representation it suffices to show that

$$\lim_{N\to\infty}\lim_{a\to 0}\mathbb{E}\left[E^+\left[\left(\mathcal{R}_N^a\right)^{1/2}\right]\right]=0.$$

Relation to the case without disorder II

Using Fatou's lemma and Skorohod's representation it suffices to show that

$$\lim_{N\to\infty}\lim_{a\to 0}\mathbb{E}\left[E^+\left[\left(\mathcal{R}_N^a\right)^{1/2}\right]\right]=0.$$

Let $g_N^a = g_N^a(W^{\omega,a}, \Phi^a) > 0$ be such that for each fixed $W^{\omega,a}$ we have that $g_N^a \in \mathcal{F}_N$. By the Cauchy-Schwarz inequality we have

$$\mathbb{E}\left[E^{+}\left[\left(\mathcal{R}_{N}^{a}\right)^{1/2}\right]\right] = \mathbb{E}\left[E^{+}\left[\left(g_{N}^{a}\right)^{1/2}\left(\mathcal{R}_{N}^{a}\right)^{1/2}\left(g_{N}^{a}\right)^{-1/2}\right]\right]$$
$$\leq \mathbb{E}\left[E^{+}\left[g_{N}^{a}\mathcal{R}_{N}^{a}\right]\right]^{1/2}\mathbb{E}\left[E^{+}\left[\left(g_{N}^{a}\right)^{-1}\right]\right]^{1/2}$$
$$\leq E^{+}\left[\mathbb{E}\left[g_{N}^{a}\tilde{Z}^{\omega,a,+}\frac{\mathrm{d}\mu^{\omega,a,+}}{\mathrm{d}\mu^{a,+}}\right]\right]^{1/2}E^{+}\left[\mathbb{E}\left[\left(g_{N}^{a}\right)^{-1}\right]\right]^{1/2}$$

Relation to the case without disorder II

Using Fatou's lemma and Skorohod's representation it suffices to show that

$$\lim_{N\to\infty}\lim_{a\to 0}\mathbb{E}\left[E^+\left[\left(\mathcal{R}_N^a\right)^{1/2}\right]\right]=0.$$

Let $g_N^a = g_N^a(W^{\omega,a}, \Phi^a) > 0$ be such that for each fixed $W^{\omega,a}$ we have that $g_N^a \in \mathcal{F}_N$. By the Cauchy-Schwarz inequality we have

$$\mathbb{E}\left[E^{+}\left[\left(\mathcal{R}_{N}^{a}\right)^{1/2}\right]\right] = \mathbb{E}\left[E^{+}\left[\left(g_{N}^{a}\right)^{1/2}\left(\mathcal{R}_{N}^{a}\right)^{1/2}\left(g_{N}^{a}\right)^{-1/2}\right]\right]$$

$$\leq \mathbb{E}\left[E^{+}\left[g_{N}^{a}\mathcal{R}_{N}^{a}\right]\right]^{1/2}\mathbb{E}\left[E^{+}\left[\left(g_{N}^{a}\right)^{-1}\right]\right]^{1/2}$$

$$\leq E^{+}\left[\mathbb{E}\left[g_{N}^{a}\tilde{Z}^{\omega,a,+}\frac{\mathrm{d}\mu^{\omega,a,+}}{\mathrm{d}\mu^{a,+}}\right]\right]^{1/2}E^{+}\left[\mathbb{E}\left[\left(g_{N}^{a}\right)^{-1}\right]\right]^{1/2}.$$

We want to choose g_N^a such that the first term converges to 0 and the second term is bounded.

Relation to the case without disorder III

We now consider the change of measure $\tilde{\mathbb{P}}$ on the disorder defined by

$$rac{\mathrm{d} ilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}}(\omega^{s}) = (1+o(1))\, ilde{Z}^{\omega,s,+}rac{\mathrm{d}\mu^{\omega,s,+}}{\mathrm{d}\mu^{s,+}}\,.$$

By universality, we choose ω_x^a to be i.i.d. N(0,1) with respect to \mathbb{P} . Under $\tilde{\mathbb{P}}$ for σ fixed, ω_x^a are independent $N(\lambda_x^a \sigma_x, 1)$ random variables.

Relation to the case without disorder III

We now consider the change of measure $\tilde{\mathbb{P}}$ on the disorder defined by

$$rac{\mathrm{d} ilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}}(\omega^{s}) = (1+o(1))\, ilde{Z}^{\omega,s,+}rac{\mathrm{d}\mu^{\omega,s,+}}{\mathrm{d}\mu^{s,+}}\,.$$

By universality, we choose ω_x^a to be i.i.d. N(0,1) with respect to \mathbb{P} . Under $\tilde{\mathbb{P}}$ for σ fixed, ω_x^a are independent $N(\lambda_x^a \sigma_x, 1)$ random variables.

We now choose a suitable choice of g_N^a in such a way that

$$\lim_{N\to\infty}\lim_{a\to 0} E^+\left[\tilde{\mathbb{E}}\left[g_N^a\right]\right] = 0 \quad \text{and} \quad \limsup_{N\to\infty}\limsup_{a\to 0} E^+\left[\mathbb{E}\left[\left(g_N^a\right)^{-1}\right]\right] \leq C.$$

Relation to the case without disorder III

We now consider the change of measure $\tilde{\mathbb{P}}$ on the disorder defined by

$$rac{\mathrm{d} ilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}}(\omega^{s}) = (1+o(1))\, ilde{Z}^{\omega,s,+}rac{\mathrm{d}\mu^{\omega,s,+}}{\mathrm{d}\mu^{s,+}}\,.$$

By universality, we choose ω_x^a to be i.i.d. N(0, 1) with respect to \mathbb{P} . Under $\tilde{\mathbb{P}}$ for σ fixed, ω_x^a are independent $N(\lambda_x^a \sigma_x, 1)$ random variables.

We now choose a suitable choice of g_N^a in such a way that

$$\lim_{N\to\infty}\lim_{a\to 0} E^+\left[\tilde{\mathbb{E}}\left[g_N^a\right]\right] = 0 \quad \text{and} \quad \limsup_{N\to\infty}\limsup_{a\to 0} E^+\left[\mathbb{E}\left[\left(g_N^a\right)^{-1}\right]\right] \leq C.$$

For some $M_N^a, K_N^a \nearrow \infty$, we choose

$$g_N^a(W^{\omega,a},\Phi^a) := \exp\left(-K_N^a \mathbf{1}_{\{X_N^a \ge M_N^a\}}\right)$$

where $X_N^a = X_N^a(W^{\omega,a}, \Phi^a) \approx \tilde{Z}^{\omega,a,+} \frac{\mathrm{d}\mu^{\omega,a,+}}{\mathrm{d}\mu^{a,+}}$ and belongs to \mathcal{F}_N for each $W^{\omega,a}$ fixed.

Relation to the case without disorder IV

We have

$$\tilde{Z}^{\omega,\mathfrak{s},+}\frac{\mathrm{d}\mu^{\omega,\mathfrak{s},+}}{\mathrm{d}\mu^{\mathfrak{s},+}} = \exp\left(\sum_{i,j=1}^{N}\sum_{x\in B_{i,j}^{N,\mathfrak{s}}}\sigma_{x}\lambda_{x}^{\mathfrak{s}}\omega_{x}^{\mathfrak{s}}\right).$$

Relation to the case without disorder IV

We have

$$\tilde{Z}^{\omega,\mathfrak{s},+}\frac{\mathrm{d}\mu^{\omega,\mathfrak{s},+}}{\mathrm{d}\mu^{\mathfrak{s},+}} = \exp\left(\sum_{i,j=1}^{N}\sum_{\mathbf{x}\in B_{i,j}^{N,\mathfrak{s}}}\sigma_{\mathbf{x}}\lambda_{\mathbf{x}}^{\mathfrak{s}}\omega_{\mathbf{x}}^{\mathfrak{s}}\right).$$

We wish to approximate σ_x by a random variable in \mathcal{F}_N ; for $x \in B_{i,j}^{N,a}$ we choose

$$\psi_{i,j}^{N,a}(\Phi^a) := egin{cases} 1, & ext{if } \left\langle \Phi^a, \lambda^2 \mathbf{1}_{\mathcal{B}_{i,j}^{N,a}}
ight
angle \geq 0, \ -1, & ext{if } \left\langle \Phi^a, \lambda^2 \mathbf{1}_{\mathcal{B}_{i,j}^{N,a}}
ight
angle < 0 \end{cases}$$

so that

$$X^{a}_{N}(W^{\omega,a},\Phi^{a}):=\exp\left(\sum_{i,j=1}^{N}\psi^{N,a}_{i,j}\sum_{x\in B^{N,a}_{i,j}}\lambda^{a}_{x}\omega^{a}_{x}
ight).$$

Relation to the case without disorder IV

We have

$$\tilde{Z}^{\omega,\mathfrak{s},+}\frac{\mathrm{d}\mu^{\omega,\mathfrak{s},+}}{\mathrm{d}\mu^{\mathfrak{s},+}} = \exp\left(\sum_{i,j=1}^{N}\sum_{\mathbf{x}\in B_{i,j}^{N,\mathfrak{s}}}\sigma_{\mathbf{x}}\lambda_{\mathbf{x}}^{\mathfrak{s}}\omega_{\mathbf{x}}^{\mathfrak{s}}\right).$$

We wish to approximate σ_x by a random variable in \mathcal{F}_N ; for $x \in B_{i,j}^{N,a}$ we choose

$$\psi_{i,j}^{N,a}(\Phi^a) := egin{cases} 1, & ext{if } \left\langle \Phi^a, \lambda^2 \mathbf{1}_{\mathcal{B}_{i,j}^{N,a}}
ight
angle \geq 0, \ -1, & ext{if } \left\langle \Phi^a, \lambda^2 \mathbf{1}_{\mathcal{B}_{i,j}^{N,a}}
ight
angle < 0 \end{cases}$$

so that

$$X^{\mathfrak{s}}_{\mathsf{N}}(W^{\omega,\mathfrak{s}},\Phi^{\mathfrak{s}}):=\exp\left(\sum_{i,j=1}^{\mathsf{N}}\psi^{\mathsf{N},\mathfrak{s}}_{i,j}\sum_{\mathsf{x}\in\mathcal{B}^{\mathsf{N},\mathfrak{s}}_{i,j}}\lambda^{\mathfrak{s}}_{\mathsf{x}}\omega^{\mathfrak{s}}_{\mathsf{x}}
ight).$$

Reduces the problem to showing that

$$\lim_{N\to\infty}\lim_{a\to 0}\sum_{i,j=1}^N N^{-15/8} \left| \sum_{x\in B_{i,j}^{N,a}} (Na)^{15/8} \lambda(x)^2 \sigma_x \right| = \infty.$$

Thank you for listening

- Aizenman, M. and Wehr, J.: Rounding effects of quenched randomness on first-order phase transitions, *Comm. Math. Phys.* (1990)
- Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE(3), arXiv preprint (2016)
- Bricmont, J., Kupiainen, A.: Phase transition in the 3d random field Ising model, *Comm. Math. Phys.* (1988)
- Camia, F., Garban, C., Newman, C.: Planar Ising magnetization field I: Uniqueness of the critical scaling limit, *Ann. Probab.* (2015)
- Caravenna, F., Sun, R., Zygouras, N.: Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. (JEMS) (2017)
- Chelkak, D., Duminil-Copin, H., Hongler, C., Kemppainen, A., Smirnov, S.: Convergence of Ising interfaces to Schramms SLE curves, *C. R. Math. Acad. Sci. Paris* (2014)
- Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model, *Ann. of Math. (2)* (2015)