Near-critical percolation with heavy-tailed impurities and forest fire processes

Pierre Nolin¹ (CityU Hong Kong)

based on j.w. with Rob van den Berg (CWI and VU, Amsterdam)

May 27th, 2019

SASI Probability Meeting, NUS

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

Site percolation on \mathbb{Z}^2

Site percolation on $\ensuremath{\mathbb{T}}$

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

Site percolation on \mathbb{Z}^2

Site percolation on $\ensuremath{\mathbb{T}}$

For some parameter $p \in [0, 1]$, vertices ("sites") independently

occupied / black (p)

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

Site percolation on \mathbb{Z}^2

For some parameter $p \in [0, 1]$, vertices ("sites") independently

- occupied / black (p)
- vacant / white (1 p)

Model for random media: Bernoulli percolation (Broadbent, Hammersley, 1957)

For some parameter $p \in [0, 1]$, vertices ("sites") independently

- occupied / black (p)
- vacant / white (1 p)

Percolation: phase transition as p varies

Percolation: phase transition as p varies

(日)、

-

Percolation: phase transition as p varies

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Initially, all vertices vacant

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ► Each vertex vacant \rightsquigarrow occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 e^{-t}$)

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ► Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant forever

Frozen percolation

 $N=200\text{-volume-frozen percolation on }\mathbb{T}$ Final configuration at time $t=\infty$ (Fig. Demeter Kiss)

・ロン ・四 と ・ ヨン ・ ヨ

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ▶ Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant

forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ▶ Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant
- forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously
 - without recovery: burnt vertices then stay vacant forever

We consider processes on a 2D lattice (\mathbb{Z}^2 or \mathbb{T}), constructed from 2 Poisson point processes: on each vertex, **births** (rate 1) and **ignitions** (rate $\zeta > 0$, typically very small)

- Initially, all vertices vacant
- ▶ Each vertex vacant \sim occupied at birth times: **pure birth process** (\leftrightarrow Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$)
- ► N-volume-frozen percolation: occupied clusters stop growing if their volume (= # vertices) gets ≥ N, i.e. all vertices along the outer boundary then stay vacant
- forest-fire process: occupied clusters burn when one vertex ignited, i.e. all vertices become vacant instantaneously
 - without recovery: burnt vertices then stay vacant forever
 - with recovery: burnt vertices can become occupied again, at later birth times

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

trees appear (indep.), rate 1

							۰.																													
							۰.																													
	-	٠	-				r	٠	-	•		-	•			r			•	r -	-				-			-	e	• •		٠	•	•		
							۰.																•						۰.							
							۰.																													
							۰.																•						•							
	-	•	-	•		•	r	•	-	•	 •	-	•			r	•	•	•	r -	-	•		•	-	•	•	-	r	• •	•	۰	•	•		
							۰.																						•							
				•			٠																•			•			۰.							
							۰.																													
	-	•	-	•	• •	-	۲	•	-	•	 -	-	•	• •	• •	٠	-	•	•		-	•	• •	-	-	• •	•	-	٠		-	۰	•	-		
				•			۰.																•						•							
							۰.						•										•			•			۰.			۰.				
				•			٠						•										•			•			•			•				
	-	•	-	•		-	٢	•	-	•		-	•			٢					-	-	· ·		-	• •	•	-	٢			٢	•	-		
				•			٠						•										•			•			•			•				
							۰.																•						۰.			۰.				
				•			۰.						•										•			•			٠.			٠.				
 1			-	•			٢		-				· ·			٢				· ·			· ·		-	<u>ر</u>			r			٢			1	
							۰.																•						۰.			÷.				
				•			•						•										•			•			•			•				
							۰.																						· .			·				
			-	· ·			٢		-	-			٠.										· ·			· ·			٢.			٢.				
							۰.																						· .			1				
				•			۰.						•										•			•			· .			·				
 1				۰.			۰.						۰.						. 1				۰.			۰.			<u>.</u>			Υ.			. 1	
1							5						5			5							5.7			5.7			5			5			1	
							۰.																						·			÷.				
1							1									1													1			1			- 3	
 1							2						1.			1							ι.			ι.			2			2			. 3	
							۰.																						•			۰.				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

trees appear (indep.), rate 1

			•						۰.						•			۰.											۰.			
			•						۰.														٠						۰.			
		-	٠	•	 		-	•	٠	• •	•	 -	•	-	e -		-	•	 	٠		• •	٠	-	•	۰,		•	٠	• •	 ٠	-
									۰.																				۰.			
																		•														
									۰.																				۰.			
		-	•	•	 	•	-	-	•	•		-	•	-	e -		-	e - 1		٠				-	•	۰.			•	•		-
																		۰.														
									۰.																				۰.			
 •	 -	-	•	-	 	-	-	- 1	•	• •		 -	-	-		-	•	e -	 	٠	•		e	-	•	۰.	 -	-	•		 e	•
																		۰.											۰.			
		-	•	-	 		-	-	•			 -		-			-	e 1	 	٠				-					r	•	 ٠	-
									۰.																				۰.			
																		۰.														
									۰.																				۰.			
		-	•	•	 		-		•	•		-		-			-	e 1	 	٠				-		۰.			•	•		-
																		۰.											۰.			
																		۰.														
	 •	-	•	•	 	•	-	-	•	• •		-	•	-	e -		-	e - 1		٠	-	• •		-	•	۰.		- 1	•	•	 ٠	-
 •		-	•		 		-	-	•			 -	-	-		-	-	e - 1	 	٠	-		e	-	•	۰.	 -	-	•	•	 e	-
																													τ.			
	 -	-	•		 		-		•			 -	-	-				•	 		-			-		- ,		-	•	•		-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

▶ trees appear (indep.), rate 1

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

▶ trees appear (indep.), rate 1

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\rightarrow 0)$

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\rightarrow 0)$
- ~> the tree "burns" (disappears) immediately, together with its whole connected component

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\rightarrow 0)$
- ~> the tree "burns" (disappears) immediately, together with its whole connected component

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

- trees appear (indep.), rate 1
- hit by lightning, rate $\zeta (\rightarrow 0)$
- ~> the tree "burns" (disappears) immediately, together with its whole connected component

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

```
trees appear (indep.), rate 1
```

- hit by lightning, rate $\zeta (\rightarrow 0)$
- ~> the tree "burns" (disappears) immediately, together with its whole connected component

Note: in the absence of fires, Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$.

Forest fire process on \mathbb{Z}^2 (Drossel, Schwabl, 1992)

Note: in the absence of fires, Bernoulli site percolation with parameter $p(t) = 1 - e^{-t}$.

We can consider forest fire processes with or without recovery.

Forest fire process without recovery, rate $\zeta = 0.01$

(日) (個) (E) (E) (E)

Relevant "macroscopic" behavior starts to occur around **critical time** t_c (defined by $1 - e^{-t_c} = p_c$).

 \rightarrow Instance of **self-organized criticality** (well-known phenomenon in statistical physics).

Relevant "macroscopic" behavior starts to occur around **critical time** t_c (defined by $1 - e^{-t_c} = p_c$).

 \rightarrow Instance of self-organized criticality (well-known phenomenon in statistical physics).

Spontaneous arising of a critical regime (without any fine-tuning of a parameter).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Relevant "macroscopic" behavior starts to occur around **critical time** t_c (defined by $1 - e^{-t_c} = p_c$).

 \rightarrow Instance of self-organized criticality (well-known phenomenon in statistical physics).

- Spontaneous arising of a critical regime (without any fine-tuning of a parameter).
- It can be used to explain the appearance of complex structures in nature ("universal" fractal shapes).

Relevant "macroscopic" behavior starts to occur around **critical time** t_c (defined by $1 - e^{-t_c} = p_c$).

 \rightarrow Instance of self-organized criticality (well-known phenomenon in statistical physics).

- Spontaneous arising of a critical regime (without any fine-tuning of a parameter).
- It can be used to explain the appearance of complex structures in nature ("universal" fractal shapes).
- Here: in relation to the phase transition of Bernoulli percolation in 2D (very-well understood: Lawler, Schramm, Smirnov, Werner, 1999–2001).

► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon

= n<0</p>

¹van den Berg, Kiss, N., Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters, Ann. Sci. ENS **51**, 1017–1084 (2018)

²van den Berg, N., *Boundary rules and breaking of self-organized criticality in 2D frozen percolation*, Elec. Comm. Probab. **22**, no. 65, 15 pp. (2017)

- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- ▶ For forest fire processes, rate at which a cluster ignited = $\zeta \times$ volume

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = ζ× volume → As ζ → 0, same behavior near t_c as N-volume-frozen percolation, with N ↔ ζ⁻¹?

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = ζ× volume → As ζ → 0, same behavior near t_c as N-volume-frozen percolation, with N ↔ ζ⁻¹?
- As we will see, Poisson ignitions create (major) additional difficulties, compared to volume-frozen percolation.

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = ζ× volume → As ζ → 0, same behavior near t_c as N-volume-frozen percolation, with N ↔ ζ⁻¹?
- As we will see, Poisson ignitions create (major) additional difficulties, compared to volume-frozen percolation.
- Note: "boundary rules" (i.e. keep vacant or not vertices along the outer boundary of a cluster that freezes / burns) do not seem to play a significant role

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)
- ► N-volume-frozen percolation (N → ∞) now well understood¹: deconcentration phenomenon
- For forest fire processes, rate at which a cluster ignited = ζ× volume → As ζ → 0, same behavior near t_c as N-volume-frozen percolation, with N ↔ ζ⁻¹?
- As we will see, Poisson ignitions create (major) additional difficulties, compared to volume-frozen percolation.
- Note: "boundary rules" (i.e. keep vacant or not vertices along the outer boundary of a cluster that freezes / burns) do not seem to play a significant role (important role when freezing by diameter²)

¹van den Berg, Kiss, N., *Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters*, Ann. Sci. ENS **51**, 1017–1084 (2018)

Critical regime

Percolation: phase transition as p varies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sequence of **exceptional scales**: for all $k \ge 1$,

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}$$

 $(\rightarrow highlight non-monotonicity, not predicted in the literature)$

Sequence of **exceptional scales**: for all $k \ge 1$,

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}$$

 $(\rightarrow highlight non-monotonicity, not predicted in the literature)$

Theorem (van den Berg, N., 2018)

For forest fire process without recovery, in box $B_{m(\zeta)}$: as $\zeta \to 0$,

clusters in final configuration:

macroscopic (volume $\asymp \zeta^{-1}$) microscopic (volume O(1))

mesoscopic (volume $\zeta^{-\delta+o(1)}$) (0 < δ < 1)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Related to behavior established earlier for volume-frozen percolation³.

³van den Berg, N., *Two-dimensional volume-frozen percolation: exceptional scales*, Ann. Appl. Probab. **27**, 91–108 (2017) < □ > (②) < ○ > (③) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○) < ○ > (○)

- Related to behavior established earlier for volume-frozen percolation³.
- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).

- Related to behavior established earlier for volume-frozen percolation³.
- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).
- Moreover, significant additional issue: many "early" fires, larger and larger as time approaches t_c (with a "heavy-tailed" distribution, in some sense), all over the lattice.

- Related to behavior established earlier for volume-frozen percolation³.
- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).
- Moreover, significant additional issue: many "early" fires, larger and larger as time approaches t_c (with a "heavy-tailed" distribution, in some sense), all over the lattice.
- $\blacktriangleright \to$ We have to understand the effect of these "impurities" on the connectedness of the lattice.

³van den Berg, N., *Two-dimensional volume-frozen percolation: exceptional scales*, Ann. Appl. Probab. **27**, 91–108 (2017)

- Related to behavior established earlier for volume-frozen percolation³.
- However, different formulas for forest fire processes, and much more work required (e.g. extra dependence between scales).
- Moreover, significant additional issue: many "early" fires, larger and larger as time approaches t_c (with a "heavy-tailed" distribution, in some sense), all over the lattice.
- ➤ → We have to understand the effect of these "impurities" on the connectedness of the lattice. (not clear that they do not perturb too much the "near-critical picture"!)

³van den Berg, N., *Two-dimensional volume-frozen percolation: exceptional scales*, Ann. Appl. Probab. **27**, 91–108 (2017)

"Impurities" created by fires before time $t_c - \varepsilon$ ($\varepsilon = 0.1$)

<ロ> (四) (四) (三) (三) (三)

 \rightarrow New model: percolation with "heavy-tailed" impurities.

 \rightarrow New model: percolation with "heavy-tailed" impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \rightarrow \infty$),

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \rightarrow New model: percolation with "heavy-tailed" impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \rightarrow \infty$),

 \blacktriangleright each vertex v is the center of an impurity with probability $\lesssim m^{-eta}$

 \rightarrow New model: percolation with "heavy-tailed" impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \rightarrow \infty$),

• each vertex v is the center of an impurity with probability $\lesssim m^{-\beta}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ radius R_v such that $\mathbb{P}(R_v \ge r) \lesssim r^{\alpha-2}e^{-cr/m}$

 \rightarrow New model: percolation with "heavy-tailed" impurities. For some given $\alpha < 2$ and $\beta > 0$ (parameter $m \rightarrow \infty$),

- \blacktriangleright each vertex v is the center of an impurity with probability $\lesssim m^{-eta}$
- ▶ radius R_v such that $\mathbb{P}(R_v \ge r) \lesssim r^{\alpha-2} e^{-cr/m}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Percolation with heavy-tailed impurities: random environment

We manage to obtain the **full "phase diagram"** as α , β vary:

For forest fires, $\alpha = \frac{55}{48}$ and $\beta > \alpha$ (most interesting regime) Note: impurities have density $m^{-(\beta-\alpha)}$, $\beta - \alpha$ arbitrarily small

Question: do the impurities have a significant effect on connectedness of the lattice?

・ロト・日本・モト・モート ヨー うへで

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

▶ here, any
$$\beta > \alpha > \frac{3}{4}$$
 work, density $m^{-(\beta - \alpha)}$

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ")

ightarrow density of impurities has to stay $\lesssim m^{-3/4+o(1)}$

▶ here, any
$$\beta > \alpha > \frac{3}{4}$$
 work, density $m^{-(\beta - \alpha)}$

 effect on pivotal sites: quite subtle balance (impurities "help" vacant arm / "hinder" occupied arms)

(日) (日) (日) (日) (日) (日) (日) (日)

Question: do the impurities have a significant effect on connectedness of the lattice?

► classical case: single-site updates ("impurities"), need $\beta > \frac{1}{\nu} = \frac{3}{4}$ (" $\alpha = -\infty$ ") \rightarrow density of impurities has to stay $\leq m^{-3/4+o(1)}$

• here, any $\beta > \alpha > \frac{3}{4}$ work, density $m^{-(\beta-\alpha)}$

▶ effect on **pivotal sites**: quite subtle balance (impurities "help" vacant arm / "hinder" occupied arms)
→ relies on inequality between arm exponents

 $\alpha_4 \leq \alpha_2 + 1$

(hence, specific to \mathbb{T} so far).

Forest fire process at time $t_c + \varepsilon$, in a box with side length

$$M \gg m = L(t_c - \varepsilon) \asymp L(t_c + \varepsilon)$$

(typically, $m = \hat{M}$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In the full plane: existence of exceptional scales indicate a convoluted structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In the full plane: existence of exceptional scales indicate a convoluted structure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \rightarrow **deconcentration** phenomenon as $\zeta \rightarrow 0$ (work in progress)

In the full plane: existence of exceptional scales indicate a convoluted structure

- \rightarrow **deconcentration** phenomenon as $\zeta \rightarrow 0$ (work in progress)
- Theorem (van den Berg, N., 2019+) For forest fire process without recovery, in full plane \mathbb{T} : for all t > 0,

$$\mathbb{P}^{\mathbb{T}}_{\zeta}(0 \text{ burns before } t) \xrightarrow[\zeta o 0]{} 0$$

+ qualitative description of what happens right after t_c ("avalanche" of successive fires surrounding 0, more and more localized).

Consider *N*-volume-frozen percolation, in a box with side length $C\sqrt{N}$ (C > 1).

(ロ)、(型)、(E)、(E)、 E) の(の)

Consider *N*-volume-frozen percolation, in a box with side length $C\sqrt{N}$ (C > 1). For t just above t_c $(1 - e^{-t_c} = p_c)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider *N*-volume-frozen percolation, in a box with side length $C\sqrt{N}$ (C > 1). For t just above t_c $(1 - e^{-t_c} = p_c)$

• freezes at a time very close to $\overline{t} = \overline{t}(C) := \theta^{-1}(\frac{1}{C^2})$

Consider *N*-volume-frozen percolation, in a box with side length $C\sqrt{N}$ (C > 1). For t just above t_c $(1 - e^{-t_c} = p_c)$

- freezes at a time very close to $\overline{t} = \overline{t}(C) := \theta^{-1}(\frac{1}{C^2})$
- \blacktriangleright leaves holes with volume $\lesssim L(\bar{t})^2 \ll N$
Consider *N*-volume-frozen percolation, in a box with side length $C\sqrt{N}$ (C > 1). For t just above t_c $(1 - e^{-t_c} = p_c)$

- freezes at a time very close to $\overline{t} = \overline{t}(C) := \theta^{-1}(\frac{1}{C^2})$
- leaves holes with volume $\lesssim L(\bar{t})^2 \ll N$
- ► nothing else freezes: only 1 giant cluster freezes, "spanning" the box

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• freezes at a time very close to \hat{t} s.t. $L(t)^2\theta(\hat{t}) = N$,

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

• freezes at a time very close to \hat{t} s.t. $L(t)^2 \theta(\hat{t}) = N$,

• leaves a hole around 0 with diameter $\asymp L(\hat{t})$,

In a box with side length m = L(t) $(t = t(N) \searrow t_c)$: for t' just above t,

- freezes at a time very close to \hat{t} s.t. $L(t)^2\theta(\hat{t}) = N$,
- leaves a hole around 0 with diameter $\asymp L(\hat{t})$,

▶ → next scale
$$\hat{m} = L(\hat{t})$$
.

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2\pi_1(m_k) symp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{91}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2\pi_1(m_k) symp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = rac{48}{91}$$

Note: for previous reasoning, need to be "on the edge of supercriticality", for $\hat{t} - t_c \gg t - t_c$ ($\Leftrightarrow L(\hat{t}) = \hat{m} \ll L(t) = m$)

Exceptional scales: define $m_1(N) = \sqrt{N}$, then $m_2(N)$ s.t. $\hat{m}_2 = m_1$, then $m_3(N)$ s.t. $\hat{m}_3 = m_2$, and so on.

From $m_{k+1}^2\pi_1(m_k) symp N$, we obtain

$$m_k(N) = N^{\delta_k + o(1)}, \quad ext{with } \delta_k
earrow \delta_\infty = rac{48}{91}$$

. .

Note: for previous reasoning, need to be "on the edge of supercriticality", for $\hat{t} - t_c \gg t - t_c$ ($\Leftrightarrow L(\hat{t}) = \hat{m} \ll L(t) = m$)

 \rightarrow condition $m^2\pi_1(m) \ll N$, i.e.

$$m \ll m_{\infty}(N) = N^{\delta_{\infty} + o(1)}$$

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \asymp 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2 \pi_1(\hat{m}) \asymp \hat{m}^2 \pi_4(\hat{m})$

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \approx 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2 \pi_1(\hat{m}) \approx \hat{m}^2 \pi_4(\hat{m})$

 \rightarrow predicts **exceptional scales** again, with more complicated formulas:

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad \text{with } \delta_k \nearrow \delta_\infty = \frac{48}{55}$$

For forest fire processes: we can again start with $m_1(\zeta) = \zeta^{-1/2}$, and try to follow the same reasonings.

For m = L(t), $\hat{t} > t$ such that

$$\zeta \cdot (\hat{t} - t_c) L(t)^2 \theta(\hat{t}) = 1$$

Since $(\hat{t} - t_c)L(\hat{t})^2 \pi_4(L(\hat{t})) \approx 1$, $\hat{m} = L(\hat{t})$ satisfies $\zeta \cdot m^2 \pi_1(\hat{m}) \approx \hat{m}^2 \pi_4(\hat{m})$

 \rightarrow predicts **exceptional scales** again, with more complicated formulas:

$$m_k(\zeta) = \zeta^{-\delta_k + o(1)}, \quad ext{with } \delta_k \nearrow \delta_\infty = rac{48}{55}$$

In order to make this reasoning rigorous, we use the model with impurities.

Conclusion:

By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.

- By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.
- ➤ → We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).

- By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.
- ➤ → We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).
- ▶ We also obtain a similar deconcentration phenomenon around t_c, and a rather complete understanding of the final configuration (work in progress).

- By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.
- ➤ → We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).
- ▶ We also obtain a similar deconcentration phenomenon around t_c, and a rather complete understanding of the final configuration (*work in progress*).
- ▶ For forest fires with recovery, the same behavior should hold, up to a time $t_c + \delta$ where $\delta > 0$ universal (using also properties of "self-destructive percolation"⁴) → precise description beyond t_c .

- By studying percolation with heavy tailed impurities, we show that early fires do not perturb too much connectedness of the forest.
- ➤ → We prove the existence of exceptional scales for forest fires without recovery, in a similar sense as for volume-frozen percolation (but with much more work).
- ▶ We also obtain a similar deconcentration phenomenon around t_c, and a rather complete understanding of the final configuration (work in progress).
- ▶ For forest fires with recovery, the same behavior should hold, up to a time $t_c + \delta$ where $\delta > 0$ universal (using also properties of "self-destructive percolation"⁴) → precise description beyond t_c .
- ► This should improve our understanding of the long-term (t → ∞) behavior, but limited progress so far.

Thank you!