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Bernoulli percolation

Model for random media: Bernoulli percolation (Broadbent, Hammersley,
1957)

Site percolation on Z2 Site percolation on T

For some parameter p ∈ [0, 1], vertices (“sites”) independently

I occupied / black (p)

I vacant / white (1− p)
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Percolation: phase transition as p varies
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Forest fire processes

We consider processes on a 2D lattice (Z2 or T), constructed from 2
Poisson point processes: on each vertex, births (rate 1) and ignitions
(rate ζ > 0, typically very small)

I Initially, all vertices vacant

I Each vertex vacant ; occupied at birth times: pure birth process
(↔ Bernoulli site percolation with parameter p(t) = 1− e−t)

I N-volume-frozen percolation: occupied clusters stop growing if
their volume (= # vertices) gets ≥ N, i.e. all vertices along the
outer boundary then stay vacant forever

I forest-fire process: occupied clusters burn when hit by lightning,
i.e. all vertices become vacant instantaneously

I without recovery: burnt vertices then stay vacant forever

I with recovery: burnt vertices can become occupied again, at later
birth times
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Frozen percolation

N = 200-volume-frozen percolation on T
Final configuration at time t =∞ (Fig. Demeter Kiss)
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Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component



Forest fire processes

Forest fire process on Z2 (Drossel, Schwabl, 1992)

I trees appear (indep.), rate 1

I hit by lightning, rate ζ (→ 0)

I ; the tree “burns”
(disappears) immediately,
together with its whole
connected component

Note: in the absence of fires, Bernoulli site percolation with parameter
p(t) = 1− e−t .

We can consider forest fire processes with or without recovery.
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Forest fire processes

Forest fire process without recovery, rate ζ = 0.01



Forest fire processes

Relevant “macroscopic” behavior starts to occur around critical time tc
(defined by 1− e−tc = pc).

→ Instance of self-organized criticality (well-known phenomenon in
statistical physics).

I Spontaneous arising of a critical regime (without any fine-tuning of
a parameter).

I It can be used to explain the appearance of complex structures in
nature (“universal” fractal shapes).

I Here: in relation to the phase transition of Bernoulli percolation in
2D (very-well understood: Lawler, Schramm, Smirnov, Werner,
1999–2001).
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Forest fire processes

I N-volume-frozen percolation (N →∞) now well understood1:
deconcentration phenomenon

I For forest fire processes, rate at which a cluster ignited = ζ× volume

→ As ζ → 0, same behavior near tc as N-volume-frozen percolation,
with N ↔ ζ−1?

I As we will see, Poisson ignitions create (major) additional
difficulties, compared to volume-frozen percolation.

I Note: “boundary rules” (i.e. keep vacant or not vertices along the
outer boundary of a cluster that freezes / burns) do not seem to
play a significant role (important role when freezing by diameter2)

1van den Berg, Kiss, N., Two-dimensional volume-frozen percolation: deconcentration and
prevalence of mesoscopic clusters, Ann. Sci. ENS 51, 1017–1084 (2018)

2van den Berg, N., Boundary rules and breaking of self-organized criticality in 2D frozen
percolation, Elec. Comm. Probab. 22, no. 65, 15 pp. (2017)
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Critical regime

Percolation: phase transition as p varies

psitec (T)0 1
p

subcritical regime supercritical regime

no ∞ cluster unique ∞ cluster

exponential decay
for cluster size

exponential decay
for finite clusters

only tiny clusters only tiny finite clusters

trivial large scale behavior trivial large scale behavior

critical regime

non-trivial scaling limits

connection with SLE(6)

conformal invariance

. . .
(Lawler, Schramm, Werner, Smirnov 1999-2001)
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scales “below” L(p) = |p− pc|−4/3+o(1) (p→ pc)

(characteristic length)



Forest fire processes
Sequence of exceptional scales: for all k ≥ 1,

mk(ζ) = ζ−δk+o(1), with δk ↗ δ∞ =
48

55
(→ highlight non-monotonicity, not predicted in the literature)

Theorem (van den Berg, N., 2018)
For forest fire process without recovery, in box Bm(ζ): as ζ → 0,

m1(ζ) m2(ζ) m3(ζ) m4(ζ)

macroscopic (volume � ζ−1)

microscopic (volume O(1))

burning on (tc,∞)

mesoscopic (volume ζ−δ+o(1))
(0 < δ < 1)

burning only near tc

clusters in final configuration:

m(ζ) � mk(ζ) mk(ζ)� m(ζ)� mk+1(ζ)

lim inf PBm(ζ)

ζ (0 burns before t) > 0
ζ → 0

PBm(ζ)

ζ (0 burns before t) −→ 0
ζ → 0

(t > tc)
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Forest fire processes

I Related to behavior established earlier for volume-frozen
percolation3.

I However, different formulas for forest fire processes, and much more
work required (e.g. extra dependence between scales).

I Moreover, significant additional issue: many “early” fires, larger
and larger as time approaches tc (with a “heavy-tailed” distribution,
in some sense), all over the lattice.

I → We have to understand the effect of these “impurities” on the
connectedness of the lattice. (not clear that they do not perturb too
much the “near-critical picture”!)

3van den Berg, N., Two-dimensional volume-frozen percolation: exceptional scales, Ann. Appl.
Probab. 27, 91–108 (2017)
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Forest fire processes

“Impurities” created by fires before time tc − ε (ε = 0.1)



Heavy-tailed impurities

→ New model: percolation with “heavy-tailed” impurities.

For some
given α < 2 and β > 0 (parameter m→∞),

I each vertex v is the center of an impurity with probability . m−β

I radius Rv such that P(Rv ≥ r) . rα−2e−cr/m
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Heavy-tailed impurities

Percolation with heavy-tailed impurities: random environment



Heavy-tailed impurities

We manage to obtain the full “phase diagram” as α, β vary:
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Heavy-tailed impurities

For forest fires, α = 55
48 and β > α (most interesting regime)

Note: impurities have density m−(β−α), β − α arbitrarily small
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Heavy-tailed impurities

Question: do the impurities have a significant effect on connectedness of
the lattice?

I classical case: single-site updates (“impurities”), need β > 1
ν = 3

4
(“α = −∞”)

→ density of impurities has to stay . m−3/4+o(1)

I here, any β > α > 3
4 work, density m−(β−α)

I effect on pivotal sites: quite subtle balance (impurities “help”
vacant arm / “hinder” occupied arms)

→ relies on inequality between arm exponents

α4 ≤ α2 + 1

(hence, specific to T so far).
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→ relies on inequality between arm exponents

α4 ≤ α2 + 1
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Forest fire processes

Forest fire process at time tc + ε, in a box with side length

M � m = L(tc − ε) � L(tc + ε)

(typically, m = M̂)

tctc − ε tc + ε

“lower bound”

by percolation with

heavy-tailed impurities

configuration

at this time

near-critical behavior



Forest fire processes

In the full plane: existence of exceptional scales indicate a convoluted
structure

→ deconcentration phenomenon as ζ → 0 (work in progress)

Theorem (van den Berg, N., 2019+)
For forest fire process without recovery, in full plane T: for all t > 0,

PT
ζ (0 burns before t) −→

ζ→0
0

+ qualitative description of what happens right after tc (“avalanche” of
successive fires surrounding 0, more and more localized).
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Exceptional scales
Consider N-volume-frozen percolation, in a box with side length C

√
N

(C > 1).

For t just above tc (1− e−tc = pc)

C
√
N � L(t)

volume ' θ(t) · (C
√
N)2

(Borgs, Chayes, Kesten, Spencer, 2001)

I freezes at a time very close to t̄ = t̄(C ) := θ−1( 1
C 2 )

I leaves holes with volume . L(t̄)2 � N

I nothing else freezes: only 1 giant cluster freezes, “spanning” the box
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Exceptional scales

In a box with side length m = L(t) (t = t(N)↘ tc): for t ′ just above t,

L(t) � L(t′)

volume ' θ(t′) · (L(t))2

I freezes at a time very close to t̂ s.t. L(t)2θ(t̂) = N,

I leaves a hole around 0 with diameter � L(t̂),

I → next scale m̂ = L(t̂).
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Exceptional scales

Exceptional scales: define m1(N) =
√
N, then m2(N) s.t. m̂2 = m1,

then m3(N) s.t. m̂3 = m2, and so on.

From m2
k+1π1(mk) � N, we obtain

mk(N) = Nδk+o(1), with δk ↗ δ∞ =
48

91

Note: for previous reasoning, need to be “on the edge of
supercriticality”, for t̂ − tc � t − tc (⇔ L(t̂) = m̂� L(t) = m)

→ condition m2π1(m)� N, i.e.

m� m∞(N) = Nδ∞+o(1)
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Exceptional scales

For forest fire processes: we can again start with m1(ζ) = ζ−1/2, and
try to follow the same reasonings.

For m = L(t), t̂ > t such that

ζ · (t̂ − tc)L(t)2θ(t̂) = 1

Since (t̂ − tc)L(t̂)2π4(L(t̂)) � 1, m̂ = L(t̂) satisfies

ζ ·m2π1(m̂) � m̂2π4(m̂)

→ predicts exceptional scales again, with more complicated formulas:

mk(ζ) = ζ−δk+o(1), with δk ↗ δ∞ =
48

55

In order to make this reasoning rigorous, we use the model with
impurities.
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Forest fire processes

Conclusion:

I By studying percolation with heavy tailed impurities, we show
that early fires do not perturb too much connectedness of the forest.

I → We prove the existence of exceptional scales for forest fires
without recovery, in a similar sense as for volume-frozen
percolation (but with much more work).

I We also obtain a similar deconcentration phenomenon around tc ,
and a rather complete understanding of the final configuration (work
in progress).

I For forest fires with recovery, the same behavior should hold, up
to a time tc + δ where δ > 0 universal (using also properties of
“self-destructive percolation”4) → precise description beyond tc .

I This should improve our understanding of the long-term (t →∞)
behavior, but limited progress so far.

4Kiss, Manolescu, Sidoravicius, Planar lattices do not recover from forest fires, Ann. Probab.
43, 3216–3238 (2015)
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End

Thank you!


