

Pitfalls of Bitcoin's Proof-of-Work: R&D Arms Race and Mining Centralization

Agostino Capponi

Department of Industrial Engineering and Operations Research
Columbia University
ac3827@columbia.edu

Joint with Humoud Alsabah (Columbia)

Fintech and Machine Learning

August 6, 2019

Introduction

Relevance

- Bitcoin has experienced rapid growth in value since its deployment in January 2009.
- As of July 2019, Bitcoin's market capitalization exceeds \$180 billions.
- The most successful of more than 1,500 cryptocurrencies used today.

Literature Review

- Catalini and Gans (2016); Cong and He (2019); Malinova and Park (2017); Yermack (2017); Abadi and Brunnermeier (2018): Blockchain as a general purpose technology, and its use in market design.
- Athey et al. (2016); Pagnotta and Buraschi (2018); Biais et al. (2018): Bitcoin valuation and pricing.
- Chiu and Koepll (2017); Saleh (2018); Hinzen et al. (2019): Optimal design of cryptocurrencies and sustainable alternatives.
- Huberman et al. (2018); Easley et al. (2019); Biais et al. (2019): Study of Bitcoin operations.

Bitcoin Mechanism

- Works through Blockchain, a decentralized digital ledger in which transactions are publicly recorded.
- Relies on a network of nodes to verify, update and store transactions.
- Nodes are incentivized to undertake these tasks through a process called mining.
- Miners (i.e., nodes) compete to solve a computationally costly problem known as *proof-of-work*.
- The winner of the mining process has the right to update the record.
 - Rewarded with newly minted coins and keeps transaction fees paid by bitcoin holders.

Developments in Mining Technology

- Nakamoto (2008) envisioned a decentralized payment system, where mining can be performed by anybody.
- **However**, the rapid increase in bitcoin price induced firms to invest in mining hardware.
 - Probability of successfully mining blocks increase.
- Mining operations become increasingly vertically integrated.
 - Single firms design mining chips, maintain hardware, and operate data centers.
 - Bitmain is opening mining farms in Canada and Switzerland, in addition to currently operated farms in China (Cheng (2018)).
 - Bitfury is launching a network of Bitcoin mining operations in Paraguay, in addition to those operated in Canada, Norway, Iceland, and Georgia (Khatri (2019)).

This paper

- Does Bitcoin's proof-of-work still enable and support a decentralized payment system?
 - Critical to assess Bitcoin's ability to maintain its dominant position among cryptocurrencies.
- We show that proof-of-work
 - Drives the mining industry towards centralization.
 - Leads to a research and development (R&D) arms race in which all firms are worse off.

Model

Problem formulation

- Industry of $N \geq 2$ firms and a two-periods timeline.
- Period 1:
 - Each firm i chooses its level of R&D x_i .
 - R&D cost function is assumed to be quadratic: $\gamma x_i^2/2$.
- Period 2:
 - Each firm i chooses the hash rate h_i used for mining.
 - The hash cost function $C_i(h_i, x_i)$ is given by

$$C_i(h_i, x_i) = (\alpha - x_i)h_i.$$

Revenue Function

- Rewards allocated to firms depend on the distribution of hash rates $\mathbf{h} = (h_1, \dots, h_N)$.
- Firm i 's share of the reward given by

$$R_i(\mathbf{h}) = \frac{h_i R}{H}$$

where $H := \sum_{j=1}^N h_j$, and R is the total reward obtained in the second period.

- Captures the two most critical properties of proof-of-work:
 1. Reward obtained by miners proportional to the fraction of computational power they own.
 2. Total coins mined in a period is independent of computational power exerted by all miners.
- The objective of each firm is to maximize its individual second-stage mining profits net of its first-stage R&D expenditure:

$$\pi_i(\mathbf{h}; x_i) = R_i(\mathbf{h}) - C_i(h_i, x_i) - \gamma x_i^2 / 2$$

Solution Methodology

- Solve for the subgame perfect equilibrium (SPE) using backward induction.
 1. Solve the second-stage game for a given R&D profile x .
 2. Solve the first-stage game to find the equilibrium R&D levels.

Results

Mining Stage: Characterizing Equilibrium Hash Profile

- Given a R&D profile $\mathbf{x} = (x_1, \dots, x_N)$, denote by

$$c_i(x_i) := \frac{\partial C_i(h_i, x_i)}{\partial h_i} = \alpha - x_i$$

the per-unit hash cost of firm i .

- Without loss of generality, we label firms so that

$$c_1(x_1) \leq c_2(x_2) \leq \dots \leq c_N(x_N).$$

Lemma

At any equilibrium hash rate profile,

- There are at least two active firms.
- The set of active firms is of the form $\{1, 2, \dots, n\}$ for some integer $n \in \{2, 3, \dots, N\}$.

Mining Stage: Characterizing Equilibrium Hash Profile

- Constructive procedure for the equilibrium hash profile:
 - Start with the n -firm candidate equilibrium and check whether firm $n + 1$, can join and make positive profits.
 - If so, include firm $n + 1$ and repeat.

Proposition

For any R&D profile \mathbf{x} , there exists a unique equilibrium hash profile $\mathbf{h}(\mathbf{x}) := (h_1^*, h_2^*, \dots, h_N^*)$.

- If n firms are active in the unique equilibrium, then the equilibrium hash rate is given by

$$h_i^* = \frac{R(n-1)(c^{(n)} - (n-1)c_i)}{(c^{(n)})^2}, \quad i = 1, \dots, n.$$

where $c^{(n)} := \sum_{j=1}^n c_j$ is the sum of the active firms' hash costs.

Hash rate proportional to Bitcoin price?

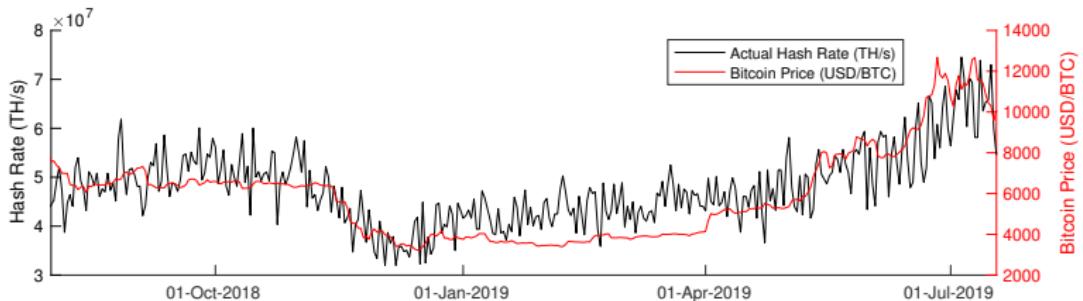


Figure: Plot of actual aggregate hash rate (left axis) and bitcoin exchange prices (right axis) vs. time.

- Time period: July 19 2018-July 18 2019.

Bitcoin's Tendency Towards Mining Centralization

Corollary

Let n be the number of active miners, a firm will not actively compete in mining if and only if its per-unit hash rate cost is larger than the average per-unit cost of active miners by at least $\frac{100}{n-1}\%$.

- For example,
 - When $n = 10$, firms with per-unit hash cost greater than the average by 11.1% will not be able to compete.
 - When $n = 20$, firms with per-unit hash cost greater than the average by 5.3% will not be able to compete.
- Investing in R&D supports competitiveness in mining.
- Supports statements released by Tai, the chairman of Hut 8 Mining Corporation,
 - “Smaller miners will drop out, and only five to ten of the largest will survive and be profitable.”
 - Major mining companies such as Bitmain and Bitfury design and make their own mining chips, and hence have lower hashing cost.

Characterizing Equilibrium R&D levels

Proposition

Suppose $\gamma \geq \gamma^*$. Then there exists a unique symmetric SPE. It satisfies:

- An increase in the mining reward R increases the equilibrium R&D level and hash rate of any firm.
- All firms invest a strictly positive amount in R&D.

- Consistent with empirical evidence:
 - Mining equipment technological advancements in response to rise in Bitcoin price.
 - CPU → GPU → FPGA → ASIC.

Cooperation between Firms

- Does investing in research benefit firms?
 - Investment is costly, but reduces second period mining costs.
- **Benchmark:** firms cooperate on R&D in Period 1, but compete over exerted hash rate in Period 2.
 - In Period 1, firms choose the R&D profile \mathbf{x} to maximize the total profits $\Pi(\mathbf{x}) := \sum_j^N \pi_j(\mathbf{x})$.
- Unique symmetric outcome for cooperative R&D:

$$x^C = 0$$

- Firms exert an excessive amount of R&D in the non-cooperative case.
 - *Arms race* ensues.

Combined-profits Externality

- The cooperative solution implies that the optimal level of R&D by each firm maximizes the aggregate profit, i.e. each firm i solves

$$\max_{x_i} \Pi(\mathbf{x}).$$

- Note:

$$\frac{\partial \Pi}{\partial x_i} = \frac{\partial \pi_i}{\partial x_i} + \sum_{j \neq i} \frac{\partial \pi_j}{\partial x_i}.$$

where the sum $\sum_{j \neq i} \frac{\partial \pi_j}{\partial x_i}$ is the *combined-profits externality* conferred by firm i 's R&D expenditure on profits of all other firms.

- This negative externality dominates firm i 's gains from its research expenditure.

Spillovers

- How does R&D spillovers impact outcome?
- R&D spillovers occur when firms have difficulties protecting their intellectual property.
- Channels for technology to spread:
 - Movement of personnel from one firm to the next.
 - Informal communication networks among engineers.
 - Input supplier.
- To account for spillovers, we use the generalized cost function given by

$$C_i(h_i, \mathbf{x}; \beta) = (\alpha - x_i - \beta \sum_{j \neq i} x_j)h_i,$$

- $0 \leq \beta \leq 1$ is the spillover parameter.

Impact of Spillovers

Proposition

- (i) An increase in β decreases the R&D level of any firm and improves their profit.
- (ii) The total hash rate $H^{NC} := \sum_i^N h_i(\mathbf{x}^{NC})$ is increasing in β when $\beta < \bar{\beta} = \frac{N-2}{2(N-1)}$ and decreasing otherwise.

- Absence of spillovers induces the highest R&D.
- But, does it result in the maximal level of hash rate H^{NC} deployed?
NO!
- Aggregate hash rate proportional to the *effective R&D*

$$X^{NC} := x^{NC}(1 + \beta(N - 1)).$$

- Spillovers have a nonlinear impact on the effective R&D.
 - Firms benefit from rivals' R&D besides their own.
 - Free-riding disincentivizes firms from investing in R&D.

Tendency towards Centralization

- Recall that the cost function $C_i(h_i, x_i)$ is given by

$$C_i(h_i, x_i) = (\alpha - x_i) h_i,$$

where α is the marginal hash cost prior to any R&D.

- Extension: Assume firms have heterogeneous initial marginal hash costs α_i ;
- Arrange marginal costs according to increasing α_i , that is,

$$\alpha_1 < \alpha_2 < \cdots < \alpha_N$$

- How would this heterogeneity influence R&D investments?

Tendency towards Centralization

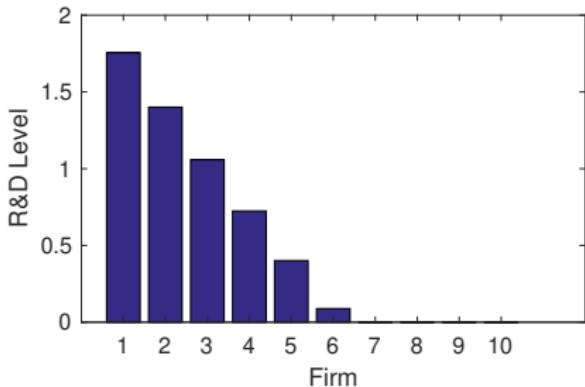


Figure: The figure plots firms' individual R&D levels when $N = 10$, $p = \$6,500$.

- Firms with lower marginal hash costs have a greater incentive to invest in research.
 - The marginal benefits of R&D are higher for firms with lower marginal hash costs
- Matthew Effect → tendency towards centralization.

Summary and Policy Implications

- Firms fail to capture the surplus created by their research (i.e., *arms race* ensues)
 - More R&D leads to a more aggressive second stage mining game.
- A remedy to R&D arms race is promoting spillovers: not only reduces wasteful R&D duplication and improves firms' profits, but may also increases hash rate.
 - Higher aggregate hash rate benefits Bitcoin users.
 - Implications for policies governing patents and non-compete agreements.
- Proof-of-work leads Bitcoin mining towards centralization.
 - Against the fundamental reason behind cryptocurrencies.

Thanks for your attention!

Deriving the Revenue Function

- When a hashing power h_i is exerted, the waiting time of miner i to solve the computational task τ_i is exponentially distributed with parameter $\frac{h_i}{D}$ where D is the difficulty level.
 - The waiting time until the first miner solves the computational task $\tau = \min(\tau_1, \dots, \tau_N)$ is exponentially distributed with parameter $\frac{H}{D}$.
 - The probability that miner i is the first to solve the computational problem is $\frac{h_i}{H}$.
- The parameter D is adjusted by the Bitcoin system to keep the expected time between the solutions of the computational problem fixed.
 - Total bitcoin rewards in the second stage game does not depend on miners' total computational power.
 - After accounting for the bitcoin exchange rate, the total reward is denoted by R .
- Thus, if miner i exerts a hash rate h_i , he is expected to update a fraction $\frac{h_i}{H}$ of the blocks in the second stage mining game, giving him an expected revenue $R_i(\mathbf{h}) = \frac{h_i R}{H}$.

Collusion

- **Alternative benchmark:** Firms cooperate in both stages of the game.
- Optimal to set $h_i = \epsilon > 0$ to the minimum amount required to mine successfully, and $x_i = \frac{\epsilon}{N^\gamma} \approx 0$.
- Firms capture all the reward from Bitcoin, while incurring negligible mining costs.
- **However**, this does not reflect reality, because it removes any barrier to entry.
 - Miners with high electricity costs and inefficient hardware would still want to participate.

Collusion

Assumption

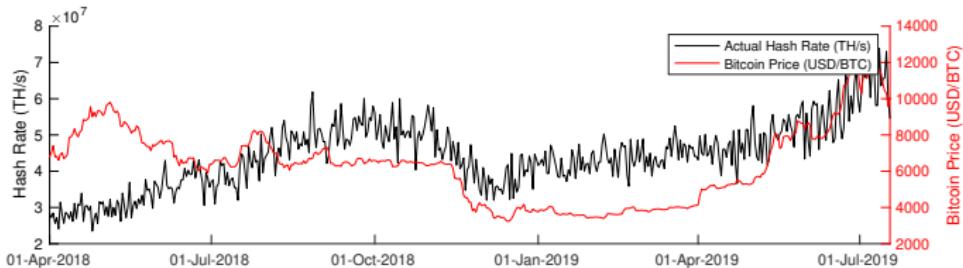
There exists an infinite number of miners with a marginal cost $c^e \geq \frac{N\alpha}{N-1}$.

- Ensures small miners are not able to compete when mining firms do not cooperate.
- Firms agree to exert the minimum hash rate H^M to keep small miners out.
- In the first stage, when $x_i = x^M$ for $i = 1, 2, \dots, N$, the profit maximizing monopolistic R&D level is given by

$$x^M = \frac{H^M}{N\gamma} > 0.$$

- In the absence of PoW protocol, firms invest in R&D.
 - i.e. aggressive competition induced by proof-of-work protocol prevents firms from capturing their research surplus.

Comparing Outcomes


Proposition

When firms do not cooperate (NC), cooperate only on R&D (C) and cooperate both on R&D and hash rate (M),

- (i) The total hash rate satisfy $H^{NC} \geq H^C \geq H^M$.
- (ii) The R&D levels satisfy $x^{NC} > x^M > x^C$.

→ When firms fully cooperate, less competition in the mining stage allows them to capture a higher share of the surplus created by their research, hence incentivizing more R&D expenditures.

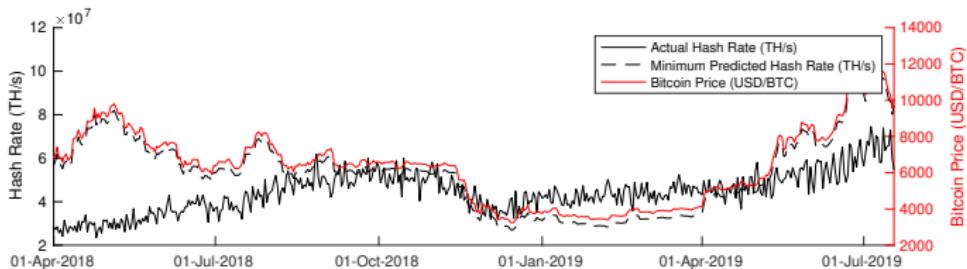

Recent trends in Bitcoin: Rise of Aggregate Hash Rate Deployed

Figure: Plot of actual aggregate hash rate (left axis) and bitcoin exchange prices (right axis) vs. time.

- Hash rate does not seem proportional to Bitcoin price.
- Apr-Oct 2018: Total hash rate deployed by miners continued to rise despite decrease in Bitcoin price.
- Contradicts model prediction?

Recent trends in Bitcoin: Rise of Aggregate Hash Rate Deployed

Figure: Equilibrium aggregate hash rate as a function of bitcoin's price.

- Conservative model prediction:
 - Five firms.
 - Mining equipment energy efficiency is 10.2 GH/J (Antminer S9).
 - Miscellaneous variable costs are 25% of hashing costs.
- Bitcoin mining was at a transient state till Dec. 2018.

References

Abadi, J. and Brunnermeier, M. (2018). Blockchain economics. Working paper, Princeton University.

Athey, S., Parashkevov, I., Sarukkai, V., and Xia, J. (2016). Bitcoin pricing, adoption, and usage: Theory and evidence. Stanford University Graduate School of Business Research Paper No. 16-42. Available at SSRN: <https://ssrn.com/abstract=2826674>.

Biais, B., Bisiere, C., Bouvard, M., and Casamatta, C. (2019). The blockchain folk theorem. *Review of Financial Studies, Forthcoming*.

Biais, B., Bisiere, C., Bouvard, M., Casamatta, C., and Menkveld, A. J. (2018). Equilibrium Bitcoin pricing. Working paper. Available at SSRN: <https://ssrn.com/abstract=3261063>.

Catalini, C. and Gans, J. S. (2016). Some simple economics of the blockchain. MIT Sloan Working Paper 5191-16, MIT Sloan School of Management.

Cheng, E. (2018). Secretive Chinese Bitcoin mining company may have made as much money as Nvidia last year. *CNBC*. <https://www.cnbc.com/2018/02/23/secretive-chinese-bitcoin-mining-company-may-have-made-as-much-money-as-nvidia-last-year.html> [Online; posted 23-Feb-2018, accessed 23-September-2018].

Chiu, J. and Koepll, T. V. (2017). The economics of cryptocurrencies—Bitcoin and beyond. Working Paper Series 6688, Victoria University of Wellington, School of Economics and Finance. Available at SSRN: <https://ssrn.com/abstract=3048124>.

Cong, L. W. and He, Z. (2019). Blockchain disruption and smart contracts. *Review of Financial Studies, Forthcoming*.

Easley, D., O'Hara, M., and Basu, S. (2019). From mining to markets: The evolution of Bitcoin transaction fees. *Journal of Financial Economics, Forthcoming*.

Hinzen, F. J., John, K., and Saleh, F. (2019). Proof-of-work's limited adoption problem. Working paper, NYU Stern School of Business. Available at SSRN: <https://ssrn.com/abstract=3334262>.

Huberman, G., Leshno, J., and Moallemi, C. (2018). An economic analysis of the Bitcoin payment system. Columbia Business School Research Paper No. 17-92. Available at SSRN: <https://ssrn.com/abstract=3025604>.

Khatri, Y. (2019). Bitfury partners to launch Bitcoin mining centers in Paraguay. *Coindesk*. <https://www.coindesk.com/bitfury-partners-to-launch-bitcoin-mining-centers-in-paraguay> [Online; posted 4-Feb-2019, accessed 27-March-2019].

Malinova, K. and Park, A. (2017). Market design with blockchain technology. Working paper, University of Toronto. Available at SSRN: <https://ssrn.com/abstract=2785626>.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Available: <https://bitcoin.org/bitcoin.pdf> [Online; accessed 30-September-2018].

Pagnotta, E. and Buraschi, A. (2018). An equilibrium valuation of Bitcoin and decentralized network assets. Working paper, Imperial College Business School. Available at SSRN: <https://ssrn.com/abstract=3142022>.

Saleh, F. (2018). Blockchain without waste: Proof-of-stake. Working paper, McGill University. Available at SSRN: <https://ssrn.com/abstract=3183935>.

Yermack, D. (2017). Corporate governance and blockchains. *Review of Finance*, 21(1):7–31.