CONCLUSION

FROM HOTELLING TO NAKAMOTO: The Economic Meaning of Bitcoin Mining

Cong QIN Soochow University

jointly with Min DAI (NUS), Wei JIANG (NUS), and Steven KOU (BU)

Workshop on Stochastic Control in Finance 22 - 26 July 2019, NUS

INTRODUCTION

The Model

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

Agenda

INTRODUCTION

The Model

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

QUANTITATIVE ANALYSIS

CONCLUSION

INTRODUCTION

- The Model
- CALIBRATION

QUANTITATIVE ANALYSIS

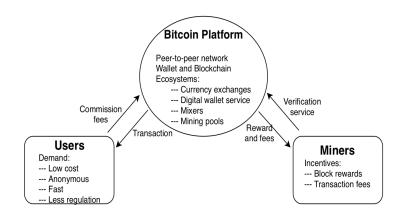
CONCLUSION

BITCOIN SYSTEM



Basic ingredients: (a) Users, and (b) Miners

BITCOIN SYSTEM



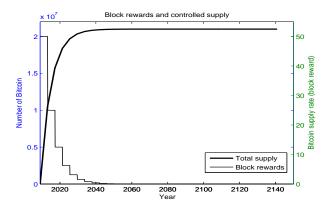
Basic ingredients: (a) Users, and (b) Miners What is the economic meaning of Bitcoin mining?

MINING BUSINESS

Mining business consists of

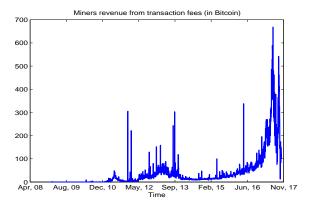
- Revenue:
 - Block Bitcoin rewards (deterministic, exogenously given by the system, and are vanished after 2140)
 - Transaction fees in Bitcoin (stochastic, endogenously determined by the system)
- Cost:
 - Runing costs (e.g., mining machines, electricity, etc.)
 - Liquidation costs
 - Others
- Risk/Uncertainty:
 - Mining lottery (strong competition, low chance)
 - Exchange rate (Bitcoin/USD, extremely volatile due to adoption, policy uncertainty etc.)

BLOCK REWARDS



Block rewards: Deterministic, Exogenous, and Scarce Scarcity \implies Bitcoin is an exhaustible resource!

TRANSACTION FEES



Transaction fees: Stochastic, Endogenous, and Unlimited Key incentive to miners after the end of block rewards

Stylized Facts: Exchange Rate & Average Transaction Fee Rate

FIGURE: The dynamics of average transaction fee rate and Bitcoin price from 2013 to 2018. Average fee rate at $t = \frac{\text{Total transactin fees at t}}{\text{Processed transaction volume at t}}$.

STYLIZED FACTS: MINER'S INVENTORY

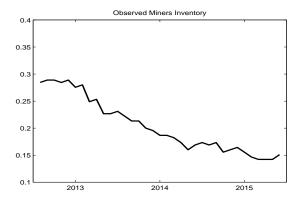


FIGURE: Miner's inventory proportional to the supply from 2012 to 2015 (Athey et al. 2016). Proportional inventory = $\frac{\text{Miners' aggregate inventory at time t}}{\text{Cumulative Bitcoin supply at time t}}$.

Our Main Results

- We build a partial equilibrium model from miners' perspective by extending the classical Hotelling (1931) model with inventory and feedback supply.
- We calibrate our model to the empirical data from 2013 to 2018.
- Our model has many interesting implications including
 - A high (low) trading volume leads to a high (low) transaction fee rate.
 - High jump risk forces miners to sell their holding of Bitcoin in an early stage even when Bitcoin price is quite low.

LITERATURE REVIEW

• Model on transaction fees:

Easley, O'Hara, and Basu(2019, JFE)	One period	Nash equilibrium of users' fee paying strategy
Our model	Continuous time dynamic model	Transaction fees from miner's perspective incorporating declined block rewards and miners' inventory

- Resource models: Hotelling (1931, JPE); Levhari and Pindyck (1981, QJE); Pindyck (2001);
- Bitcoin as currency: Athey et al. (2016); Gandal and Halaburda (2015); Halaburda and Sarvary (2016); Bolt et al. (2016); Jermann (2018).
- Others: Cong, He, and Li (2018); Dixon (1980); Bass (2004).

INTRODUCTION

The Model

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

INTRODUCTION

The Model

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

A RESOURCE PRODUCTION MODEL

Originating from Hotelling (1931, JPE), resource mining problem can be written in general as:

$$\sup_{Q_u \ge 0} \mathbb{E}_t \Big[\int_t^\infty e^{-\beta (u-t)} \Big(\operatorname{Rev}(Q_u) - \operatorname{Cost}(Q_u) \Big) du \Big]$$

where $\beta > 0$ is a discount factor, and

- $\operatorname{Rev}(Q_u) = P_u Q_u$
- $\operatorname{Cost}(Q_u) = \lambda_1 P_u Q_u^2 [\operatorname{liquidation}] + \lambda_2 P_u Q_u^2 / H_u [\operatorname{utlity}] + c [\operatorname{running}]$
- Q : Miner's selling rate
- P : Bitcoin Price
- *H* : Holding Inventory

A RESOURCE PRODUCTION MODEL Originating from Hotelling (1931, JPE), resource mining problem can be written in general as:

$$\sup_{Q_u \ge 0} \mathbb{E}_t \Big[\int_t^\infty e^{-\beta (u-t)} \Big(\operatorname{Rev}(Q_u) - \operatorname{Cost}(Q_u) \Big) du \Big]$$

where $\beta > 0$ is a discount factor, and

- $\operatorname{Rev}(Q_u) = P_u Q_u$
- $\operatorname{Cost}(Q_u) = \lambda_1 P_u Q_u^2 [\operatorname{liquidation}] + \lambda_2 P_u Q_u^2 / H_u [\operatorname{utlity}] + c [\operatorname{running}]$
- Q : Miner's selling rate
- P: Bitcoin Price $P_t = \theta_p X_t$, where

$$dX_t = \mu(\xi_t, X_t)dt + \sigma(\xi_t, X_t)dW_t - (1 - Z)X_t dJ_t$$

• *H* : Holding Inventory

 $dH_u = \{(b_u[\text{block}] + I_u[\text{transaction}])\pi[\text{probability}] - Q_u\}du$

MODELING BITCOIN PRICE

- Bitcoin price satisfies an inverse demand function.
- Bitcoin price is determined by quantity equation of medium of exchange (Bolt et al. 2016, WP; Fisher 1911; Friedman 1973):

$$P_t = \theta_p X_t.$$

where the constant θ_p is determined by Bitcoin supply and velocity.

Modeling Demand Shock

Demand shock (Bass 2004; Gronwald 2015; Gandal et al. 2018):

$$dX_t = \mu(\xi_t, X_t)dt + \sigma(\xi_t, X_t)dW_t - (1 - Z)X_t dJ_t$$

where

- $\xi_t \in \{\mathbb{H}, \mathbb{L}\}$ represent two transaction states: High-active/Low-active markets, with transition intensities $\zeta = (\zeta_{\mathbb{H}}, \zeta_{\mathbb{L}}).$
- $\mu(\xi_t, X_t) = \kappa_{\xi}(\nu_{\xi} \ln X_t)X_t$, and $\sigma(\xi_t, X_t) = \sigma_{\xi}X_t$ denote the adoption term and volatility term respectively in state ξ_t (Gompertz Model).
- J_t is a jump process with intensity λ_J , and 1 Z is the proportional jump size (Weil 1987, QJE).

MINER'S INVENTORY

Miner's inventory H_t satisfies

$$dH_t = [(b_t + I_t)\pi - Q_t]dt,$$

- $\pi = \frac{\omega}{D \times 2^{32}/600}$ is the probability of successful validations and D is the difficulty level (Hayes 2017).
- b_t is the block reward at t with total supply $\bar{S} = \int_0^\infty b_t dt = \int_0^T b_t dt < \infty$
- I_t is the transaction fees in candidate blocks at t.

Note. $D\times 2^{32}/600$ is also called network hash rate.

Modeling Transaction Fees

• Total volume of submitted orders by others:

 $L_t = \theta(\xi_t)(S_t - H_t)\log(1 + X_t) \text{ with } \theta(\xi_t) \in \{\theta_{\mathbb{H}}, \theta_{\mathbb{L}}\}.$

• The distribution of orders with different fee rate:

 $f(\phi), \phi \in (0, \bar{\phi})$ with C.D.F. $F(\phi)$.

• Each time, a fixed number of orders G will be processed by miners.

TRANSACTION FEES

• The miner selects fee threshold Φ_t to solve

$$\max_{\Phi_t} I_t(\Phi_t) = K(\Phi_t)L_t$$

s.t. $k(\Phi_t)L_t \leq G$,
where $k(\Phi_t) = \int_{\Phi_t}^{\bar{\phi}} f(\phi)d\phi$, and $K(\Phi_t) = \int_{\Phi_t}^{\bar{\phi}} f(\phi)\phi d\phi$.
Optimal fee threshold satisfies:

$$\Phi_t^* = \begin{cases} F^{-1}(1 - \frac{G}{L_t}), & \text{if } L_t > G, \\ 0 & \text{if } L_t \le G, \end{cases}$$

• The miner's average transaction fee rate:

$$r_t = \frac{K(\Phi_t^*)}{k(\Phi_t^*)}.$$

AVERAGE TRANSACTION FEE RATE

PROPOSITION

- In state ξ, for demand level lower than G/θ(ξ), the average transaction fee rate is constant K(0)/k(0). For demand level higher than G/θ(ξ), the average transaction fee rate is an increasing function of demand.
- The above results hold for the market average transaction fee rate (aggregation).

HJB EQUATION

- Short-run case: t < T, there are block rewards.
- In state ξ , for $(t, X_t, H_t) = (t, x, h) \in (0, \infty)^2 \times [0, S(t)]$,

$$\begin{aligned} &\frac{\partial V_{\xi}}{\partial t} + \mathcal{L}V_{\xi} + \max_{\{q \ge 0\}} \left\{ (\pi(b_t + K(\phi)L) - q)\frac{\partial V_{\xi}}{\partial h} + Pq - \lambda_q Pq^2 - c \right\} \\ &+ \lambda_J \Big[V_{\xi}(t, Zx, h) - V_{\xi}(t, x, h) \Big] + \zeta_{\xi} \Big[V_{\tilde{\xi}}(t, x, h) - V_{\xi}(t, x, h) \Big] = \beta V_{\xi} \end{aligned}$$

where

$$\mathcal{L}V_{\xi} = \frac{1}{2}\sigma(\xi, x)^2 \frac{\partial^2 V_{\xi}}{\partial x^2} + \mu(\xi, x) \frac{\partial V_{\xi}}{\partial x}.$$

- Long-run case: $b_t = 0$ for $t \ge T$
- $V_{\xi}(t, X, H) = V_{\xi}(T, X, H) := V_{\xi}^{L}(X, H)$ for any $t \ge T$.

OPTIMAL SELLING STRATEGIES

• In state $\xi,$ optimal inventory strategy q_ξ^* satisfies:

$$q_{\xi}^{*} = \max\left\{\frac{h}{2P(\lambda_{1}h + \lambda_{2})}\left(P - \frac{\partial V_{\xi}}{\partial h}\right), 0\right\}$$

Optimal Selling Strategies

• In state $\xi,$ optimal inventory strategy q_ξ^* satisfies:

$$q_{\xi}^{*} = \max\left\{\frac{h}{2P(\lambda_{1}h + \lambda_{2})}\left(P - \frac{\partial V_{\xi}}{\partial h}\right), 0\right\}$$

- Holding / Selling regions:
 - Selling region:

$$\left\{q_{\xi}^* > 0\right\} = \left\{P > \frac{\partial V_{\xi}}{\partial h}\right\}$$

• Holding region:

$$\left\{q_{\xi}^{*}=0\right\}=\left\{P\leq\frac{\partial V_{\xi}}{\partial h}\right\}$$

INTRODUCTION

The Modei

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

INTRODUCTION

The Model

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

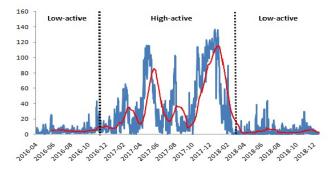
23/44

CALIBRATION: DATA

- Observed data (Monthly from 2013-2018. source: https://www.blockchain.com):
 - Bitcoin price $\{P_t\}$
 - Difficulty level $\{D_t\}$
 - Miners' aggregate inventory $\{H_t^A\}$ from 2013 2015,
 - Market average fee rate: $\{r_t^A\}$
 - Aggregate transaction fees: $\{I_t^A\}$
- Bitcoin prices are informative to parameters $\Theta_1 = \{\kappa, \nu, \sigma_{\mathbb{H}}, \sigma_{\mathbb{L}}\}.$
- Miners' aggregate inventory, average fee rate, and aggregate fee income are informative to parameters Θ₂ = {λ₁, λ₂, θ_H, θ_L}.

HIGH-ACTIVE/LOW-ACTIVE MARKET

- Detect the high-active and low-active market by Mempool size (High-active: mempool size > 10 MB).
- Low-active: 2013Q1-2016Q3; High-active: 2016Q4-2017Q4; Low-active: 2018Q1-201018Q4



Note. Red line is the 60-day moving average.

Calibration Method

- Step 1: Set $\beta = 0.06$; $\overline{S} = 1$; G = 10; $\theta_p = 100$; $\lambda_J = 57$; Z = 0.9. The $f(\cdot)$ satisfies Beta distribution with parameters (a, b) = (0.1, 99.9).
- Step 2: Estimate $\Theta_1 = (\kappa, \nu, \sigma_{\mathbb{H}}, \sigma_{\mathbb{L}})$ with Bitcoin price data.
- Step 3: Given Θ₂ = (λ₁, λ₂, θ_H, θ_L) and observed Bitcoin price, we can compute the path of demand shock {X̃_t; t = 1, · · · , T₁}. For miners start to mine in year y ∈ (2013, · · · , 2018), we can compute the
 - implied transaction fees $\{\widetilde{I}_{y,t}; t = 1, \cdots, T_1\},\$
 - implied average fee rate $\{\widetilde{r}_{y,t}; t = 1, \cdots, T_1\}.$
 - implied inventory $\{\widetilde{H}_{y,t}; t = 1, \cdots, T_2\},\$

Calibration Method

- Step 3 (continue): Compute
 - implied aggregate transaction fees $\{\widetilde{I^A}_t; t = 1, \cdots, T_1\}.$
 - implied market average fee rate $\{r^{A}_{t}; t = 1, \cdots, T_{1}\};$
 - implied aggregate inventory $\{H^A_t; t = 1, \cdots, T_2\};$ We estimate $\widehat{\Theta}_2$ by minimizing:

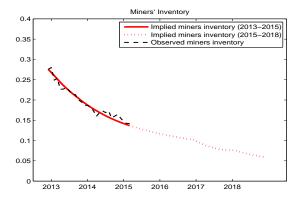
$$\begin{split} & \min_{\Theta_2} \frac{1}{T_1} \sum_{1}^{T_1} \left\{ w_t^1 (r_t^A - \widetilde{r^A}_t)^2 + w_t^2 (I_t^A - \widetilde{I^A}_t)^2 \right\} \\ & + \frac{1}{T_2} \sum_{1}^{T_2} \left\{ w_t^3 (H_t^A - \widetilde{H^A}_t)^2 \right\} \end{split}$$

where w_t^1, w_t^2, w_t^3 are the weight coefficients.

SUMMARY OF PARAMETERS

Parameters	Symbol	Value
Risk-free rate	$\frac{\beta}{\bar{S}}$	0.06
Total supply of Bitcoin		1
Capacity of blocks per unit of time		10
Hash rate per miner (TH/s)		5.2
Coefficient in quantity equation (Billion USD per unit)		100
Upper bound of fee rate		10%
Beta distribution parameters		(0.1, 99.9)
Adoption speed of Bitcoin	κ	1.1742
Log carrying capacity	ν	0.7793
Volatility of demand shock in high-active market		0.7910
Volatility of demand shock in low-active market		0.6225
State transition intensity		(0.8, 0.3)
Jump parameters	(λ_J, Z)	(57, 0.9)
parameter in liquidation cost	λ_1	4.5
parameter in utility cost in liquidation	λ_2	0.6
Sensitivity of volume to demand in high-active market	$ heta_{\mathbb{H}}$	251.3
Sensitivity of volume to demand in low-active market		30.6
Marginal cost of mining (Billion USD per TH/s)	C_m	$3.61 imes 10^{-7}$

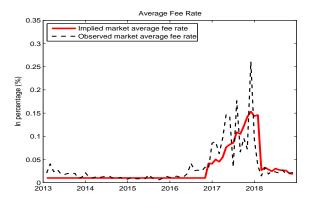
IMPLIED INVENTORY



Note. Proportional inventory.

CONCLUSION

IMPLIED AVERAGE FEE RATE



CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

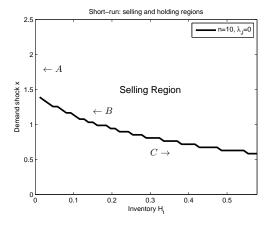
INTRODUCTION

The Model

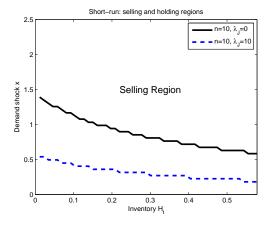
CALIBRATION

QUANTITATIVE ANALYSIS

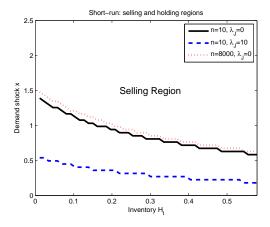
CONCLUSION



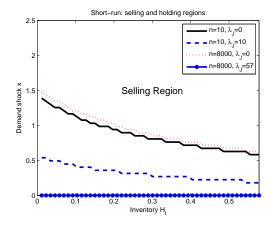
Note. Bull market. t = 2014. $H_t \in [0, S_t], S_t = 0.5871.n = 1/\pi$.



Note. Bull market. t = 2014. $H_t \in [0, S_t], S_t = 0.5871.n = 1/\pi$.

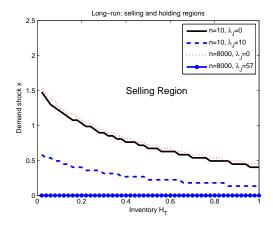


Note. Bull market. t = 2014. $H_t \in [0, S_t], S_t = 0.5871.n = 1/\pi$.



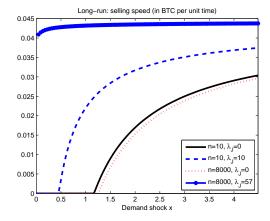
Note. Bull market. t = 2014. $H_t \in [0, S_t], S_t = 0.5871.n = 1/\pi$.

Selling boundary in long-run



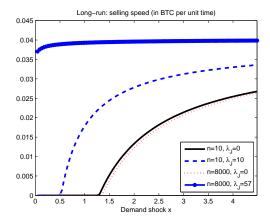
Note. Bull market.

SHORT-RUN: OPTIMAL SELLING



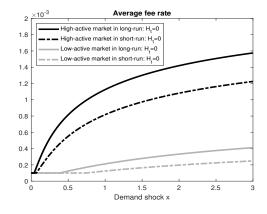
Note. Bull market. t = 2014. We fix the miner's holding to be $H_t = 0.1$. $n = 1/\pi$.

LONG-RUN: OPTIOMAL SELLING



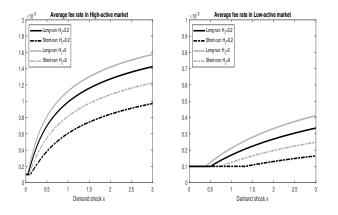
Note. Bull market. We fix the miner's holding to be $H_T = 0.1$. $n = 1/\pi$.

AVERAGE FEE RATE TO DEMAND



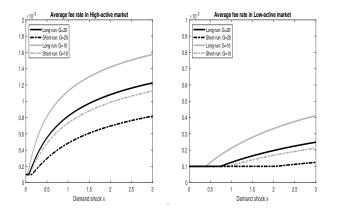
Note. H = 0.

AVERAGE FEE RATE TO INVENTORY



Note. Here we assume short-run case is about at t = 2014. Left figure shows the average fee rate under different inventory for both long-run and short-run in high-active market, while the right figure shows that in low-active market.

AVERAGE FEE RATE TO CAPACITY



Note. Here we assume short-run case is about at t = 2014. Left figure shows the average fee rate under different system capacity for both long-run and short-run in high-active market, while the right figure shows that in low-active market.

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

INTRODUCTION

- The Model
- CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

CONCLUSION

- We build a partial equilibrium model from miners' perspective by extending the classical Hotelling model with inventory and feedback supply, and calibrate our model to the empirical data from 2013 to 2018.
- The model can simultaneously generate the dynamics of average transaction fee rate and miners' inventory holdings consistent with the observed data.
- We find trading volume and jump risk are respectively key factors to understand the dynamics of average transaction fee rate and miners' inventory holdings.

INTRODUCTION

The Model

CALIBRATION

QUANTITATIVE ANALYSIS

CONCLUSION

Thanks for your attention!