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Multiple Testing

I Multiple testing is pervasive in empirical finance.

I Which factors, among hundreds, adds explanatory power for the

cross-sectional variation of expected returns?

I Which funds, among thousands, produce positive alpha (i.e., have

skill)?

I Which trading strategy, among millions, yields a desirable Sharpe

ratio?

I ...

I These are central questions in both academic finance and asset

management industry.



Data Snooping and False Discoveries

I With multiple testing comes the concern of data snooping (i.e., data

mining, data fishing, data dredging, p-hacking)

I Find patterns in the data that appear statistically significant even if

there is no real underlying effect

I “If you torture the data enough, eventually they will surrender.”

I “I have never seen a bad backtest.”



Example: Identify Funds with Positive Alpha (Skill)

Although each positive alpha has a low probability of being due to chance

alone (5%), a large fraction of positives may be “false discoveries.”

I We run 100 tests

I Suppose we know there are 10 true positives among these 100

I At 5% confidence level, we expect 90× 5% = 4.5 false discoveries

I The false discovery rate is about 31% (4.5/14.5)



Our Contribution

I We propose a rigorous framework to address testing for multiple

alphas in linear asset pricing models.

I Derive a large-T, large-N extension of the FDR control procedure

that solves the issues specific to asset pricing

I Illustration: hedge fund performance evaluation.



Existing Literature

I The academic finance literature have long been aware of the data

snooping issue (Lo and MacKinlay (1990, RFS)).

I One typical approach avoids the multiple testing problem by

formulating a single null hypothesis to test: for example, asking

whether any fund beats the benchmark, (White (2000, ECMA)) or

whether funds on average beat the benchmark, (Fama and French

(2010, JF)).

I Harvey, Liu, and Zhu (2016, RFS) import statistical tools, e.g., FDR

control by Benjamini and Hochberg (1995, JRSSB), to solve the multiple

testing problem in asset pricing context. See also Barras, Scaillet, and

Wermers (2010, JF).



Model Setup

I We assume excess returns, rt , follow a linear factor model:

rt︸︷︷︸
N×1

= α + βλ+ β︸︷︷︸
N×K

(ft − E(ft))︸ ︷︷ ︸
K×1

+ut ,

where ft is a vector of factors and ut is the idiosyncratic component.

I λ are the factor risk premia.

I Note that λ = E(ft) only if ft contains exclusively tradable portfolios.



Multiple Hypotheses

We formulate a collection of null hypotheses, one for each fund:

Hi
0 : αi ≤ 0, i = 1, . . . ,N. (1)

This is fundamentally different from the well-known GRS test ( Gibbons,

Ross, and Shanken (1989, ECMA)), in which the null hypothesis is a single

statement that

H0 : α1 = α2 = . . . = αN = 0. (2)

I GRS tests whether there exists (at least one) fund whose alpha is

significantly different from zero.

I We want to find all those that have positive alphas, which involves

two steps:

1. estimate alpha

2. control FDR



Controlling the FDR: Notation

I Suppose ti is a test statistic for the null Hi
0, which rejects the null

whenever ti > ci under a prespecified cutoff ci .

I Let H0 ⊂ {1, ...,N} denote the set of indices for which the

corresponding null hypotheses are true.

I In addition, let R be the total number of rejections in a sample, and

F be the number of false rejections in that sample:

F =
N∑
i=1

1{i ≤ N : ti > ci and i ∈ H0},

R =
N∑
i=1

1{i ≤ N : ti > ci}.

I We define false discovery proportion (FDP) and its expectation,

FDR, as

FDP =

(
F

max{R, 1}

)
, FDR = E(FDP).



Comparison with Alternative Approaches

I Naive approach that ignores multiple testing problem:

E(F) ≤ Nτ.

I FDR control:

E
(

F
max{R, 1}

)
≤ τ.

I Bonferroni procedure that controls the family-wise error rate:

P(F ≥ 1) ≤ τ.



The B-H Procedure for FDR Control

S1. Sort the p-values of the individual tests, {pi : i = 1, . . . ,N}. Denote

p(1) ≤ . . . ≤ p(N) as the sorted p-values.

S2. Reject Hi
0 if pi ≤ p(k̂), where k̂ = max{i ≤ N : p(i) ≤ τ i/N}.
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Assumptions behind the Classical B-H Procedure

1. Requires independence ⇒ but fund returns are correlated

2. Requires a small number of tests N ⇒ but number of funds N is

large

(Empirically we have 270 months and over 3,000 funds — big data)

3. Requires unbiased estimates for the p-values ⇒ but with fixed N

alphas are in general estimated with bias



Issues with the Classical (N Small) Alpha Estimator

I Recall that FM procedure involves two steps to estimate this model:

rt︸︷︷︸
N×1

= α + βλ︸ ︷︷ ︸
E(rt)

+ β︸︷︷︸
N×K

(ft − E(ft))︸ ︷︷ ︸
K×1

+ut ,

1. estimate β using TS regressions

2. estimate α as residuals from a CS regression of r̄ = 1
T

∑
t rt on β̂.

I Two problems:

1. α̂ is inconsistent, even if the model is correctly specified (regressor β

and residual α are not necessarily orthogonal).

2. Another concern is the possibility of missing some common factors:

rt = α + βlλl︸ ︷︷ ︸
“alpha”

+βo fo,t + βl(fl,t − Efl,t) + ut︸ ︷︷ ︸
“idiosyncratic” error

where fo contains observable portfolios, like FF3 or FF4.



The “Blessings” of Dimensionality

I If all factors are observable, then only when N is large, as

N,T →∞ for each i ≤ N, the FM estimator of α is consistent:

σ−1
i,NT (α̂i − αi )

d−→ N (0, 1), where

σ2
i,NT =

1

T
Var(uit(1− vtΣ

−2
f λ)) +

1

N
Var(αi )

1

N
β′iS
−1
β βi .



Allowing for Latent Factors

I If all factors are latent, we can use PCA to recover them, and then

apply FM to estimate λ (Giglio and Xiu (2017)) and α (Connor and

Korajczyk (1986, JFE))!

I Recall that

rt = α + βHH−1λ︸ ︷︷ ︸
E(rt)

+βHH−1(ft − E(ft)) + ut ,

and suppose ft is latent.

I The SVD of the matrix of (demeaned) returns can recover β and ft

up to some invertible matrix H and H−1, (Bai and Ng (2002, ECMA),

Bai (2003, ECMA)).

I It is clear that α is identifiable without being affected by H.



The Mixture Case

I The same identification result holds for general models, where asset

returns follow:

rt = α +
[
βo βl

] [ λo

λl

]
+
[
βo βl

] [ fo,t − Efo,t
fl,t − Efl,t

]
+ ut ,

where fo,t is a Ko × 1 vector of observable factors, and fl,t is a

Kl × 1 vector of latent factors, respectively.

I α is identifiable even if fo and fl are correlated in time series, and/or

βo and βl are correlated in the cross section.



Algorithm to Estimate α

S1. a. Run time series regressions and obtain the OLS estimator β̂o and

residual matrix Z :

β̂o = (RM1T F
′
o)(FoM1T F

′
o)−1, Z = R̄ − β̂o F̄o , (3)

where Fo = (fo,1, fo,2, . . . , fo,T ).

b. Let SZ = 1
T
ZZ ′ be the N × N sample covariance matrix of Z . Let

β̂l =
√
N(b1, . . . , bKl ),

where b1, . . . , bKl are the Kl eigenvectors of SZ , corresponding to its

largest Kl eigenvalues.

The resulting β̂ is given by

β̂ = (β̂o , β̂l).

S2. Run CS regression using β̂ to obtain α̂.



Constructing Test Statistics for the B-H Procedure

I In all cases, the asymptotic expansion of α is, if T logN = o(N),

√
T (α̂i − αi ) =

1√
T

T∑
t=1

uit(1− v ′tΣ−1
f λ) + oP(1/

√
logN).

Algorithm

S3. Calculate the standard error as

se(α̂i ) =
1√
T
σ̂i , σ̂2

i =
1

T

T∑
t=1

û2
it(1− v̂ ′t Σ̂−1

f λ̂)2,

where ûit = zit − β̂′l,i v̂l,t is the residual, and

v̂t =

(
fo,t − f̄o,t

v̂l,t

)
, v̂l,t =

1

N

N∑
i=1

β̂l,i (zit − z̄i ), Σ̂f =
1

T

T∑
t=1

v̂t v̂
′
t .



The B-H Procedure with Alpha-Screening

I Because we test (many) inequalities, the procedure might suffer

from a power loss if many test statistics are overwhelmingly

negative, i.e., “deep in the null.”

I We show we can safely reduce the set of funds if their t-stats are

too negative (i.e., very bad funds),

Î =
{
i ≤ N : ti > −

√
log(logN)

}
.

That is, we accept the null for tests in Î c .

I A well known problem with hedge fund datasets is that “bad” funds

will simply not report to the dataset.

I This is an important issue for understanding the average alpha, but

it increases our power to identify good funds.



FDR in Simulations

I N = 3,000, T= 300.

I True number of factors = 7, observed = 4, and missing = 3.

I α is a mixture of two Gaussians N (−2σ, σ2) and N (2σ, σ2), plus a

point mass at zero, with mixture probabilities: p1, p2, 1− p1 − p2.

Table: False Discovery Rates in Simulations

p1 p2 A-S B-H B-H B-H B-H no FDR

Mixture Mixture Latent Observable Mixture

0.1 0.1 5.49 4.63 8.04 23.46 31.77

0.1 0.3 3.92 3.38 5.92 12.27 10.55

0.1 0.5 2.55 2.24 3.79 6.84 4.57

0.3 0.1 4.97 3.42 7.91 18.65 25.29

0.3 0.3 3.16 2.20 4.75 8.49 7.18

0.5 0.1 4.33 2.23 5.99 13.38 18.08



Histograms of the Test Statistics
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Illustrative Analysis using Hedge Fund Alphas

I We apply our methodology to the Lipper TASS hedge funds dataset,

covering the time period 1994 - 2016.

I Panel of returns and asset under management (AUM)

I The Lipper TASS dataset is subject to a number of potential biases.

I Reporting to the dataset is voluntary, which induces a selection issue

in the funds that appear in the dataset.

I Funds are able to backfill returns for periods before they start

reporting to TASS.

I Funds can also revise returns they had previously entered in the

dataset.



More Cleanning Steps

I We compute when possible the returns using the changes in NAV; when NAV is

not available, we use reported returns.

I We remove funds that do not report monthly, and funds that do not report

net-of-fee returns.

I We also remove funds that do not consistently report AUM: we require funds to

report AUM at least 95% of the time.

I We also remove suspicious returns: monthly returns above 200% or below

-100%, stale returns (equal to the past two monthly returns), cases where AUM

is reported as zero, and cases where within 6 months funds display a 10,000%

increase immediately reversed, as these are likely just data entry errors.

I We remove duplicate series by screening for cases in which two funds have return

correlations of 99% or more for periods of at least 12 months.

I We require funds to have reported returns and AUM to the dataset for at least

12 months.

I We require funds to have at least $20m of AUM, and drop them after they fall

below this amount.



Benchmark Models

I We consider several alternative benchmark models.

1. the CAPM and the Fama-French 4-factor model (market, size, value

and momentum factors).

2. the Fung and Hsieh 7-factor model (Fung and Hsieh (2004)), that

includes market, size, a bond factor, a credit risk factor, and three

trend-following factors (related to bonds, currencies, and

commodities).

3. two option-based factors (an out-of-the-money call and an

out-of-the-money put factor) from Agarwal and Naik (2004).
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In-Sample Results

Table: Standard multiple tests vs. FDR control test: in-sample results

# factors Individual test FDR % Excluded

CAPM 1 1342 1079 20%

FF4 4 1367 1121 18%

FH 7 1200 927 23%

FH + Option factors 9 1041 731 30%

All observable 11 1112 817 27%

5 Latent factors 5 1296 1043 20%

10 Latent factors 10 1137 835 27%

All observable + 5 Latent 16 917 602 34%



Illustration of B-H Procedure (All observable + 5 Latent)

200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

p-values
Standard threshold
FDR threshold



Out-of-sample Portfolio Return
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Out of Sample Results

Model: FH7 Panel 3: Closure rate Panel 4: α (bp/month) Panel 5: T-stats

Cutoff # Funds FDR Indiv. None FDR Indiv. None FDR Indiv. None

200112 225 0.13 0.29 0.19 29 40 43 1.90 2.23 1.08

200212 410 0.11 0.15 0.13 46 35 44 3.51 1.54 1.64

200312 481 0.08 0.19 0.16 39 24 38 2.47 1.17 1.41

200412 582 0.13 0.15 0.24 39 28 43 2.98 1.49 1.48

200512 673 0.13 0.03 0.23 38 47 46 2.92 1.40 1.97

200612 870 0.16 0.20 0.22 34 71 30 2.08 1.59 1.08

200712 929 0.31 0.61 0.48 -12 -40 -66 0.77 -0.37 -0.40

200812 805 0.19 0.33 0.31 34 11 16 1.56 0.57 0.76

200912 897 0.13 0.23 0.28 26 15 9 1.76 1.05 0.83

201012 730 0.13 0.23 0.32 32 14 12 2.09 1.28 1.22

201112 827 0.12 0.10 0.26 32 22 14 2.19 1.41 0.89

201212 786 0.11 0.20 0.20 43 19 21 2.47 0.85 0.77

Model: 5 latent

200112 225 0.13 0.14 0.21 23 34 48 1.81 0.60 1.35

200212 410 0.09 0.17 0.15 42 38 31 3.04 1.82 1.27

200312 481 0.07 0.19 0.16 31 30 29 2.27 1.45 1.28

200412 582 0.12 0.11 0.25 33 22 32 2.58 1.15 1.20

200512 673 0.11 0.19 0.23 41 48 48 2.78 1.72 1.66

200612 870 0.15 0.13 0.22 39 58 45 2.21 1.69 1.26

200712 929 0.28 0.30 0.46 37 16 13 1.65 0.80 0.63

200812 805 0.19 0.37 0.31 30 24 12 1.49 0.66 0.80

200912 897 0.14 0.13 0.28 30 18 12 2.01 1.15 0.81

201012 730 0.13 0.26 0.29 39 24 14 2.50 1.26 1.19

201112 827 0.12 0.16 0.24 43 37 20 2.65 1.50 0.87

201212 786 0.10 0.12 0.20 46 29 26 2.50 1.31 0.92



Conclusion

I When applying machine learning techniques to high dimensional problems

in asset pricing, data snooping may lead to potentially numerous false

discoveries.

I We present a rigorous framework to address the data-snooping concerns

that arise when applying multiple testing in the asset pricing context.

I The methodology exploits the “blessing of dimensionality” to build a valid

FDR control procedure

I when the benchmark includes non-tradable factors

I robust to the presence of omitted factors

I We illustrate this procedure by applying it to the evaluation of hedge fund

performance.
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