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Part 1: Bayesian Reinforcement Learning (BRL)
Problems with Unknown System Parameters



Introduction

The exploitation-exploration tradeoff is crucial and prominent in
reinforcement learning (RL), especially under non-episodic setting.

Bayesian RL has been emerged to tackle such cases, through augmenting
the state space with probabilistic belief on those unknown parameters.

Actually, a similar subject termed dual control was invented long ago in
Feldbaum (1961). However, to find an optimal policy is always analytically
intractable, simply because of the very nonlinearity of inference, even
under the Gaussian assumption (Aoki, 1967).

As our first attempt, a discrete-time LQG problem with fixed but unknown
gain is solved by our novel two-layer solution scheme based on progressive
hedging algorithm (PHA) developed by Rockafellar and Wets (1991).

The basic idea of our method is to separate reducible and irreducible
uncertainties into two different layers: first decompose and then conquer.
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Problem Formulation: General Bayesian RL Problems

State dynamics

xt+1 = ft(xt, ut, ξt|θ), t = 0, 1, · · · ,T − 1,

where xt ∈ Rn is the state (perfectly observed) at time t with x0 given, T
is the finite time horizon, and ut ∈ Rm is the control.

The state transition function ft is affected by a fixed parameter θ ∈ Rd

which is, however, unknown to the agent, who only has some prior belief
on its distribution p0(θ).

Noise ξt ∈ Rn is the i.i.d. Gaussian noise with mean 0 and covariance Σξ,
and is independent of θ.

In our setting, we are able to observe the state xt when it is realized at
time t, while θ is not observable.
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Problem Formulation: General Bayesian RL Problems

The goal of the agent is to minimize the expected total cost,

L
(
u|x0, p0(θ)

)
= Eθ,ξ

[
gT(xT) +

T−1∑
t=0

gt(xt, ut, ξt)
∣∣∣∣x0, p0(θ)

]

over all admissible feedback policies,

u = (u0, u1, · · · , uT−1)′ ∈ U0 × U1 × · · · × UT−1.

We also assume that when fixing θ at θi, L(·|x0, δ(θ = θi)) is convex w.r.t.
u, as required by PHA. In the following we denote δ(θ = θi) by δi.

The uncertainty from θ is due to the lack of knowledge of the agent, and
such an uncertainty is reducible by learning, whereas the randomness
incurred by system disturbance (ξt’s) is not.
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Problem Formulation: General Bayesian RL Problems

Information set is defined as

It = {x0, x1, . . . , xt, u0, u1, . . . , ut−1}, t = 1, · · · ,T − 1,

and I0 = {p0(θ), x0}.

Applying Bayesian law leads to the recursive relationship between pt+1(θ)
and pt(θ),

pt(θ|It) = pt(θ|xt, ut−1, It−1) ∝ ψ(xt|θ, xt−1, ut−1) × pt−1(θ|It−1), (1)

for t = 1, · · · ,T − 1, where ψ(xt|θ, xt−1, ut−1) is the conditional density of
xt and p0(θ|I0) = p0(θ) as prior belief given. We denote the posterior
distribution of θ at time t, pt(θ|It), by pt(θ).
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Problem Formulation: General Bayesian RL Problems
By augmenting the original state space with belief of model parameters,
the Bellman equation for the optimal value function Jt of the augmented
system is given by

Jt
(
xt, pt(θ)

)
= min

ut
Eθ,ξt

[
gt(xt, ut, ξt) + Jt+1

(
xt+1, pt+1(θ)

)∣∣xt, pt(θ)
]
, (2)

for t = 0, · · · ,T − 1 with terminal condition JT(xT, pT(θ)) = gT(xT).

Theoretically, we could handle Bayesian RL problems by DP, to achieve
optimal balance between exploitation and exploration.

The resulting optimal policy, if we are able to derive it, includes an
essential feature of active learning, in the sense that taking into account in
(2) the effect of future actions and beliefs via conditional planning before
we actually observe the future states.

Unfortunately, due to the high nonlinearity of (1), solving the Bellman
equation (2) in general is impossible, at least intractable.
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Problem Formulation: LQG with Unknown Gain
We are now focusing on the following LQG problem with unknown gain,

(P) min
u

Eθ,ξ

[
1
2x′

TQxT +
T−1∑
t=0

(1
2x′

tQxt + 1
2u′

tRut
)∣∣∣x0, p0(θ)

]
s.t. xt+1 = Axt + B(θ)ut + ξt, t = 0, 1, · · · ,T − 1,

where A is given, and the gain matrix B is an unknown constant matrix
dictated by an unknown parameter θ.

We assume further that θ takes one of N possible values, θ1, θ2, . . . , θN,
with prior belief p0(θ) = (p01, p02, . . . , p0N)′, where p0i = P(θ = θi | I0),
i = 1, · · · ,N. For simplicity we set B(θi) = Bi for all i.

Denote P(θ = θi | It+1) = p(t+1)i. Bayesian law gives for t = 0, · · · ,T − 1,

p(t+1)i = ϕ(xt+1; Axt + Biut,Σξ)pti∑N
j=1[ϕ(xt+1; Axt + Bjut,Σξ)ptj]

(3)

which is very nonlinear with respect to the realized xt+1.
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PHA: Background

Multistage decision-making problem is given by

(P) min F(u) = E[fs(u(s))] =
∑
s∈S

psfs(u(s)) over all u ∈ C ∩ N ,

where C is feasible set and N is non-anticipative constraint, and fs is the
scenario subproblem (with realizations of randomness) under scenario s.

While dynamic programming is a time-decomposition solution scheme,
PHA is a scenario-decomposition solution scheme.
Assume that the whole scenario is realized at s ∈ S, we then consider the
following scenario sub-problems (for every s ∈ S):

(Pν
s ) u0 = arg min fs(u) over all u ∈ Cs.

Note that the solution from solving fs is not non-anticipative, as it uses
future information. Set ûν = ProjectN (uν), which is non-anticipative.
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PHA: Background (Cont’)

For given ûν and wν (with initial w0 = 0), we then consider the following
scenario sub-problems (for every s ∈ S) in an augmented Lagrangian form
to get ûν+1,

(Pν
s ) min fs(u) + u′wν(s) + 1

2 r|u − ûν(s)|2 over all u ∈ Cs.

Update wν+1 = wν + r(uν+1 − ûν+1), where r is penalty parameter.
Convergence occurs w.r.t r-norm

∥ (u,w) ∥r= (∥ u ∥2 +r−2 ∥ w ∥2)
1
2 ,

if fs is convex w.r.t u for all s.
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For given ûν and wν (with initial w0 = 0), we then consider the following
scenario sub-problems (for every s ∈ S) in an augmented Lagrangian form
to get ûν+1,
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Two-layer Solution Scheme: Naive PHA
The ith (i ∈ S = {1, 2, · · · ,N}) scenario subproblem (with θ = θi hence
B = Bi) is

(Pi) min
u

L(u|x0, δi) := Eξ

[1
2x′

TQxT +
T−1∑
t=0

(1
2x′

tQxt + 1
2u′

tRut
)∣∣∣x0

]
s.t. xt+1 = Axt + Biut + ξt, t = 0, 1, · · · ,T − 1,

which reduces back to a classical LQG problem with known gain and
irreducible uncertainty associated with {ξt}.

The optimal feedback policy at time t (refer to Kirk, 1970, for example)

u∗
ti(xt) = −Ktixt, (4)

where

Kti = (R + B′
iP(t+1)iBi)−1B′

iP(t+1)iA
Pti = Q + K′

tiRKti + (A − BiKti)′P(t+1)i(A − BiKti).

Duan Li (CityU) A 2-Layer Solution Scheme for BRL NUS, Aug 7, 2019 12 / 48



Two-layer Solution Scheme: Naive PHA
The ith (i ∈ S = {1, 2, · · · ,N}) scenario subproblem (with θ = θi hence
B = Bi) is

(Pi) min
u

L(u|x0, δi) := Eξ

[1
2x′

TQxT +
T−1∑
t=0

(1
2x′

tQxt + 1
2u′

tRut
)∣∣∣x0

]
s.t. xt+1 = Axt + Biut + ξt, t = 0, 1, · · · ,T − 1,

which reduces back to a classical LQG problem with known gain and
irreducible uncertainty associated with {ξt}.

The optimal feedback policy at time t (refer to Kirk, 1970, for example)

u∗
ti(xt) = −Ktixt, (4)

where

Kti = (R + B′
iP(t+1)iBi)−1B′

iP(t+1)iA
Pti = Q + K′

tiRKti + (A − BiKti)′P(t+1)i(A − BiKti).

Duan Li (CityU) A 2-Layer Solution Scheme for BRL NUS, Aug 7, 2019 12 / 48



Two-layer Solution Scheme: Naive PHA
If we do not update the prior knowledge of parameter θ using future
observations, we have a naive version of problem (P),

(PNaive) min
u

∑
i∈S p0iL(u|x0, δi)

s.t. xt+1 = Axt + B(θ)ut + ξt, t = 0, 1, · · · ,T − 1.

To solve (PNaive), PHA, as a scenario-decomposition method, first
decomposes it into N scenario subproblems (Pi), i ∈ S, and generates the
scenario-based feedback policy for each i using (4),

u[0]
i (·) =

(
u∗

0i(x0), u∗
1i(x1), · · · , u∗

(T−1)i(xN−1)
)′
. (5)

Then PHA projects all u[0]
i ’s into a non-anticipative space to get an

implementable feedback policy û[0] =
∑

i∈S p0iu[0]
i . Compared with a

scenario-specific policy (like u[0]
i ), an implementable one (like û[0]) is

indifferent to all scenarios.
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Two-layer Solution Scheme: Naive PHA

PHA next solves, in parallel for all i ∈ S, the Lagrangian subproblems

(P [ν]
i ) min

u
L(u|x0, δi) + u′w[ν]

i + 1
2 r∥u − û[ν]∥2,

in each iteration ν = 0, 1, · · · , with initials û[0] defined before and w[0]
i

being zero vector for each i.

The optimal solution of (P [ν]
i ) is denoted by u[ν+1]

i , and the
implementable feedback policy used for next (P [ν+1]

i ) is then given by

û[ν+1] =
∑
i∈S

p0iu[ν+1]
i .
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Two-layer Solution Scheme: Naive PHA

The Lagrangian multiplier for scenario i is updated via

w[ν+1]
i = w[ν]

i + r
(
u[ν+1]

i − û[ν+1]).

The penalty parameter r > 0 is predetermined, and ∥ · ∥ denotes 2-norm.

The process repeats until the convergence occurs, which is guaranteed by
a convexity of the scenario subproblem w.r.t. the control variable
according to the PHA requirement, and û[∞] is actually the optimal policy
to the problem (PNaive).

Duan Li (CityU) A 2-Layer Solution Scheme for BRL NUS, Aug 7, 2019 15 / 48



Two-layer Solution Scheme: Naive PHA

The Lagrangian multiplier for scenario i is updated via

w[ν+1]
i = w[ν]

i + r
(
u[ν+1]
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to the problem (PNaive).

Duan Li (CityU) A 2-Layer Solution Scheme for BRL NUS, Aug 7, 2019 15 / 48



Two-layer Solution Scheme: Revised PHA

In order to incorporate the learning feature into our solution algorithm for
(P), we need to update the knowledge about uncertain parameter θ.

Every step is the same as in PHA for the naive version (PNaive), except
that, when forming the implementable feedback policy at iteration ν, we
need to take conditional expectations using the posterior probabilities at
each time t = 0, 1, · · · , T − 2,

û[ν]
t+1 (·) =

∑
i∈S p(t+1)iu[ν]

(t+1)i (·) , (6)

where u[ν]
(t+1)i (·) as element of u[ν]

i (·) comes from solving the ith
Lagrangian subproblem (P [ν−1]

i ) (ν ≥ 1), with initial u[0]
i being the

solution of scenario subproblem (5).
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Two-layer Solution Scheme: Revised PHA
Note that p(t+1)i depends on It+1. If we directly substitute it into (6),
û[ν]

t+1(·) becomes nonlinear in state, which in turn leads to the intractability
when dealing with (P [ν]

i ).

We bypass this difficulty by setting p(t+1)i at its nominal value,

p̄[ν]
(t+1)i =

ϕ(x̄[ν]
t+1; µ̄[ν]

ti ,Σξ)p̄[ν]
ti∑

j∈S[ϕ(x̄[ν]
t+1; µ̄[ν]

tj ,Σξ)p̄[ν]
tj ]

(7)

where µ̄[ν]
ti = Ax̄[ν]

t + Biû[ν]
t (x̄[ν]

t ) and the nominal state is determined
sequentially by

x̄[ν]
t+1 = Eθ,ξt

[
Ax̄[ν]

t + B(θ)û[ν]
t (x̄[ν]

t ) + ξt
∣∣ x̄[ν]

t , p̄[ν]
t (θ)

]
= Ax̄[ν]

t +
( ∑

i∈S p̄[ν]
ti Bi

)
û[ν]

t (x̄[ν]
t ) (8)

for t = 0, 1, · · · ,T − 1 with nominal initial state x̄[ν]
0 = x0 and nominal

prior distribution p̄[ν]
0 (θ) = p0(θ) held for every ν.
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Two-layer Solution Scheme: Revised PHA
Then the implementable feedback policy obtained at t + 1 becomes linear
w.r.t the state compared with (6),

û[ν]
t+1 (·) =

∑
i∈S p̄[ν]

(t+1)iu
[ν]
(t+1)i (·) . (9)

This relaxation to a linear policy enables us to proceed the iteration until
converging to a final approximate feedback policy of our two-layer (TL)
method,

uTL
t (xt) = û[ν]

t (xt) = −K̂[ν]
t xt, as ν → ∞, for all t. (10)

In practice, the algorithm will stop when the predetermined convergence
tolerance level (tol) is satisfied, namely, err < tol, where the error is

err :=
√

∥û[ν+1] − û[ν]∥2 + 1
r2

∑
i∈S ∥w[ν+1]

i − w[ν]
i ∥2. (11)
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Two-layer Solution Scheme: Revised PHA

Confining ourselves on the nominal trajectory, on the one hand, we are
able to forwardly calculate an implementable policy and the nominal
posterior distribution along the time horizon in each iteration, on the other
hand, however, since Bellman equation in our case considers the entire
(continuous) state space, the converged nominal-based policy is only
suboptimal.

Nevertheless, as we will demonstrate later, our newly-derived
approximation performs better in an average sense than the prevalent
passive learning method and others borrowed from traditional RL
algorithms.
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Illustrative Example of a Scalar System
Consider a simple scalar system with system dynamics

xt+1 = axt + b(θ)ut + ξt, t = 0, 1, · · · ,T − 1,

where we denote b(θi) = bi , ∀i ∈ S = {1, · · · ,N} and the i.i.d. system
random disturbance ξt follows N (0, σ2), together with other usual
assumptions for (P).

Solving the scenario subproblem minu L(u|x0, δi) by DP for each i at the
lower layer, we obtain the scenario-specific feedback policy

u[0]
ti (xt) = −K[0]

ti xt

for all t, with backward recursions

K[0]
ti = (abiΓ[0]

(t+1)i)/(R + b2
i Γ[0]

(t+1)i),

Γ[0]
ti = Q + R(K[0]

ti )2 + (a − biK[0]
ti )2Γ[0]

(t+1)i,

and the boundary condition Γ[0]
Ti ≡ Q for all i.
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Illustrative Example of a Scalar System
The optimal cost-to-go function is then given by

J[0]
ti (xt) = 1

2Γ[0]
ti x2

t + Λ[0]
ti ,

with
Λ[0]

ti = Λ[0]
(t+1)i + 1

2Γ[0]
(t+1)iσ

2

and the boundary condition Λ[0]
Ti ≡ 0.

At the upper layer, we first initialize the nominal initial state x̄[0]
0 = x0 and

the nominal prior distribution p̄[0]
0 (θ) = p0(θ), and then calculate the

implementable control at t = 0:

û[0]
0 (x̄[0]

0 ) =
∑
i∈S

p̄[0]
0i u[0]

0i (x̄[0]
0 ) = −K̂[0]

0 x̄[0]
0

where
K̂[0]

0 =
∑

i∈S p̄[0]
0i K[0]

0i .
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Illustrative Example of a Scalar System
The next nominal state is obtained via (8):

x̄[0]
1 =

[
a − (

∑
i∈S

p̄[0]
0i bi)K̂[0]

0

]
x̄[0]

0 ,

with the nominal posterior probabilities p̄[0]
1i ’s updated numerically through

(7) for various i, which in turn yields

û[0]
1 (x1) = −K̂[0]

1 x1

with K̂[0]
1 =

∑
i∈S p̄[0]

1i K[0]
1i , which is still linear in state. We then apply the

control û[0]
1 (x̄[0]

1 ) to get the nominal state and posterior distribution at
t = 2. We conduct the above procedure till the end of time horizon and
finally obtain a feedback policy û[0] for ν = 0.

The initial Lagrangian multiplier is set to be zero, which is equivalent as a
linear function of state, namely, w[0]

ti (xt) = W[0]
ti xt with W[0]

ti ≡ 0 for all t
and i.
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Illustrative Example of a Scalar System
We are now ready to define Lagrangian subproblems for ν = 0:

(Q[0]
i ) : min

u
L(u|x0, δi) +

T−1∑
t=0

w[0]
ti ut + 1

2 r
T−1∑
t=0

(ut − û[0]
t )2.

The above multistage optimization problem (subject to the linear state
dynamics) can be analytically solved by DP and the optimal solution is
linear in state.

It is easy to prove, by mathematical induction, that starting with linear
forms of û[0]

t (·) and w[0]
ti (·), all (Q[ν]

i )’s, ν ≥ 0, keep the same quadratic
forms, with optimal cost-to-go function at t satisfying the new Bellman

J[ν+1]
ti (xt) = min

ut
Eξ

[1
2Qx2

t + 1
2Ru2

t + w[ν]
ti ut + 1

2 r(ut − û[ν]
t )2

+J[ν+1]
(t+1)i

(
axt + biut + ξt

) ∣∣∣∣ xt

]
,

with boundary condition J[ν+1]
Ti (xT) = 1

2x2
T.
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dynamics) can be analytically solved by DP and the optimal solution is
linear in state.

It is easy to prove, by mathematical induction, that starting with linear
forms of û[0]

t (·) and w[0]
ti (·), all (Q[ν]

i )’s, ν ≥ 0, keep the same quadratic
forms, with optimal cost-to-go function at t satisfying the new Bellman

J[ν+1]
ti (xt) = min

ut
Eξ

[1
2Qx2

t + 1
2Ru2

t + w[ν]
ti ut + 1

2 r(ut − û[ν]
t )2

+J[ν+1]
(t+1)i

(
axt + biut + ξt

) ∣∣∣∣ xt

]
,

with boundary condition J[ν+1]
Ti (xT) = 1

2x2
T.
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Illustrative Example of a Scalar System
Then optimal solution is

u[ν+1]
ti (xt) = −K[ν+1]

ti xt,

where

K[ν+1]
ti = (abiΓ[ν+1]

(t+1)i + rK̂[ν]
t + W[ν]

ti )/(R + r + b2
i Γ[ν+1]

(t+1)i).

Accordingly,
J[ν+1]

ti (xt) = 1
2Γ[ν+1]

ti x2
t + Λ[ν+1]

ti ,

where

Γ[ν+1]
ti = a2Γ[ν+1]

(t+1)i + Q + r
(
K̂[ν]

t
)2 −

(
R + r + b2

i Γ[ν+1]
(t+1)i

)(
K[ν+1]

ti
)2

Λ[ν+1]
ti = Λ[ν+1]

(t+1)i + 1
2Γ[ν+1]

(t+1)iσ
2, (12)

with boundary conditions Γ[ν+1]
Ti = Q and Λ[ν+1]

Ti = 0.
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Illustrative Example of a Scalar System

Finally, the Lagrangian multiplier is updated via

w[ν+1]
ti (xt) = w[ν]

ti (xt) + r
[
u[ν+1]

ti (xt) − û[ν+1]
t (xt)

]
= W[ν+1]

ti xt,

where
W[ν+1]

ti = W[ν]
ti + r(K̂[ν+1]

t − K[ν+1]
ti ).

The iteration terminates when the stopping criterion is satisfied, and
results in a linear feedback policy as in (10):

uTL
t (xt) = û[ν]

t (xt) = −K̂[ν]
t xt, as ν → ∞, for all t.
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Experimental Comparison and Results

We now verify the efficiency of our proposed two-layer (TL) scheme,
compared with other algorithms including DP, DUL (the prevalent passive
learning approach of Deshpande et al. (1973)), and three other methods
leveraging ideas from traditional RL algorithms: the greedy method,
ϵ-greedy, and Thompson sampling.

While DP, as the theoretical best, provides a benchmark for comparison, it
is only applicable when T = 2, where analytical optimal policy can be
obtained at t = 1, and numerical method has to be invoked at t = 0, for
example by MATLAB.

As for DUL, it assumes that the expectation and the minimization
operators in the original problem (P) can be exchanged, i.e.,

min
u

Eθ

{
Eξ

[
· · ·

∣∣p0(θ)
]}

≈ Eθ

{
min

u
Eξ

[
· · ·

∣∣p0(θ)
] }
.

The DUL algorithm is basically a rolling horizon approach.
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Experimental Comparison and Results

Adopting similar idea of rolling horizon, we may also think out other three
algorithms (rooted originally in classical RL problems) that are applicable
to non-episodic cases.

The first one is similar to the greedy method (named GRE) by selecting
the scenario-specific policy with largest posterior probability at time t.

As a variation of GRE, the ϵ-greedy type strategy (termed ϵ-GRE) perturbs
the greedy policy a bit by a randomized policy of selecting the greedy
policy with probability (1 − ϵ) or a randomly chosen policy with probability
ϵ.

The last algorithm follows the idea of Thompson sampling (labelled TS
here) that a policy at time t is selected by randomly sampling a
scenario-specific policy based on the posterior distribution.
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Experimental Comparison and Results

For simplicity, the model is set with a = Q = R = σ = x0 = 1, and N = 2
meaning that b takes two possible values. The penalty parameter r = 1
and the tolerance level tol = 10−5. ϵ = 10%.

We do 12 experiments in total for different time horizons (T = 2 when DP
works, and T = 3, 5 when DP fails and we also adopt rolling version TLR)
and different assignments on b = {b1, b2} and p0(θ) = {p01, p02}.

For each experiment, we compute the TL feedback gain K̂t in (10), and
generate ten thousand simulations that are shared by all the seven
considered algorithms.

Every simulation is characterized by two parts (θ, {ξt}t), where θ is
sampled by p0(θ) and each ξt is sampled from the assumed i.i.d. Gaussian
noise, in order to calculate and compare the total costs induced by
different policies in the average sense.
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Experimental Comparison and Results

No. p01 b DP TL TLR DUL GRE ϵ-GRE TS

For T = 2
(i)

1
3

b1 = 1 b2 = 2 1.8170 1.8172 1.8171 1.8204 1.8213 1.8236 1.8409
(ii) b1 = 1 b2 = 5 1.8199 1.8261 1.8203 1.9974 2.0491 2.1060 2.4745
(iii) b1 = 1 b2 = 10 1.8793 1.8833 1.8785 2.7875 3.7598 4.0188 5.7482
(iv) 1/2

b1 = 1 b2 = 2
1.9052 1.9060 1.9055 1.9095 1.9296 1.9314 1.9310

(v) 2/3 1.9383 1.9395 1.9389 1.9427 1.9614 1.9611 1.9589
(vi) 1 2.0276 2.0276 2.0276 2.0276 2.0276 2.0276 2.0276

For T = 3
(vii) 1/3

b1 = 1 b2 = 2
N/A 2.5349 2.5333 2.5371 2.5517 2.5545 2.5837

(viii) 1/2 N/A 2.6541 2.6511 2.6542 2.6949 2.6916 2.6932
(ix) 2/3 N/A 2.7140 2.7106 2.7139 2.7384 2.7419 2.7506

For T = 5
(x) 1/3

b1 = 1 b2 = 2
N/A 3.8848 3.8779 3.8804 3.9070 3.9134 3.9671

(xi) 1/2 N/A 4.0923 4.0762 4.0789 4.1359 4.1364 4.1559
(xii) 2/3 N/A 4.2734 4.2546 4.2558 4.3022 4.3039 4.3159
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Experimental Comparison and Results

We can see from the table
When T = 2, DP always ranks the top (with one exception, which
could be due to that MATLAB can only identify a local minimum for
a possible non-convex value function at t = 0) and TL approximates
the true optimal policy pretty well as evidenced by its lower average
total cost compared to others (except for its rolling variant and DP).

For T = 3 where DP no longer works, TL almost maintains superior
over the rest (except for TLR) even without utilizing any online
posterior information which other approaches rely on.
As time goes by, reference to newly-updated belief becomes more and
more necessary. Based on this recognition, our TLR essentially beats
all the rest when T goes beyond 2.
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Experimental Comparison and Results

We also observe some interesting findings that should be naturally
expected

The longer horizon, the larger the total cost.

In experiment (vi) where we are certain about the system parameter
with a one-point distribution for the prior belief, all the algorithms
lead to the same (actually optimal) policy and yield the same cost,
since the problem, in such a case, reduces to a pure stochastic
decision problem with full knowledge on parameters.
We can see from experiment (i) to (iii) that the larger the variance of
b, the worse the passive learning DUL and others perform. In other
words, the inherent active learning feature in TL (TLR) and DP
becomes much more demanding when the uncertainty in b is large.
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Summary

We develop a novel solution approach to a type of Bayesian
reinforcement learning (RL) problem under the non-episodic setting,
especially the discrete-time linear-quadratic-Gaussian (LQG) problem
with fixed but unknown gain as one concrete example, to which the
classical dynamic programming (DP) fails.

Our new solution approximates the optimal policy directly, thus
bypassing the stage of approximating the value function.
Most importantly, our scheme separates the non-episodic problem
into two different layers according to different types of uncertainties,
and combines the time-decomposition based method DP at the lower
layer and the revised scenario-decomposition based approach
progressive hedging algorithm (PHA) at the upper layer, to strike a
balance between exploitation and exploration.
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Summary

By separating the reducible uncertainty from the irreducible one, we
may take advantage of DP to generate an analytical solution for
scenario-specific subproblems with reducible uncertainty fixed at a
certain scenario. The revised PHA at the upper level, on the other
hand, aggregates the solutions from all scenario subproblems to
generate an implementable one, which finally converges to a
suboptimal policy to approximate the optimal one of the primal
Bayesian RL problem, as shown in our experiments.

One future research topics are to investigate deeper the convergence
property of our revised-PHA based two-layer solution algorithm, and
to study how to generate nominal trajectory or even multiple ones in
order to simulate more learning environment in advance.
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Part 2: Quadratic Dis-utility Portfolio Selection
under Lack of Market Information



Market Settings: Unknown Mean and Covariance

There are n risky assets and one risk-free asset in the market. Suppose
that random total return et is i.i.d and follows N (µe,Σe), where µe ∈ Rn

and Σe ∈ Rn×n are unknown at the beginning.

We further assume that (µe,Σe) follows normal-inverse-Wishart (NIW)
distribution with four initial values as prior belief, denoted by

(µe,Σe) ∼ N IW(µ0, κ0,Ψ0, ν0),

with κ0 > 0 and ν0 > n + 1, and density being given as

fµe,Σe(x, y|µ0, κ0,Ψ0, ν0) = ψ(x|µ0,
1
κ0

y)W−1(y|Ψ0, ν0),

where ϕ(·|z1, z2) is multivariate normal density with mean z1 and
covariance z2, and W−1(·|z3, z4) is inverse Wishart density with
hyperparameters z3 and z4.
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Market Settings: Unknown Mean and Covariance

According to Bayes’ law, the posterior belief on (µe,Σe) is still
normal-inverse-Wishart, as it belongs to conjugate family. See, for
example, Murphy (2007) for more details.

That is, (µe,Σe)|It ∼ N IW(µt, κt,Ψt, νt) where It is the information set
at time t, and hyperparameters (µt, κt,Ψt, νt)t are updated recursively by

µt+1 = κtµt + R̃t+1
κt + 1 ,

κt+1 = κt + 1,
Ψt+1 = Ψt + κt

κt + 1(R̃t+1 − µt)(R̃t+1 − µt)′,

νt+1 = νt + 1, (13)

where R̃t+1 is the real total return vector at t + 1 that can be computed
from observed assets prices in the market.

Duan Li (CityU) A 2-Layer Solution Scheme for BRL NUS, Aug 7, 2019 36 / 48



Market Settings: Unknown Mean and Covariance

According to Bayes’ law, the posterior belief on (µe,Σe) is still
normal-inverse-Wishart, as it belongs to conjugate family. See, for
example, Murphy (2007) for more details.

That is, (µe,Σe)|It ∼ N IW(µt, κt,Ψt, νt) where It is the information set
at time t, and hyperparameters (µt, κt,Ψt, νt)t are updated recursively by

µt+1 = κtµt + R̃t+1
κt + 1 ,

κt+1 = κt + 1,
Ψt+1 = Ψt + κt

κt + 1(R̃t+1 − µt)(R̃t+1 − µt)′,

νt+1 = νt + 1, (13)

where R̃t+1 is the real total return vector at t + 1 that can be computed
from observed assets prices in the market.

Duan Li (CityU) A 2-Layer Solution Scheme for BRL NUS, Aug 7, 2019 36 / 48



Problem Formulation
We are interested in solving a discrete-time portfolio selection problem
with quadratic dis-utility objective which is closely related to the
mean-variance objective,(

A(λ, ω)
)

min
ut, ∀t

EM
[
ωx2

T − λxT
∣∣I0]

s.t. xt+1 = stxt + P′
tut, t = 0, 1, · · · ,T − 1,

where xt ∈ R is wealth level, ut ∈ Rn represents amounts of dollar invested
on n risky assets, st ∈ R is risk-free rate, and

P′
t = (et − st1)′ = (e1

t − st, · · · , en
t − st)′ ∈ Rn

is random excess return at time t with 1 being the all-one vector, and
I0 = {x0, µ0, κ0,Ψ0, ν0}.

M = {e, µe,Σe} is used to emphasize the expectation not only on
irreducible uncertainty of e but also on that of (µe,Σe) which is reducible
through online Bayesian learning.
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Problem Formulation
Note that the reducible uncertainty in xt+1 = stxt + P′

tut is (indirectly)
observable, compared with the Bayesian RL example of Part 1.

Different from settings of Li and Ng (2000), the first two central moments
of Pt here are unknown but conditionally given by

E[Pt|µe,Σe] = E[et − st1|µe,Σe] = µe − st1 := µP
t (µe,Σe),

E[PtP′
t|µe,Σe] = E[(et − st1)(et − st1)′|µe,Σe]

= E[etet
′|µe,Σe] − stE[et|µe,Σe]1′

−st1E′[et|µe,Σe] + s2
t I

= µe(µe)′ + Σe − stµ
e1′ − st1(µe)′ + s2

t I
:= ∆P

t (µe,Σe),

as functions of unknown (µe,Σe) at each time, and I is the identity matrix.

It turns out that solving
(
A(λ, ω)

)
with Bayesian learning yields the same

form as in the full-knowledge case (Li et al., 1998).
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Solution by Dynamic Programming

Theorem
The optimal policy of

(
A(λ, ω)

)
at time t = 0, 1, · · · ,T − 1 is given by

ut(xt) = −(∆P
t )−1µP

t (stxt − λt+1
2ωt+1

), (14)

where µP
t = µt − st1 and

∆P
t =

(
µt(µt)′ + Ψt

κt(νt−n−1)

)
+ Ψt

νt−n−1 − stµt1′ − st1(µt)′ + s2
t I, (15)

λt = λt+1s2
t (1 − µP

t (∆P
t )−1µP

t ), λT = λ,

ωt = ωt+1st(1 − µP
t (∆P

t )−1µP
t ), ωT = ω,

with hyperparameters (µt, κt,Ψt, νt) updated forwardly through (13)
based on online observations, given initial (µ0, κ0,Ψ0, ν0).
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Special Case: Mean is Unknown While Variance is Known

Propostion
Normal-inverse-Wishart belief with known Σe = Σ reduces to the normal
belief N (µt,

1
κt

Σ) on µe as a special case, with the same updating rules

µt+1 = κtµt + R̃t+1
κt + 1 ,

κt+1 = κt + 1.

The optimal policy takes the same structure

ut(xt) = −(∆P
t )−1µP

t (stxt − λt+1
2ωt+1

), (16)

where µP
t = µt − st1, but ∆P

t =
(

µt(µt)′+ 1
κt

Σ
)

+Σ−stµt1′−st1(µt)′+s2
t I.

Note that the belief uncertainty on µe: 1/κtΣ → 0 as t → ∞,
independent of observations.
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Experimental Results
There are three risky assets (n = 3) in the market and the real random
total return e is normally distributed with mean µ = (1.162 1.246 1.228)′

and covariance

Σ =

 0.0146 0.0187 0.0145
0.0187 0.0854 0.0104
0.0145 0.0104 0.0289

 .

An investor does not know neither the true µ nor the true Σ, who also
adopts NIW prior on (µe,Σe) with µ0 = (1.1 1.2 1.3)′, κ0 = 2, ν0 = 5, and

Ψ0 =

 1 0 0
0 1 0
0 0 1

 .

The risk-free rate st is set to be 1.04 all the time. Besides, ω = 2, λ = 1,
and x0 = 1 as initial wealth. In order to clearly see the learning process on
the unknown parameters, we set T = 100, and empirical total return R̃t is
sampled from N (µ,Σ) at each time by MATLAB.
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Experimental Results
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Figure: 1. µe learning under NIW and reduced Gaussian belief.
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Figure: 2. Σe learning under NIW.
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Experimental Results

Figure 1(a) illustrates how µi
t (solid lines) approaches to real µi (dotted

lines) for each asset i as time goes by, and Figure 1(b) exhibits its variance
of t-distribution as marginal distribution of NIW, measured by Frobenius
norm, reduces to zero at the same time.

Note that the unknown µe updatings under both NIW and the
corresponding reduced Gaussian are the same.

Likewise, Figures 2(a) and 2(b) show distance between expectation of Σe

and true Σ, and variance of Σe from inverse Wishart as marginal
distribution of NIW, respectively, which both converge to zero.
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Experimental Results
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Figure: 3. Policy behavior among Full information, NIW belief and reduced
Gaussian belief.
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Experimental Results

Figure 3 shows policy behavior under different cases for first twenty time
points.

From Figure 3(a) we can see at the beginning the cautious property of
policies from lack of knowledge situation (NIW in red and reduced
Gaussian in green), compared with full information case (blue line), in
terms of lower proportional amount in shorting risky assets (solid lines)
from total wealth (dotted lines).

This phenomenon can be also seen from Figure 3(b), where we measure
Frobenius norms of different gain vectors.
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Thank you for your attention!
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