Optimal liquidation in spite of increasing prices

How is optimal execution affected by price trends?

Peter Frentrup

(based on joint work with Dirk Becherer and Todor Bilarev)

Singapore - 18 March 2019

How to execute large trade in face of trending prices?

- Problem: How to execute/liquidate a position of θ risky assets until a given finite time $T<\infty$ optimally?
- Question: How would optimal trade execution be affected if prices are expected to rise/to decline?
- Example: liquidate 1 asset with increasing/decreasing prices or no price trend:

How to execute large trade in face of trending prices?

- Problem: How to execute/liquidate a position of θ risky assets until a given finite time $T<\infty$ optimally?
- Question: How would optimal trade execution be affected if prices are expected to rise/to decline?
- Example: liquidate 1 asset with increasing/decreasing prices or no price trend:

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t , $t \in [0, T]$ with $\Theta_{0-} = \theta$, $\Theta_T = 0$.
- Unaffected price: $\overline{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.
- Affected price: $S_t := f(Y_t)\overline{S}_t$ for price impact process

$$dY_t = -h(Y_t) dt + d\Theta_t, \qquad Y_{0-} = y,$$

resilience function
$$h(0)=0,\ h'>0,$$
 e.g. $h(y)=\beta y,\ \beta>0.$ impact function $f,f'>0,$ e.g. $f(y)=e^{\lambda y},\ \lambda=f'/f>0$ const

• Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

$$L_T(\Theta) := -\int_0^T f(Y_t) \overline{S}_t d\Theta_t^{\alpha}$$

Like Obizhaeva/Wang (2013),
 but for multiplicative and more general transient price impact.

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t , $t \in [0, T]$ with $\Theta_{0-} = \theta$, $\Theta_T = 0$.
- Unaffected price: $\overline{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.
- Affected price: $S_t := f(Y_t)\overline{S}_t$ for price impact process

$$dY_t = -h(Y_t) dt + d\Theta_t, \qquad Y_{0-} = y,$$

resilience function
$$h(0)=0,\ h'>0,$$
 e.g. $h(y)=\beta y,\ \beta>0.$ impact function $f,f'>0,$ e.g. $f(y)=e^{\lambda y},\ \lambda=f'/f>0$ const.

• Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

$$L_{T}(\Theta) := -\int_{0}^{T} f(Y_{t}) \overline{S}_{t} d\Theta_{t}^{\alpha}$$

Like Obizhaeva/Wang (2013),
 but for multiplicative and more general transient price impact.

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t , $t \in [0, T]$ with $\Theta_{0-} = \theta$, $\Theta_T = 0$.
- Unaffected price: $\overline{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.
- Affected price: $S_t := f(Y_t)\overline{S}_t$ for price impact process

$$dY_t = -h(Y_t) dt + d\Theta_t, Y_{0-} = y,$$

resilience function
$$h(0)=0,\ h'>0,$$
 e.g. $h(y)=\beta y,\ \beta>0.$ impact function $f,f'>0,$ e.g. $f(y)=e^{\lambda y},\ \lambda=f'/f>0$ const.

• Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

$$L_T(\Theta) := -\int_0^T f(Y_t) \overline{S}_t d\Theta_t^c$$

Like Obizhaeva/Wang (2013),
 but for multiplicative and more general transient price impact

- Liquidate θ assets by selling/buying continuously or in blocks: bounded variation càdlàg strategy Θ_t , $t \in [0, T]$ with $\Theta_{0-} = \theta$, $\Theta_T = 0$.
- Unaffected price: $\overline{S} = e^{\mu t} \mathcal{E}(\sigma W)_t$, $\mu \in \mathbb{R}$.
- Affected price: $S_t := f(Y_t)\overline{S}_t$ for price impact process

$$dY_t = -h(Y_t) dt + d\Theta_t, \qquad Y_{0-} = y,$$

resilience function
$$h(0)=0,\ h'>0,$$
 e.g. $h(y)=\beta y,\ \beta>0.$ impact function $f,f'>0,$ e.g. $f(y)=e^{\lambda y},\ \lambda=f'/f>0$ const.

• Maximize expected trading gains $\mathbb{E}[L_T(\Theta)]$,

$$L_{T}(\Theta) := -\int_{0}^{T} f(Y_{t}) \overline{S}_{t} d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq T \\ \Delta\Theta_{t} \neq 0}} \overline{S}_{t} \int_{0}^{\Delta\Theta_{t}} f(Y_{t-} + x) dx.$$

Like Obizhaeva/Wang (2013),
 but for multiplicative and more general transient price impact.

$$\text{Value function} \quad v(\tau,y,\theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_{0-} = y, \Theta_{0-} = \theta].$$

State space $(au, y, heta) \in \mathbb{R}_+ imes \mathbb{R}^2$

Value function
$$v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_{0-} = y, \Theta_{0-} = \theta].$$

Martingale optimality principle:

State space $(\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2$ should separate into open regions \mathcal{B} (buying)

Value function
$$v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_{0-} = y, \Theta_{0-} = \theta].$$

Martingale optimality principle:

State space $(\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2$ should separate into open regions \mathcal{B} (buying) and \mathcal{S} (selling)

Value function
$$v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_{0-} = y, \Theta_{0-} = \theta].$$

Martingale optimality principle:

State space $(\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2$ should separate into open regions \mathcal{B} (buying) and \mathcal{S} (selling) with **free contact** boundary surface $\mathcal{I} = \overline{\mathcal{B}} \cap \overline{\mathcal{S}}$ s.t. variational HJB holds:

$$v_y + v_\theta - f(y) = 0$$
 everywhere,
 $v_\tau + h(y)V_y - \mu v > 0$ in $\mathcal{B} \cup \mathcal{S}$, (1)
 $v_\tau + h(y)V_v - \mu v = 0$ on \mathcal{I} ,

with boundary condition
$$v(0, y, \theta) = \int_{y-\theta}^{y} f(x) dx$$
. (2)

Value function
$$v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_{0-} = y, \Theta_{0-} = \theta].$$

Martingale optimality principle:

State space $(\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2$ should separate into open regions \mathcal{B} (buying) and \mathcal{S} (selling) with free contact boundary surface $\mathcal{I} = \overline{\mathcal{B}} \cap \overline{\mathcal{S}}$ s.t. variational HJB holds:

$$v_y + v_\theta - f(y) = 0$$
 everywhere,
 $v_\tau + h(y)V_y - \mu v > 0$ in $\mathcal{B} \cup \mathcal{S}$, (1)
 $v_\tau + h(y)V_y - \mu v = 0$ on \mathcal{I} ,

with boundary condition
$$v(0, y, \theta) = \int_{y-\theta}^{y} f(x) dx$$
. (2)

Ansatz: $v \in C^1$, $\forall (\tau, y, \theta) \in \mathcal{B} \cup \mathcal{S} \exists ! d \in \mathbb{R} \setminus \{0\} : (\tau, y + d, \theta + d) \in \mathcal{I}$, $\mathcal{B} = \{d > 0\}, \ \mathcal{S} = \{d < 0\}.$

Value function
$$v(\tau, y, \theta) := \sup_{\Theta} \mathbb{E}[L_{\tau}(\Theta) \mid Y_{0-} = y, \Theta_{0-} = \theta].$$

Martingale optimality principle:

State space $(\tau, y, \theta) \in \mathbb{R}_+ \times \mathbb{R}^2$ should separate into open regions \mathcal{B} (buying) and \mathcal{S} (selling) with **free contact** boundary surface $\mathcal{I} = \bar{\mathcal{B}} \cap \bar{\mathcal{S}}$ s.t. variational HJB holds:

$$egin{aligned} & v_y + v_\theta - f(y) = 0 & ext{everywhere}, \ & v_ au + h(y) V_y - \mu v > 0 & ext{in } \mathcal{B} \cup \mathcal{S}, \ & v_ au + h(y) V_y - \mu v = 0 & ext{on } \mathcal{I}, \end{aligned}$$

with boundary condition
$$v(0, y, \theta) = \int_{y-\theta}^{y} f(x) dx$$
. (2)

Ansatz:
$$v \in C^1$$
, $\forall (\tau, y, \theta) \in \mathcal{B} \cup \mathcal{S} \exists ! d \in \mathbb{R} \setminus \{0\} : (\tau, y + d, \theta + d) \in \mathcal{I}$, $\mathcal{B} = \{d > 0\}, \ \mathcal{S} = \{d < 0\}.$

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Delta\Theta_{t} \neq 0}} \int_{0}^{\Delta\Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Delta \Theta, \tau \neq 0}} \int_{0}^{\Delta \Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

Optimal strategy should consist of

- 1) initial block buy/sale $\Delta\Theta_0 = \bar{\theta}(T) \theta$,
- 2) continuous trading in rates $d\Theta_t = -\bar{\theta}'(T-t) dt$,
- 3) final block buy/sale $\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0)$
- à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Lambda \Theta_{t} \neq 0}} \int_{0}^{\Delta \Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

Optimal strategy should consist of

- 1) initial block buy/sale $\Delta\Theta_0 = \bar{\theta}(T) \theta$,
 - 2) continuous trading in rates $d\Theta_t = -\bar{\theta}'(T-t) dt$,
 - 3) final block buy/sale $\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0)$
 - à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Lambda \Theta_{t} \neq 0}} \int_{0}^{\Delta \Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

Optimal strategy should consist of

- 1) initial block buy/sale $\Delta\Theta_0 = \bar{\theta}(T) \theta$,
- 2) continuous trading in rates $d\Theta_t = -\bar{\theta}'(T-t) dt$,
- 3) final block buy/sale $\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0)$
- à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Delta\Theta_{t} \neq 0}} \int_{0}^{\Delta\Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

Optimal strategy should consist of

- 1) initial block buy/sale $\Delta\Theta_0 = ar{ heta}(T) heta$,
- 2) continuous trading in rates $d\Theta_t = -\bar{\theta}'(T-t) dt$,
- 3) final block buy/sale $\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0)$
- à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

Search for optimal $\bar{\theta} \in C^1$:

$$\Theta_t = \overline{\theta}(T - t), Y_t = \overline{y}(T - t), \text{ for } t \in [0, T),$$

terminal position $\bar{\theta}(0) = \Theta_{T-} = g(Y_{T-}) = g(\overline{y}(0))$

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Delta\Theta_{t} \neq 0}} \int_{0}^{\Delta\Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

Optimal strategy should consist of

- 1) initial block buy/sale $\Delta\Theta_0=ar{ heta}(T)- heta$,
- 2) continuous trading in rates $d\Theta_t = -\bar{\theta}'(T-t) dt$,
- 3) final block buy/sale $\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0)$
- à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

Search for optimal $\bar{\theta} \in C^1$:

Search for optimal
$$v \in C$$
:

$$\Theta_t = \bar{\theta}(T - t), \ Y_t = \bar{y}(T - t), \text{ for } t \in [0, T),$$

$$\bar{y}'(\tau) = h(\bar{y}(\tau)) + \bar{\theta}'(\tau),$$

terminal position $\bar{\theta}(0) = \Theta_{T-} = g(Y_{T-}) = g(\bar{y}(0))$.

$$v(\tau, y, \theta) = \sup_{\Theta} \mathbb{E}_{y, \theta} \left[-\int_{0}^{\tau} e^{\mu t} f(Y_{t}) d\Theta_{t}^{c} - \sum_{\substack{0 \leq t \leq \tau \\ \Delta\Theta_{t} \neq 0}} \int_{0}^{\Delta\Theta_{t}} e^{\mu t} f(Y_{t-} + x) dx \right]$$

Optimal strategy should consist of

- 1) initial block buy/sale $\Delta\Theta_0 = ar{ heta}(T) heta$,
- 2) continuous trading in rates $d\Theta_t = -\bar{\theta}'(T-t) dt$,
- 3) final block buy/sale $\Delta\Theta_T = -\Theta_{T-} = -\bar{\theta}(0)$
- à la Obizhaeva/Wang, generalized to more general transient impact, positive prices, multiplicative impact.

Search for optimal $\bar{\theta} \in C^1$: $\Theta_t = \bar{\theta}(T-t), \ Y_t = \bar{y}(T-t), \ \text{for } t \in [0,T),$ $\bar{y}'(\tau) = h(\bar{y}(\tau)) + \bar{\theta}'(\tau),$ terminal position $\bar{\theta}(0) = \Theta_{T-} = g(Y_{T-}) = g(\bar{y}(0)).$

Gains for candidate optimal strategy

In terms of \overline{y} :

Maximize

$$J(\overline{y}) = F(Y_{0-}) - F(\overline{y}(T)) + e^{\mu T} (F(y) - F(y - g(y)))|_{y = \overline{y}(0)} + e^{\mu T} \int_{0}^{T} e^{-\mu \tau} f(\overline{y}(\tau)) (\overline{y}'(\tau) - h(\overline{y}(\tau))) d\tau$$

trading in rate

for $F(y) = \int_0^y f(x) \, \mathrm{d}x$ subject to the *isoperimetric condition*

$$\Theta_{0-} - Y_{0-} \equiv K(\overline{y}) := \underbrace{g(\overline{y}(0))}_{=\overline{\theta}(0)} + \int_{0}^{T} \underbrace{\left(\overline{y}' - h(\overline{y})\right)}_{=\overline{\theta}'(T)} d\tau - \overline{y}(T).$$

Goal: find intermediate impact $\overline{y}(\tau)$ and terminal position g(y).

Gains for candidate optimal strategy

In terms of \overline{y} :

Maximize

$$J(\overline{y}) = F(Y_{0-}) - F(\overline{y}(T)) + e^{\mu T} (F(y) - F(y - g(y)))|_{y = \overline{y}(0)} + e^{\mu T} \int_{0}^{T} e^{-\mu \tau} f(\overline{y}(\tau)) (\overline{y}'(\tau) - h(\overline{y}(\tau))) d\tau$$
trading in rates

for $F(y) = \int_0^y f(x) dx$ subject to the isoperimetric condition

$$\Theta_{0-} - Y_{0-} \equiv K(\overline{y}) := \underbrace{g(\overline{y}(0))}_{=\overline{\theta}(0)} + \int_{0}^{T} \underbrace{\left(\overline{y}' - h(\overline{y})\right)}_{=\overline{\theta}'(\tau)} d\tau - \overline{y}(T).$$

Goal: find intermediate impact $\overline{y}(\tau)$ and terminal position g(y).

Gains for candidate optimal strategy

In terms of \overline{y} :

Maximize

$$J(\overline{y}) = F(Y_{0-}) - F(\overline{y}(T)) + e^{\mu T} (F(y) - F(y - g(y)))|_{y = \overline{y}(0)} + e^{\mu T} \int_{0}^{T} e^{-\mu \tau} f(\overline{y}(\tau)) (\overline{y}'(\tau) - h(\overline{y}(\tau))) d\tau$$
trading in rates

for $F(y) = \int_0^y f(x) dx$ subject to the *isoperimetric condition*

$$\Theta_{0-} - Y_{0-} \equiv K(\overline{y}) := \underbrace{g(\overline{y}(0))}_{=\overline{\theta}(0)} + \int_0^T \underbrace{(\overline{y}' - h(\overline{y}))}_{=\overline{\theta}'(\tau)} d\tau - \overline{y}(T).$$

Goal: find intermediate impact $\overline{y}(\tau)$ and terminal position g(y).

Calculus of variations

- Maximize $J(\overline{y})$ subject to $K(\overline{y})=$ (const) over $\overline{y}\in C^1([0,T])$ with $\overline{y}(T)=Y_0$
- Equivalent problem: $\max_{\overline{y}} (J(\overline{y}) + m_T K(\overline{y}))$ with (unknown) Lagrange multiplier $m_T \in \mathbb{R}$.
- Taylor approximation: $(J + m_T K)(\overline{y} + z)$

$$= (J + m_T K)(\overline{y}) + \underbrace{\delta(J + m_T K)(\overline{y})[z]}_{\text{first variation}} + \underbrace{\delta^2(J + m_T K)(\overline{y})[z]}_{\text{second variation}} + \mathcal{O}(\|z\|_{W^{1,\infty}}^3)$$

where
$$||z||_{W^{1,\infty}} := ||z||_{\infty} \vee ||z'||_{\infty}$$
.

Calculus of variations

- Maximize $J(\overline{y})$ subject to $K(\overline{y})=$ (const) over $\overline{y}\in C^1([0,T])$ with $\overline{y}(T)=Y_0$
- Equivalent problem: $\max_{\overline{y}} \left(J(\overline{y}) + m_T K(\overline{y}) \right)$ with (unknown) Lagrange multiplier $m_T \in \mathbb{R}$.
- Taylor approximation: $(J + m_T K)(\overline{y} + z)$

$$= (J + m_T K)(\overline{y}) + \underbrace{\delta(J + m_T K)(\overline{y})[z]}_{\text{first variation}} + \underbrace{\delta^2(J + m_T K)(\overline{y})[z]}_{\text{second variation}} + \mathcal{O}(\|z\|_{W^{1,\infty}}^3)$$

where
$$||z||_{W^{1,\infty}} := ||z||_{\infty} \vee ||z'||_{\infty}$$
.

Calculus of variations

- Maximize $J(\overline{y})$ subject to $K(\overline{y}) = (\text{const})$ over $\overline{y} \in C^1([0, T])$ with $\overline{y}(T) = Y_0$
- Equivalent problem: $\max_{\overline{y}} (J(\overline{y}) + m_T K(\overline{y}))$ with (unknown) Lagrange multiplier $m_T \in \mathbb{R}$.
- Taylor approximation: $(J + m_T K)(\overline{y} + z)$

$$= (J + m_T K)(\overline{y}) + \underbrace{\delta(J + m_T K)(\overline{y})[z]}_{\text{first variation}} + \underbrace{\delta^2(J + m_T K)(\overline{y})[z]}_{\text{second variation}} + \mathcal{O}(\|z\|_{W^{1,\infty}}^3)$$

where
$$||z||_{W^{1,\infty}} := ||z||_{\infty} \vee ||z'||_{\infty}$$
.

Necessary condition $\delta(J+m_TK)(\overline{y})[z]=0 \ \forall z\in C^1$ with z(T)=0, gives

- Lagrange multiplier m_T,
- candidate terminal position

$$\mathbf{g}(y) = y - f^{-1}\left(\left(f\frac{h\lambda + h' - \mu}{h'}\right)(y)\right), \qquad y > y_{\infty},$$

where $(h\lambda + h' - \mu)(y_{\infty}) = 0$,

• ODE for candidate impact trajectory $\overline{y}(\tau)$

$$\overline{y}' = \mu \left(\frac{f(h\lambda + h' - \mu)/h'}{(f(h\lambda + h' - \mu)/h')'} \right) (\overline{y}).$$

Write $\overline{y}(\tau;z)$, $\overline{\theta}(\tau;z)$ for the solution with $\overline{y}(0;z)=z$, $\overline{\theta}(0;z)=g(z)$,

$$\bar{\theta}_{\tau}(\tau;z) = \bar{y}_{\tau}(\tau;z) - h(\bar{y}(\tau;z)).$$

Necessary condition $\delta(J+m_TK)(\overline{y})[z]=0 \ \forall z\in C^1$ with z(T)=0, gives

- Lagrange multiplier m_T,
- candidate terminal position

$$g(y) = y - f^{-1}\left(\left(f\frac{h\lambda + h' - \mu}{h'}\right)(y)\right), \quad y > y_{\infty},$$

where $(h\lambda + h' - \mu)(y_{\infty}) = 0$,

• ODE for candidate impact trajectory $\overline{y}(\tau)$:

$$\overline{y}' = \mu \left(\frac{f(h\lambda + h' - \mu)/h'}{(f(h\lambda + h' - \mu)/h')'} \right) (\overline{y}).$$

Write $\overline{y}(\tau;z)$, $\overline{\theta}(\tau;z)$ for the solution with $\overline{y}(0;z)=z$, $\overline{\theta}(0;z)=g(z)$,

Necessary condition $\delta(J+m_TK)(\overline{y})[z]=0 \ \forall z\in C^1$ with z(T)=0, gives

- Lagrange multiplier m_T ,
- candidate terminal position

$$g(y) = y - f^{-1}\left(\left(f\frac{h\lambda + h' - \mu}{h'}\right)(y)\right), \quad y > y_{\infty},$$

where $(h\lambda + h' - \mu)(y_{\infty}) = 0$,

• ODE for candidate impact trajectory $\overline{y}(\tau)$:

$$\overline{y}' = \mu \left(\frac{f(h\lambda + h' - \mu)/h'}{(f(h\lambda + h' - \mu)/h')'} \right) (\overline{y}).$$

Write $\overline{y}(\tau;z)$, $\overline{\theta}(\tau;z)$ for the solution with $\overline{y}(0;z)=z$, $\overline{\theta}(0;z)=g(z)$,

Necessary condition $\delta(J + m_T K)(\overline{y})[z] = 0 \ \forall z \in C^1 \ \text{with} \ z(T) = 0$, gives

- Lagrange multiplier m_T ,
- candidate terminal position

$$g(y) = y - f^{-1}\left(\left(f\frac{h\lambda + h' - \mu}{h'}\right)(y)\right), \quad y > y_{\infty},$$

where $(h\lambda + h' - \mu)(y_{\infty}) = 0$,

• ODE for candidate impact trajectory $\overline{y}(\tau)$:

$$\overline{y}' = \mu \left(\frac{f(h\lambda + h' - \mu)/h'}{(f(h\lambda + h' - \mu)/h')'} \right) (\overline{y}).$$

Write $\overline{y}(\tau;z)$, $\overline{\theta}(\tau;z)$ for the solution with $\overline{y}(0;z)=z$, $\overline{\theta}(0;z)=g(z)$, $\overline{\theta}_{\tau}(\tau;z)=\overline{y}_{\tau}(\tau;z)-h(\overline{y}(\tau;z)).$

Non-convex problem – proving optimality

Proof of optimality for this **non-convex** problem:

- 1. showing local optimality with 2nd variation;
- 2. use this to extend to global optimality.

Ansatz as in Becherer, Bilarev, F. – Optimal liquidation under stochastic liquidity, Finance Stoch., 22(1):39–68, 2018

Non-convex problem – proving optimality

Proof of optimality for this **non-convex** problem:

- 1. showing local optimality with 2nd variation;
- 2. use this to extend to global optimality.

Ansatz as in Becherer, Bilarev, F. – *Optimal liquidation under stochastic liquidity*, Finance Stoch., 22(1):39–68, 2018

Theorem (strict local maximizer \overline{y})

Under technical conditions[†] on impact and resilience functions f and h, $\exists \varepsilon > 0$ s.t. for all $y \in C^1$ with $y(T) = \overline{y}(T)$, $||y - \overline{y}||_{W^{1,\infty}} \in (0,\varepsilon)$:

$$(J+m_TK)(\overline{y})>(J+m_TK)(y).$$

Proof: $2^{\rm nd}$ variation $\delta^2(J+m_TK)(\overline{y})[z]<0$, higher order terms are $O(\|z\|_{W^{1,\infty}}^3)$.

- Candidate buy-sell boundary $\mathcal{I} = \{(\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty}\}$
- Candidate value function $V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-})$.

$$\begin{array}{l} ^{\dagger} \ f,h \in \textit{C^3}, \ f,f' > 0, \ \lim_{y \to -\infty} f(y) = 0, \\ h' > 0, \ h(0) = 0, \ (h\lambda)' > 0, \ (h\lambda + h')' > 0 \ \text{where} \ \lambda := f'/f, \\ \exists y_{\infty} : (h\lambda + h' - \mu)(y_{\infty}) = 0, \quad \exists y_0 : (h\lambda - \mu)(y_0) = 0, \\ \text{and} \ h'' < (h\lambda)'h'/(h\lambda - \mu) \ \text{for} \ y > y_0 \,. \end{array}$$

Theorem (strict local maximizer \overline{y})

Under technical conditions[†] on impact and resilience functions f and h, $\exists \varepsilon > 0$ s.t. for all $y \in C^1$ with $y(T) = \overline{y}(T)$, $||y - \overline{y}||_{W^{1,\infty}} \in (0,\varepsilon)$:

$$(J+m_TK)(\overline{y})>(J+m_TK)(y).$$

Proof: $2^{\rm nd}$ variation $\delta^2(J+m_TK)(\overline{y})[z]<0$, higher order terms are $O(\|z\|_{W^{1,\infty}}^3)$.

- Candidate buy-sell boundary $\mathcal{I} = \{(\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty}\}$
- Candidate value function $V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-}).$

$$\begin{array}{l} ^{\dagger} f,h \in C^{3}, \, f,f'>0, \, \lim_{y \to -\infty} f(y)=0, \\ h'>0, \, h(0)=0, \, (h\lambda)'>0, \, (h\lambda+h')'>0 \, \text{ where } \lambda:=f'/f, \\ \exists y_{\infty}: (h\lambda+h'-\mu)(y_{\infty})=0, \quad \exists y_{0}: (h\lambda-\mu)(y_{0})=0, \\ \text{and } h''<(h\lambda)'h'/(h\lambda-\mu) \text{ for } y>y_{0}\,. \end{array}$$

Theorem (strict local maximizer \overline{y})

Under technical conditions[†] on impact and resilience functions f and h, $\exists \varepsilon > 0$ s.t. for all $y \in C^1$ with $y(T) = \overline{y}(T)$, $||y - \overline{y}||_{W^{1,\infty}} \in (0,\varepsilon)$:

$$(J+m_TK)(\overline{y})>(J+m_TK)(y).$$

Proof: $2^{\rm nd}$ variation $\delta^2(J+m_TK)(\overline{y})[z]<0$, higher order terms are $O(\|z\|_{W^{1,\infty}}^3)$.

- Candidate buy-sell boundary $\mathcal{I} = \{(\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty}\}$
- Candidate value function $V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-}).$

$$\begin{array}{l} ^{\dagger} f,h \in {\it C}^{3},\,f,f'>0,\, \lim_{y \to -\infty} f(y)=0,\\ h'>0,\,h(0)=0,\,(h\lambda)'>0,\,(h\lambda+h')'>0\,\,\text{where}\,\,\lambda:=f'/f,\\ \exists y_{\infty}:(h\lambda+h'-\mu)(y_{\infty})=0,\quad \exists y_{0}:(h\lambda-\mu)(y_{0})=0,\\ \text{and}\,\,h''<(h\lambda)'h'/(h\lambda-\mu)\,\,\text{for}\,\,y>y_{0}\,. \end{array}$$

Theorem (strict local maximizer \overline{y})

Under technical conditions[†] on impact and resilience functions f and h, $\exists \varepsilon > 0$ s.t. for all $y \in C^1$ with $y(T) = \overline{y}(T)$, $||y - \overline{y}||_{W^{1,\infty}} \in (0,\varepsilon)$:

$$(J+m_TK)(\overline{y})>(J+m_TK)(y).$$

Proof: $2^{\rm nd}$ variation $\delta^2(J+m_TK)(\overline{y})[z]<0$, higher order terms are $O(\|z\|_{W^{1,\infty}}^3)$.

- Candidate buy-sell boundary $\mathcal{I} = \{(\tau, \overline{y}(\tau; z), \bar{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty}\}$
- Candidate value function $V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-}).$

$$\begin{array}{l} ^{\dagger} \ f,h \in \textit{C^3}, \ f,f' > 0, \ \lim_{y \to -\infty} f(y) = 0, \\ h' > 0, \ h(0) = 0, \ (h\lambda)' > 0, \ (h\lambda + h')' > 0 \ \text{where} \ \lambda := f'/f, \\ \exists y_{\infty} : (h\lambda + h' - \mu)(y_{\infty}) = 0, \quad \exists y_0 : (h\lambda - \mu)(y_0) = 0, \\ \text{and} \ h'' < (h\lambda)'h'/(h\lambda - \mu) \ \text{for} \ y > y_0 \,. \end{array}$$

Local optimality (II)

$$\mathcal{I} = \{ (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty} \}$$
$$V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-})$$

Corollary (variational inequality near \mathcal{I})

We have

 $V_{ au} + h(y)V_y - \mu V > 0$ in a neighborhood of ${\mathcal I}$ with equality on ${\mathcal I}$,

and $V_y + V_\theta = f$ everywhere

Proof: Otherwise, construct a strategy given by \hat{y} , with $0 < \|\hat{y} - \overline{y}\|_{W^{1,\infty}} < \varepsilon$ and $K(\hat{y}) = K(\overline{y})$ which would give $J(\hat{y}) > J(\overline{y})$.

Local optimality (II)

$$\mathcal{I} = \{ (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty} \}$$
$$V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-})$$

Corollary (variational inequality near \mathcal{I})

We have $V_{\tau} + h(y)V_y - \mu V > 0$ in a neighborhood of \mathcal{I} with equality on \mathcal{I} , and $V_y + V_{\theta} = f$ everywhere.

Proof: Otherwise, construct a strategy given by \hat{y} , with $0 < \|\hat{y} - \overline{y}\|_{W^{1,\infty}} < \varepsilon$ and $K(\hat{y}) = K(\overline{y})$ which would give $J(\hat{y}) \ge J(\overline{y})$.

Local optimality (II)

$$\mathcal{I} = \{ (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \mid \tau \in [0, \infty), z > y_{\infty} \}$$
$$V(T, Y_{0-}, \Theta_{0-}) := J(\overline{y}; T, Y_{0-}, \Theta_{0-})$$

Corollary (variational inequality near \mathcal{I})

We have $V_{\mathcal{T}} + h(y)V_y - \mu V > 0 \ \ \text{in a neighborhood of } \mathcal{I}$ with equality on \mathcal{I} , and $V_v + V_\theta = f$ everywhere.

Proof: Otherwise, construct a strategy given by \hat{y} , with $0 < \|\hat{y} - \overline{y}\|_{W^{1,\infty}} < \varepsilon$ and $K(\hat{y}) = K(\overline{y})$ which would give $J(\hat{y}) \ge J(\overline{y})$.

Question: How to conclude from local to global optimality?

• Let
$$k(d) := (V_{\tau} + h(y)V_{y} - \mu V)(\tau; y_{b} + d, \theta_{b} + d)$$

for fixed $(\tau, y_{b}, \theta_{b}) = (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \in \mathcal{I}$

- Previous corollary: k(0) = 0, $k'(0-) \le 0 \le k'(0+)$;
- Now, can show analytically the inequalities:

$$k'(-d) < 0 < k'(d)$$
 for $d > 0$.

• Hence, k(d) > 0 for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

Question: How to conclude from local to global optimality?

• Let
$$k(d) := (V_{\tau} + h(y)V_{y} - \mu V)(\tau; y_{b} + d, \theta_{b} + d)$$

for fixed $(\tau, y_{b}, \theta_{b}) = (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \in \mathcal{I}$.

- Previous corollary: k(0) = 0, $k'(0-) \le 0 \le k'(0+)$;
- Now, can show analytically the inequalities:

$$k'(-d) < 0 < k'(d)$$
 for $d > 0$.

• Hence, k(d) > 0 for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

Question: How to conclude from local to global optimality?

• Let
$$k(d) := (V_{\tau} + h(y)V_{y} - \mu V)(\tau; y_{b} + d, \theta_{b} + d)$$

for fixed $(\tau, y_{b}, \theta_{b}) = (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \in \mathcal{I}$.

- Previous corollary: k(0) = 0, $k'(0-) \le 0 \le k'(0+)$;
- Now, can show analytically the inequalities:

$$k'(-d) < 0 < k'(d)$$
 for $d > 0$

• Hence, k(d) > 0 for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

Question: How to conclude from local to global optimality?

• Let
$$k(d) := (V_{\tau} + h(y)V_{y} - \mu V)(\tau; y_{b} + d, \theta_{b} + d)$$

for fixed $(\tau, y_{b}, \theta_{b}) = (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \in \mathcal{I}$.

- Previous corollary: k(0) = 0, $k'(0-) \le 0 \le k'(0+)$;
- Now, can show analytically the inequalities:

$$k'(-d) < 0 < k'(d)$$
 for $d > 0$.

• Hence, k(d) > 0 for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

Question: How to conclude from local to global optimality?

• Let
$$k(d) := (V_{\tau} + h(y)V_{y} - \mu V)(\tau; y_{b} + d, \theta_{b} + d)$$

for fixed $(\tau, y_{b}, \theta_{b}) = (\tau, \overline{y}(\tau; z), \overline{\theta}(\tau; z)) \in \mathcal{I}$.

- Previous corollary: k(0) = 0, $k'(0-) \le 0 \le k'(0+)$;
- Now, can show analytically the inequalities:

$$k'(-d) < 0 < k'(d)$$
 for $d > 0$.

• Hence, k(d) > 0 for $d \in \mathbb{R} \setminus \{0\}$, giving strict global optimality.

Optimal strategy: dependence on price trend

(comparative statics)

- **no trend** in fundamental price \overline{S} (martingale, Obizhaeva/Wang situation): constant rate of trading in time (0, T).
- increasing \overline{S} : defer asset sales to later times; for strong upwards trend: temporary buying
- decreasing \overline{S} : sell asset at earlier times; for string downwards trend: go short.

Optimal strategy: dependence on price trend

(comparative statics)

- **no trend** in fundamental price \overline{S} (martingale, Obizhaeva/Wang situation): constant rate of trading in time (0, T).
- increasing \overline{S} : defer asset sales to later times; for strong upwards trend: temporary buying.
- decreasing \overline{S} : sell asset at earlier times; for string downwards trend: go short.

Optimal strategy: dependence on price trend

(comparative statics)

- **no trend** in fundamental price \overline{S} (martingale, Obizhaeva/Wang situation): constant rate of trading in time (0, T).
- increasing \overline{S} : defer asset sales to later times; for strong upwards trend: temporary buying.
- decreasing \overline{S} : sell asset at earlier times; for string downwards trend: go short.

If there is still some time...

Stochastic liquidity and transaction costs

• Stochasticity in the impact/signal:

$$dY_t = -\beta Y_t dt + \hat{\sigma} dB_t + d\Theta_t, \qquad Y_{0-} = y,$$

for correlated Brownian motion B with $\mathrm{d}[B,W]_t=\rho\,\mathrm{d}t$. [Becherer/Bilarev/F., FS 2018] [Lehalle/Neuman – Incorporating Signals into Optimal Trading, arXiv:1704.00847]

Bid-ask spread through proportional transaction costs:

$$\text{sell at } S^{\mathsf{bid}} := f(Y_t)\overline{S}_t \,, \qquad \text{buy at } S^{\mathsf{ask}} := \kappa f(Y_t)\overline{S}_t \,.$$

for transaction cost factor $\kappa>1$

• Maximize over Θ : càdlàg, adapted, bounded variation, ≥ 0 , until $\tau^{\Theta} := \inf\{t \geq 0 \mid \Theta_t = 0\}$. Infinite time horizon eases analysis: (non-convex) free boundary problem in \mathbb{R}^2

Stochastic liquidity and transaction costs

• Stochasticity in the impact/signal:

$$dY_t = -\beta Y_t dt + \hat{\sigma} dB_t + d\Theta_t, \qquad Y_{0-} = y,$$

for correlated Brownian motion B with $\mathrm{d}[B,W]_t=\rho\,\mathrm{d}t$. [Becherer/Bilarev/F., FS 2018] [Lehalle/Neuman – Incorporating Signals into Optimal Trading, arXiv:1704.00847]

Bid-ask spread through proportional transaction costs:

$$\text{sell at } S^{\mathsf{bid}} := f(Y_t) \overline{S}_t \,, \qquad \text{buy at } S^{\mathsf{ask}} := \kappa f(Y_t) \overline{S}_t \,,$$

for transaction cost factor $\kappa > 1$.

• Maximize over Θ : càdlàg, adapted, bounded variation, ≥ 0 , until $\tau^{\Theta} := \inf\{t \geq 0 \mid \Theta_t = 0\}$. Infinite time horizon eases analysis: (non-convex) free boundary problem in \mathbb{R}^2

Stochastic liquidity and transaction costs

• Stochasticity in the impact/signal:

$$dY_t = -\beta Y_t dt + \hat{\sigma} dB_t + d\Theta_t, \qquad Y_{0-} = y,$$

for correlated Brownian motion B with $\mathrm{d}[B,W]_t=\rho\,\mathrm{d}t$. [Becherer/Bilarev/F., FS 2018] [Lehalle/Neuman – Incorporating Signals into Optimal Trading, arXiv:1704.00847]

Bid-ask spread through proportional transaction costs:

$$\text{sell at } S^{\mathsf{bid}} := f(Y_t) \overline{S}_t \,, \qquad \text{buy at } S^{\mathsf{ask}} := \kappa f(Y_t) \overline{S}_t \,,$$

for transaction cost factor $\kappa > 1$.

• Maximize over Θ : càdlàg, adapted, bounded variation, ≥ 0 , until $\tau^{\Theta} := \inf\{t \geq 0 \mid \Theta_t = 0\}$. Infinite time horizon eases analysis: (non-convex) free boundary problem in \mathbb{R}^2 .

Variational (in-)equalities

State space $(y, \theta) \in \mathbb{R} \times \mathbb{R}_+$ should separate into open regions \mathcal{B} , \mathcal{W} , \mathcal{S} with corresponding HJB variational (in-)equalities . . .

- Ansatz: there exist free boundary curves $\mathbb{b}, \mathbb{s} \in C^1(\mathbb{R}_+)$ s.t. $\mathcal{B} = \{y < \mathbb{b}(\theta)\}, \ \mathcal{W} = \{\mathbb{b}(\theta) < y < \mathbb{s}(\theta)\}, \ \mathcal{S} = \{y > \mathbb{s}(\theta)\}.$
- V(y,0) = 0 for $y \ge s(0)$,
- $V(y, \infty) = \tilde{V}(y)$ via corresponding " $\theta \to \infty$ " infinite fuel limit.

Variational (in-)equalities

State space $(y, \theta) \in \mathbb{R} \times \mathbb{R}_+$ should separate into open regions \mathcal{B} , \mathcal{W} , \mathcal{S} with corresponding HJB variational (in-)equalities . . .

- Ansatz: there exist free boundary curves b, $s \in C^1(\mathbb{R}_+)$ s.t. $\mathcal{B} = \{y < b(\theta)\}, \ \mathcal{W} = \{b(\theta) < y < s(\theta)\}, \ \mathcal{S} = \{y > s(\theta)\}.$
- V(y,0) = 0 for $y \ge s(0)$,
- $V(y,\infty) = \tilde{V}(y)$ via corresponding " $\theta \to \infty$ " infinite fuel limit.

Variational (in-)equalities

State space $(y,\theta) \in \mathbb{R} \times \mathbb{R}_+$ should separate into open regions \mathcal{B} , \mathcal{W} , \mathcal{S} with corresponding HJB variational (in-)equalities . . .

- Ansatz: there exist free boundary curves $b, s \in C^1(\mathbb{R}_+)$ s.t. $\mathcal{B} = \{y < b(\theta)\}, \ \mathcal{W} = \{b(\theta) < y < s(\theta)\}, \ \mathcal{S} = \{y > s(\theta)\}.$
- V(y,0) = 0 for $y \ge s(0)$,
- $V(y,\infty) = \tilde{V}(y)$ via corresponding " $heta o \infty$ " infinite fuel limit.

Open ODE problem for boundary curves

Smooth pasting gives

• Candidate free boundary curves $b(\theta)$, $s(\theta)$ as ODE

$$(b', s') = \mathsf{function}(b, s),$$

• with asymptotes $\mathbb{b}(\infty) = b_{\infty}$, $\mathbb{s}(\infty) = s_{\infty}$, and (implicitly) given $\mathbb{s}(0)$.

Open questions:

- Existence of ODE solution for b, s;
- Proof of variational inequalities.

Open ODE problem for boundary curves

Smooth pasting gives

• Candidate free boundary curves $b(\theta)$, $s(\theta)$ as ODE

$$(b',s') = \mathsf{function}(b,s),$$

• with asymptotes $\mathbb{b}(\infty) = b_{\infty}$, $\mathbb{s}(\infty) = s_{\infty}$, and (implicitly) given $\mathbb{s}(0)$.

Open questions:

- \bullet Existence of ODE solution for $\mathbb{b}, \mathbb{s};$
- Proof of variational inequalities.

Open ODE problem for boundary curves

Smooth pasting gives

• Candidate free boundary curves $b(\theta)$, $s(\theta)$ as ODE

$$(b', s') = \mathsf{function}(b, s),$$

• with asymptotes $\mathbb{b}(\infty) = b_{\infty}$, $\mathbb{s}(\infty) = s_{\infty}$, and (implicitly) given $\mathbb{s}(0)$.

Open questions:

- Existence of ODE solution for b, s;
- Proof of variational inequalities.

Thank you!

