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Examples from Finance and Risk
Management



Systemic Risk Example, Garnier, Papanicolaou, Yang (2012)

Consider a system with a large number of inter-connected components .
Each component can be in a normal state or in a failed state. One wants
to study the probability of overall failure of the system–systemic risk.

I Banks cooperate and by spreading the risk of credit shocks among
them can operate with less restrictive individual risk policies (capital
reserves). But, this increases the risk that they may all fail–systemic
risk.

I In a power distribution system, individual components of the system
are calibrated to withstand fluctuations in demand by sharing loads.
But this increases the probability of an overall failure.



The risk variable x i(t) of each component i = 1, . . . ,N, satisfies the
SDEs

dx i(t) =−h
∂

∂y
V (x i(t))dt + θ(x(t)−x i(t))dt + σdw i(t)

V (y): is a potential with two stable states (normal state, failed
state). Without noise, the individual risk x i(t) stays in these states.
A typical V : V (y) =−(1/4)y4 + (1/2)y2.
w i : i ≤ N, independent Brownian motions.
x(t) := 1

N ∑
N
j=1 x j(t), mean field.

θ > 0: cooperative interaction parameter.
h: controls the probability that x i jumps from one state to the other.



h, σ , θ control the three effects (i) Intrinsic stability, (ii) random
perturbations, and (iii) the degree of cooperation.
Why mean field interaction? Because it is perhaps the simplest
interaction that models cooperative behavior.



Example: Credit Risk, Fouque & Langsam (2008)

Model borrowing and lending through the drifts:

dx i(t) = a
( 1

N

N

∑
j=1

x j(t)−x i(t)
)

dt + σdw i(t), i = 1, . . . ,N.

Correlated diffusions are used.
a > 0. Increasing the rate a of borrowing and lending a shows
“stability”
The x i(t)’s are “OU” mean-reverting to the ensemble average

d
( 1

N

N

∑
j=1

x j(t)
)

= d
(

σ

N

N

∑
j=1

dw j(t)
)
.

The ensemble average is distributed as a Brownian motion with
diffusion coefficient σ/

√
N.



Introduction



Mean-Field Models

Dawson (1983)
D.A. Dawson and J. Gärtner (1987), large deviations
Gärtner (1988), McKean-Vlasov limit for interacting diffusions
Huang, Caines, and Malhamé (2003, 2006), Mean-field games
Lasry and Lions (2006), Mean-field games
Bensoussan, Frehse, and Yam (2013), Springer Brief
Kolokoltsov and Troeva (2015), common noise and the
McKean-Vlasov SPDEs



Randomly Switched Dynamic System: An Illustration
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Figure 1: A “Sample Path” of A Switching Dynamic System (X (t),α(t)).
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Law of Large Numbers



Original Dawson’s Mean-Field Model with Switching Added

α(t): with M = {1,2, . . . ,m0}.
Consider an `-body mean-field model For i = 1,2, . . . , `,

dXi(t) =
[
γ(α(t))Xi(t)−X 3

i (t)−β (α(t))(Xi(t)−X (t))
]
dt

+σii(X (t),α(t))dwi(t),

X (t) =
1
`

`

∑
j=1

Xj(t),

X (t) = (X1(t),X2(t), . . . ,X`(t))′,

(1)

γ(i) > 0 and β (i) > 0 for i ∈M .
Originated from statistical mechanics, mean-field models are concerned
with many-body systems with interactions. To overcome the difficulty of
interactions due to the many bodies, one of the main ideas is to replace
all interactions to any one body with an average or effective interaction.



Some Previous Works

Kac (1956), time evolution of stochastic systems with long range weak
interactions

McKean (1966) Proc. Nat. Acad. Sci., Math Review written by Knight
“This paper contains a new and evidently valuable method of solving a class of
non-linear parabolic equations in terms of Markov processes with non-stationary
transition probabilities. Unfortunately, the style is obscure and at times cryptic.”

Dawson and Vaillancourt (1995), Stochastic McKean-Vlasov equations
studied so-called McKean-Vlasov limits of exchangeable infinite systems
(diffusions) of infinite particles that arises from the original work of McKean
related to the Boltzmann model of rarefied gases

Graham (1990), system of diffusing particles alternate between two
states, time-change, stopping times

Kolokoltsov (2010), nonlinear Markov processes

Kurtz and Xiong (1999), infinite system of SDEs for the locations and
weights of a collection of particles, a common space-time Gaussian
white noise, their model contains infinitely many exchangeable particles so
ergodic theory can be applied



Some Previous Works

Kac (1956), time evolution of stochastic systems with long range weak
interactions

McKean (1966) Proc. Nat. Acad. Sci., Math Review written by Knight
“This paper contains a new and evidently valuable method of solving a class of
non-linear parabolic equations in terms of Markov processes with non-stationary
transition probabilities. Unfortunately, the style is obscure and at times cryptic.”

Dawson and Vaillancourt (1995), Stochastic McKean-Vlasov equations
studied so-called McKean-Vlasov limits of exchangeable infinite systems
(diffusions) of infinite particles that arises from the original work of McKean
related to the Boltzmann model of rarefied gases

Graham (1990), system of diffusing particles alternate between two
states, time-change, stopping times

Kolokoltsov (2010), nonlinear Markov processes

Kurtz and Xiong (1999), infinite system of SDEs for the locations and
weights of a collection of particles, a common space-time Gaussian
white noise, their model contains infinitely many exchangeable particles so
ergodic theory can be applied



Some Previous Works

Kac (1956), time evolution of stochastic systems with long range weak
interactions

McKean (1966) Proc. Nat. Acad. Sci., Math Review written by Knight
“This paper contains a new and evidently valuable method of solving a class of
non-linear parabolic equations in terms of Markov processes with non-stationary
transition probabilities. Unfortunately, the style is obscure and at times cryptic.”

Dawson and Vaillancourt (1995), Stochastic McKean-Vlasov equations
studied so-called McKean-Vlasov limits of exchangeable infinite systems
(diffusions) of infinite particles that arises from the original work of McKean
related to the Boltzmann model of rarefied gases

Graham (1990), system of diffusing particles alternate between two
states, time-change, stopping times

Kolokoltsov (2010), nonlinear Markov processes

Kurtz and Xiong (1999), infinite system of SDEs for the locations and
weights of a collection of particles, a common space-time Gaussian
white noise, their model contains infinitely many exchangeable particles so
ergodic theory can be applied



Some Previous Works

Kac (1956), time evolution of stochastic systems with long range weak
interactions

McKean (1966) Proc. Nat. Acad. Sci., Math Review written by Knight
“This paper contains a new and evidently valuable method of solving a class of
non-linear parabolic equations in terms of Markov processes with non-stationary
transition probabilities. Unfortunately, the style is obscure and at times cryptic.”

Dawson and Vaillancourt (1995), Stochastic McKean-Vlasov equations
studied so-called McKean-Vlasov limits of exchangeable infinite systems
(diffusions) of infinite particles that arises from the original work of McKean
related to the Boltzmann model of rarefied gases

Graham (1990), system of diffusing particles alternate between two
states, time-change, stopping times

Kolokoltsov (2010), nonlinear Markov processes

Kurtz and Xiong (1999), infinite system of SDEs for the locations and
weights of a collection of particles, a common space-time Gaussian
white noise, their model contains infinitely many exchangeable particles so
ergodic theory can be applied



Some Previous Works

Kac (1956), time evolution of stochastic systems with long range weak
interactions

McKean (1966) Proc. Nat. Acad. Sci., Math Review written by Knight
“This paper contains a new and evidently valuable method of solving a class of
non-linear parabolic equations in terms of Markov processes with non-stationary
transition probabilities. Unfortunately, the style is obscure and at times cryptic.”

Dawson and Vaillancourt (1995), Stochastic McKean-Vlasov equations
studied so-called McKean-Vlasov limits of exchangeable infinite systems
(diffusions) of infinite particles that arises from the original work of McKean
related to the Boltzmann model of rarefied gases

Graham (1990), system of diffusing particles alternate between two
states, time-change, stopping times

Kolokoltsov (2010), nonlinear Markov processes

Kurtz and Xiong (1999), infinite system of SDEs for the locations and
weights of a collection of particles, a common space-time Gaussian
white noise, their model contains infinitely many exchangeable particles so
ergodic theory can be applied



Some Previous Works

Kac (1956), time evolution of stochastic systems with long range weak
interactions

McKean (1966) Proc. Nat. Acad. Sci., Math Review written by Knight
“This paper contains a new and evidently valuable method of solving a class of
non-linear parabolic equations in terms of Markov processes with non-stationary
transition probabilities. Unfortunately, the style is obscure and at times cryptic.”

Dawson and Vaillancourt (1995), Stochastic McKean-Vlasov equations
studied so-called McKean-Vlasov limits of exchangeable infinite systems
(diffusions) of infinite particles that arises from the original work of McKean
related to the Boltzmann model of rarefied gases

Graham (1990), system of diffusing particles alternate between two
states, time-change, stopping times

Kolokoltsov (2010), nonlinear Markov processes

Kurtz and Xiong (1999), infinite system of SDEs for the locations and
weights of a collection of particles, a common space-time Gaussian
white noise, their model contains infinitely many exchangeable particles so
ergodic theory can be applied



Our Work

What’s new in our work: The limit of the empirical measures is
not deterministic but a random measure that depends on the history of the

Markovian switching process

the stochastic McKean-Vlasov equation in the limit is driven by martingales
associate with the Markov switching process

Main difficulty: to characterize the limit using the martingale problem
formulation does not work.

Compare to Kurtz and Xiong, we no longer have infinitely many exchangeable
particles thus the existing ergodic theory is not applicable.

we characterize the limit as the unique solution to a stochastic McKean-Vlasov
equation w/ Markovian switching, which is represented by the conditional
distribution of the solution to a McKean-Vlasov stochastic differential equation
with a Markovian switching given the history of the switching process.
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Formulation: Law of Large Numbers

A mean-field system of N particles (N� 1),

dX i ,N
t = b

(
X i ,N

t ,
1
N

N

∑
j=1

δX j ,N
t
,α(t−)

)
dt + σ

(
X i ,N

t ,
1
N

N

∑
j=1

δX j ,N
t
,α(t−)

)
dW i

t ,

(2)

Digression: Empirical Distribution, Glivenko-Cantelli Theorem

Let Z1,Z2, . . . ,Zn, . . . be a sequence of i.i.d. r.v.’s
Z1 has d.f. F (z).
Form

F̂n(z) =
1
n

n

∑
i=1

δ{Zi≤z}.

F̂n(z)→ F (z) as n→ ∞.



Setup (cont.)

Cb(Rd ): space of bounded continuous functions on Rd

Ck
b (Rd ): Ck functions with bdd partials

Ck
c : Ck functions with compact support

E : metric space
B(E): Borel σ -field on E
P(E): space probability measures on

(
E ,B(E)

)
w/ weak topology

C([0,T ],E): space of continuous functions with sup metric
D([0,T ],E): space of all càdlàg functions with Skorohod topology



Setup (cont.)

M : = {1,2, . . . ,m0}, state space of the Markov chain
Df ([0,T ],M ): subspace of D([0,T ],M ) with finite jumps
dM : metric on M , dM (i0, j0) = 1−δi0,j0 for i0, j0 ∈M .

M1: space of probability measures on Rd

with µ ∈M1, 〈µ, f 〉=
∫
Rd f (x)µ(dx)

For µ ∈M1, f (·, ·, i0) ∈ Cb(R×Rd ), g(·, i0) ∈ Cb(Rd ), define
〈µ, f (t , ·, i0)〉=

∫
Rd f (t ,x , i0)µ(dx) & 〈µ,g(·, i0)〉=

∫
Rd g(x , i0)µ(dx)

‖ · ‖TV : total variation metric M1

‖µ−η‖BL = sup

{∣∣〈µ, f〉−〈η , f
〉∣∣ : ‖f‖ ≤ 1,supx 6=y∈Rd

|f (x)−f (y)|
|x−y | ≤ 1

}
(M1,‖ · ‖BL) is a complete & separable metric space
d
(
(µ, i0),(η , j0)

)
=
∥∥µ−η

∥∥
BL + dM

(
i0, j0

)
, ∀µ,η ∈M1, i0, j0 ∈M .



Setup (cont.)

ϕ(x) = |x | and ψ(x) = |x |2

F α
t− = σ

{
α(s) : 0≤ s < t

}
F N,α

t = σ
{

wi(s),α(s) : 0≤ s ≤ t ,1≤ i ≤ N
}
.

For a r.v. ς on
(
Ω,F ,P

)
, denote

I L(ς): distribution; law of ς

I ηt = L
(
ς
∣∣F α

t−

)
: conditional law given F α

t− , meaning
E
(
f (ς)

∣∣F α
t−

)
=
∫
Rd f (x)ηt (dx) ∀f ∈ Cb(Rd ).

For N ≥ 1, t ∈ [0,T ], A ∈B(Rd ), define a measure-valued process

µN(t ,A) =
1
N

N

∑
j=1

δX j ,N
t

(A). (3)

PN : the induced probability measure of
(
µN(·),α(·)

)
on

D
(
[0,T ],M1×S

)
[Note PN concentrates on the set

C
(
[0,T ],M1

)
×Df

(
[0,T ],M

)
, a closed subspace of D

(
[0,T ],M1×M

)
.]



Assumption A.

(A1) For i0 ∈ S, b(·, ·, i0) : Rd ×M1→ Rd & σ(·, ·, i0) : Rd ×M1→ Rd×d are
Lipschitz, i.e., ∃L s.t.∣∣∣b(x ,µ, i0)−b

(
y ,η , i0

)∣∣∣+∣∣∣σ(x ,µ, i0)−σ
(
y ,η , i0

)∣∣∣≤L
(∣∣x−y

∣∣+∥∥µ−η
∥∥

BL

)
,

∀x ,y ∈ Rd & µ,η ∈M1.

(A2) The following conditions hold.

I For some constant C & ϕ : Rd → R, ϕ(x) = |x |,∣∣∣b(x ,µ, i0)∣∣∣≤ C
(

1 +
∣∣x∣∣+〈µ,ϕ〉), (x ,µ, i0) ∈ Rd ×M1×M .

I σ(·, ·, ·) is bounded.



Assume (A1), (A2), and

sup
N∈N

E
〈
µN(0),ψ

〉
< ∞, L

(
µN(0)

)
⇒ δµ0 in P

(
M1,‖ · ‖BL

)
,

where ψ : Rd → R with ψ(x) = |x |2. Then we will show that(
µN(·),α(·)

)
⇒
(
µα (·),α(·)

)
.

Proposition
The sequence

{(
µN(·),α(·)

)
,N ≥ 1

}
is weakly compact in the topology

of weak convergence of probability measure on D
(
[0,T ],M1×M

)
.



To characterize the limit, use martingales associate to the
switching process

(i0, j0) ∈M ×M ,
11: indicator function

[
Mi0j0

]
(t) = ∑

0≤s≤t
11
(
α(s−) = i0

)
11
(
α(s) = j0

)
,

〈
Mi0j0

〉
(t) =

∫ t

0
qi0j011

(
α(s−) = i0

)
ds,

(4)

Mi0j0(t) =
[
Mi0j0

]
(t)−

〈
Mi0j0

〉
(t) (5)

Mi0j0(t) is a square integrable martingale w.r.t. F α
t , Mi0j0(0) = 0.



Operator Associate to the Limiting System

f (·, i0) ∈ C2
c
(
Rd),

i0 ∈M ,(
x ,µ, i0

)
∈ Rd ×M1×M

denote the operator

L (µ)f
(
x , i0

)
= b′

(
x ,µ, i0

)
∇x f

(
x , i0

)
+

1
2

(
a
(
x ,µ, i0

)
∇x

)′
∇x f

(
x , i0

)
+ ∑

j0∈S
qi0j0

(
f (x , j0)− f (x , i0)

)
, (6)

a
(
x ,µ, i0

)
= σ

(
x ,µ, i0

)
σ
′(x ,µ, i0) ∈ Rd×d . (7)



Characterization of Limit: Stochastic McKean-Vlasov Equations

Theorem

Under (A1) and (A2), for f (·, i0) ∈ C2
c (Rd ) and i0 ∈ S, the system

〈
µ(t), f (·,α(t))

〉
=
〈
µ0, f (·,α(0))

〉
+
∫ t

0

〈
µ(s),L

(
µ(s)

)
f
(
·,α(s−)

)〉
ds

+ ∑
i0,j0∈S

∫ t

0

〈
µ(s), f (·, j0)− f (·, i0)

〉
dMi0 j0(s), (8)

has a unique solution L
(
y(t)

∣∣F α
t−

)
in D

(
[0,T ],M1

)
for all 0≤ t ≤ T .

y(t) is the unique solution of{
dy(t) = b

(
y(t),µα (t),α(t−)

)
dt + σ

(
y(t),µα (t),α(t−)

)
dw̃(t),

µα (t) = L
(
y(t)

∣∣F α
t−

)
, L(y(0)) = µ0,

where w̃(·) is a standard Brownian motion independent of α(·).



Maximum Principle



Motivation: Some References

Treating mean-field game problem with many particles or multi-agents and
random switching, the formulation in Wang and Zhang (2012) require having a
Markov chain for each particle.

Zhang, Sun, and Xiong (2018) studied a mean-field control problem for a general
model including both switching and jump. Even though it was not explicitly
mentioned in the reference, the system considered there is the limit of finite
population of weakly interacting jump-diffusion systems with Markovian
switching. In addition, in the prelimit of the weakly interacting systems, all the
particles are coupled by independent Markov chains.
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Motivation: Some References (cont.)

Although mean-field games and mean-field-type of controls have received much
needed attention in recent years, the study for mean-field control and games
with regime-switching remains largely in an early stage.

I Wang and Zhang (2017) dealt with a LQG social optimal problem
with mean-field term.

I The effort was to approximate the mean-field term x (N)
t in the finite

population model. By taking N large enough, the
Brownian motion is averaged out and the limit becomes a

switched ODE than switching diffusion.
I The switching is frozen to approximate the mean-field term in the

limit control problem. It only plays a role as a random coefficient in
the limit control problem and is not affected by the control.



Motivation: Our work

Our work focuses on obtaining maximum principles for regime-switching
diffusions with mean-field interactions

Combine mean-field-type controls and switching diffusions

The difficulties involve not only the mean-field interactions, but also the
“correlation” due to the modulating Markov chain.

It is often regarded that a maximum principle is largely of theoretical value. Here
we show that our result, in fact, leads to computable control strategies for LQG
problems.

We make crucial use of conditional mean field.
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Regarding the use of conditional mean fields

In Buckdahn, Li, and Ma, mean-field control with partial observations is
treated. The idea of converting a partially observable system into a fully
observable systems is used. Then naturally, a conditional mean-field is
used conditioning on the observations.

In Carmona and Zhu, a probabilistic approach for
mean-field games with major and minor players is provided. A

conditional mean-field with condition on the major player is used.



Formulation: Maximum Principle
For simplicity , we work out the scalar case . The generalization to
multi-dimensional cases is straightforward, but the notation is more complex.

[0,T ]: finite time horizon

Wt : an 1-dimensional standard Brownian motion

αt : a continuous-time Markov chain; Wt is independent of αt

M = {1,2, . . . ,m0}: state space of the Markov chain

Q =
(
qi0,j0

)
i0,j0∈M

: generator of αt

F W
t = σ

{
Ws : 0≤ s ≤ t

}
,

F W ,α
t = σ

{
Ws,αs : 0≤ s ≤ t

}
,

Ft = F W ,α
t

U: the action space, non-empty & convex subset of R

U : the class of measurable, Ft -adapted and square integrable
processes u(·, ·) : [0,T ]×Ω→ U.

b,σ : [0,T ]×R×R×R×M → R, ψ,ϕ,φ ,η : R→ R.



Set Up (cont.)

Consider a system of n interacting particles of the form

dX i ,N
t = b

(
t ,X i ,N

t ,
1
N

N

∑
j=1

ψ(X j ,N
t ),ut ,αt−

)
dt + σ

(
t ,X i ,N

t ,
1
N

N

∑
j=1

ϕ(X j ,N
t ),ut ,αt−

)
dW i

t ,

(W i
t , i ≥ 1): collection of independent standard Brownian motions.

Taking mean-square limit as N→ ∞ of the above system, we obtain

dXt = b
(

t ,Xt ,E
(
ψ
(
Xt
)∣∣F α

t−
)
,ut ,αt−

)
dt + σ

(
t ,Xt ,E

(
ϕ
(
Xt
)∣∣F α

t−
)
,ut ,αt−

)
dWt , (9)

X0 = x0 ∈ R,

Cost function:

J(u) = E

[∫ T

0
h
(

t ,Xt ,E
(
φ
(
Xt
)∣∣F α

t−
)
,ut ,αt−

)
+ g
(

XT ,E
(
η
(
XT
)∣∣F α

T−
)
,αT

)]
. (10)



Conditions

(C1) The functions ψ(·), φ(·), ϕ(·), and η(·) are continuously
differentiable; g(·, ·, i0) is continuously differentiable with respect to
(x ,y); b(·, ·, ·, ·, i0),σ(·, ·, ·, ·, i0), and h(·, ·, ·, ·, i0) are continuous in t
and continuously differentiable with respect to (x ,y ,u).

(C2) In (C1), for each t and i0, all derivatives of ψ(·), φ(·), ϕ(·), g(·, ·, i0),
b(t , ·, ·, ·, i0), σ(t , ·, ·, ·, i0), and h(t , ·, ·, ·, i0) with respect to x , y , and
u are Lipschitz continuous and bounded.



Some Estimates
For an admissible control u, denote the corresponding trajectory by
X u. If ut is an optimal control, then X u is the associated optimal
trajectory. Define the perturbed control as follow

uθ
t = ut + θ

(
vt −ut

)
, vt ∈U .

Denote

b(t) = b
(

t ,X u
t ,E

(
ψ
(
X u

t
)∣∣F α

t−
)
,ut ,αt−

)
,

σ(t) = σ

(
t ,X u

t ,E
(
ϕ
(
X u

t
)∣∣F α

t−
)
,ut ,αt−

)
,

h(t) = h
(

t ,X u
t ,E

(
φ
(
X u

t
)∣∣F α

t−
)
,ut ,αt−

)
,

g(t) = g
(

X u
t ,E

(
η
(
X u

t
)∣∣F α

t−
)
,αt

)
,

φ(t) = φ
(
X u

t
)
, ϕ(t) = ϕ

(
X u

t
)
, ψ(t) = ψ

(
X u

t
)
, η(t) = η

(
X u

t
)
.



Remark
Under suitable assumptions, for each u ∈U , (9) has a unique solution.

X θ : the trajectory corresponding to uθ
t

X u: the associated optimal trajectory

The following lemma implies X u
t is the uniform mean square limit of X θ

t
as θ → 0.

Lemma

∃K > 0, for all θ ,

lim
θ→0+

E

[
sup

0≤t≤T

∣∣X θ
t −X u

t
∣∣2]≤ K θ

2.



“Higher Order” Sensitivity
The following lemma shows that zt , the solution given by (11), is
nothing but the mean square derivative of X θ

t with respect to θ at
θ = 0.

Lemma

Let zt be the solution to the following linear equation

dzt =
[
bx (t)zt + by (t)E

(
ψx (t)zt

∣∣∣F α
t−

)
+ bu(t)

(
vt −ut

)]
dt

+
[
σx (t)zt + σy (t)E

(
ϕx (t)zt

∣∣∣F α
t−

)
+ σu(t)

(
vt −ut

)]
dWt

z0 = 0. (11)

Then we have

lim
θ→0+

E

[
sup

0≤s≤T

∣∣∣∣X θ
s −X u

s
θ

−zs

∣∣∣∣2
]

= 0.



Gateaux Derivative of J
The next lemma is concerned with the sensitivity of the cost functional
J with respect to the parameter θ . It gives the Gateaux derivative of
the cost functional.

Lemma

The Gateaux derivative of the cost functional J is given by

d
dθ

J
(
u + θ(v −u)

)∣∣∣∣
θ=0

= E

{∫ T

0

[
hx (t)zt + hy (t)E

(
φ x (t)zt

∣∣F α
t−
)

+ hu(t)(vt −ut )

]
dt

}
+E
[
gx (T )zT + gy (T )E

(
ηx (T )zT

∣∣F α

T−
)]
.

Next, we will show that the Gateaux derivative of J can be expressed
in terms Hamiltonian by using duality .



Spaces of Functions
To define BSDEs with conditional mean-field and Markovian switching
we need the following spaces of functions

S 2
F (0,T ;R) =

{
ϕ : [0,T ]×Ω→ R, Ft -adapted cadlag process,

E
[

sup
0≤t≤T

|ϕt |2
]
< ∞

}
,

L 0
F (0,T ;R) =

{
ψ : [0,T ]×Ω→ R, Ft -progressively measurable

}
,

L 2
F (0,T ;R) =

{
ψ ∈L 0

F (0,T ;R) : ‖ψ‖22 = E
[∫ T

0
|ψt |2dt

]
< ∞

}
,

M 2
F (0,T ;R) =

{
λ = (λi0j0 : i0, j0 ∈M ),s.t. λi0j0 ∈L 0

F (0,T ;R),

λi0i0 = 0 for i0, j0 ∈M ,

and ∑
i0,j0∈M

E
[∫ T

0

∣∣λi0j0(t)
∣∣2d
[
Mi0j0

]
(t)
]
< ∞

}
.



Stochastic Integrals Driven by Martingales

Note that Mi0j0(t), i0, j0 ∈M , are martingales.
For F -progressively measurable Λt =

(
Λi0j0(t)

)
i0,j0∈M

, t ≥ 0, denote

∫ t

0
Λs •dMs = ∑

i0,j0∈M

∫ t

0
Λi0j0(s)dMi0j0(s),

Λt •dMt = ∑
i0,j0∈M

Λi0j0(t)dMi0j0(t).

F (·, ·, ·, ·, ·, ·) : [0,T ]×Ω×R×R×R×R→ R, and Ψ(·),Φ(·) : R→ R.
ξ : an FT -measurable random variable.



BSDE w/ Conditional Mean Field and Markovian Switching
A triple

(
Yt ,Zt ,Λt

)
∈S 2

F (0,T ;R)×L 2
F (0,T ;R)×M 2

F (0,T ;R) is a soln
of the BSDE

dYt = F
(

t ,Yt ,Zt ,E
(
Ψ
(
Yt
)∣∣F α

t−
)
,E
(
Φ
(
Zt
)∣∣F α

t−
))

dt + ZtdWt + Λt •dMt ,

YT = ξ ,
(12)

if for 0≤ t ≤ T ,

Yt = ξ −
∫ T

t
F
(

s,Ys,Zs,E
(
Ψ
(
Ys
)∣∣F α

s−
)
,E
(
Φ
(
Zs
)∣∣F α

s−
))

ds

−
∫ T

t
ZsdWs−

∫ T

t
Λs •dMs.

Theorem

Under suitable conditions, (12) has a unique solution(
Yt ,Zt ,Λt

)
∈S 2

F (0,T ;R)×L 2
F (0,T ;R)×M 2

F (0,T ;R).



Adjoint Equation

dpt =−
[
bx (t)pt + σx (t)qt + hx (t)

]
dt

−
[
E
(
by (t)pt

∣∣F α
t−
)
ψx (t) +E

(
σy (t)qt

∣∣F α
t−
)
ϕx (t)

+E
(
hy (t)

∣∣F α
t−
)
φ x (t)

]
dt + qtdWt + λ t •dMt , (13)

pT = gx (T ) +E
(
gy (T )

∣∣F α

T−
)
ηx (T ). (14)

Lemma

The following identity holds

E
(
pT zT

)
= E

[∫ T

0

(
ptbu(t)

(
vt −ut

)
−hx (t)zt −E

(
hy (t)

∣∣F α
t−
)
φ x (t)zt + qtσu(t)

(
vt −ut

))
dt

]
.



Hamiltonian

For (t ,x ,µ,u,p,q, i0) ∈ [0,T ]×R×P×R×M , define the Hamiltonian

H(t ,x ,u,p,q, i0)

= h
(
t ,x ,E(φ(x)|F α

t−),u, i0
)

+ b
(
t ,x ,E(ψ(x)|F α

t−),u, i0
)
p

+ σ
(
t ,x ,E(ϕ(x)|F α

t−),u, i0
)
q. (15)



Representation of the Gateaux Derivative of J.

We can represent the Gateaux derivative of the cost functional in
terms of the Hamiltonian H.

Lemma

The Gateaux derivative of the cost functional can be expresses in
terms of the Hamiltonian H in the following way

d
dθ

J
(
u + θ(v −u)

)∣∣∣∣
θ=0

= E
(∫ T

0

(
hu(t)(vt −ut ) + ptbu(t)(vt −ut )

+ qtσu(t)(vt −ut )
)

dt
)

= E
(∫ T

0

d
du

H
(
t ,X t ,ut ,pt ,qt ,αt−

)
(vt −ut )dt

)
.

(16)



Necessary Conditions

Theorem
(Necessary Conditions). Under suitable assumptions, if ut is an optimal
control with state trajectory X t , then ∃

(
pt ,qt ,λ t

)
of adapted processes

which satisfies the BSDE (13) and (14) such that

d
du

H
(
t ,X t ,ut ,pt ,qt ,αt−

)
(v−ut )≥0, P-a.s., for all t ∈ [0,T ] and v ∈ U.



Additional Assumptions

(C3) The functions ψ(·), φ(·), ϕ(·), and η(·) are convex, the function
g(·, ·, ·) is convex in (x ,y), and the Hamiltonian H(·, ·, ·, ·, ·, ·) is
convex in (x̂ ,u).

(C4) The functions by (·, ·, ·, ·, ·), σy (·, ·, ·, ·, ·), hy (·, ·, ·, ·, ·), and gy (·, ·, ·)
are nonnegative.



Sufficient Conditions

Assume additionally

The functions ψ,φ ,ϕ, and η are convex, the function g is convex in
(x ,y), and the Hamiltonian H is convex in (x ,y ,u).

The functions by ,σy ,hy , and gy are nonnegative.

Theorem
(Sufficient Conditions). Assume that conditions in the result of
necessary conditions and above hold. Let u be a control in U with the
corresponding state trajectory X t . Let (pt ,qt ,λ t ) be the solution to the
adjoint equation. If

H(t ,x t ,ut ,pt ,qt ) = inf
v∈U

H(t ,x t ,v ,pt ,qt ), ∀ t ∈ [0,T ] (17)

then ut is an optimal control.



Application to LQG Contol



Consider the following LQG problem with Markovian switching and mean-field
interaction

System:
dXt =

[
A(αt−)Xt + Â(αt−)E

(
Xt
∣∣F α

t−
)

+ B(αt−)ut

]
dt

+
[
C(αt−)Xt + Ĉ(αt−)E

(
Xt
∣∣F α

t−
)

+ D(αt−)ut

]
dWt

X0 = x0.

(18)

Cost:

J(u) =
1
2
E
[∫ T

0

(
R(αt−)X2

t + N(αt−)u2
t

)
dt + S(αT )X2

T

]
. (19)

We will use maximum principle to solve the optimal control problem.



Adjoint equation:

dpt =−
[
A(αt−)pt + C(αt−)qt + R(αt−)Xt + Â(αt−)E

(
pt
∣∣F α

t−
)

+ Ĉ(αt−)E
(
qt
∣∣F α

t−
)]

dt

+ qt dWt + Λt •dMt ,

pT = S(αT−)XT .

Hamiltonian:

H(t ,x ,u,p,q, i0) =
1
2

[
R(i0)x2 + N(i0)u2

]
+
[
A(i0)x + Â(i0)E

(
x
∣∣F α

t−
)

+ B(i0)u
]
p

+
[
C(i0)x + Ĉ(i0)E

(
x
∣∣F α

t−
)

+ D(i0)u
]
q.

Necessary condition for optimality leads to

N(αt−)ut =−
[
B(αt−)pt + D(αt−)qt

]
.



Denote X̂t = E
(
Xt
∣∣F α

t−
)
, p̂t = E

(
pt
∣∣F α

t−
)
, q̂t = E

(
qt
∣∣F α

t−
)
, At = A(αt−),

and Ât = Â(αt−). The functions Bt ,Ct , Ĉt , . . . are defined by a similar
way.

The feedback control system takes the form

dXt =

[
At Xt + Ât X̂t −

B2
t

Nt
pt −

Bt Dt
Nt

qt

]
dt +

[
Ct Xt + Ĉt X̂t −

Dt Bt
Nt

pt −
D2

t
Nt

qt

]
dWt ,

dpt =−
[
At pt + Ct qt + Rt Xt + Ât p̂t + Ĉt q̂t

]
dt + qt dWt + Λt •dMt ,

X0 = x ,

pT = S(αT )XT ,

a fully coupled mean-field forward-backward SDE w/ Markovian
switching.

To solve this system, we put

pt = ν(t ,αt )Xt + γ(t ,αt )E(Xt |F α
t−) (20)



By equalizing the coefficients of Xt and then X̂t we obtain the following
equations for νt and γt . ν ′t +

(
2At + C2

t
)
νt −

(
Bt + DtCt

)2
ν2

t

Nt + νtD2
t

+ Rt + Qνt (αt ) = 0,

νT = S(αT ),

(21)

and
γ ′t + 2

(
At + Ât

)
γt +

(
2Ct Ĉt + Ĉ2

t + 2Ât
)
νt

−Btγt + ĈtDtνt

Nt + D2
t νt

[(
2Bt + 2CtDt + ĈtDt

)
νt + Bγt

]
+ Qγt (αt ) = 0,

γT = 0.
(22)

Note that (21) is a Riccati equation which can be rewritten as follow
ν ′(t , i0) +

(
2A(i0) + C2(i0)

)
ν(t , i0)−

(
B(i0) + D(i0)C(i0)

)2
ν2(t , i0)

N(i0) + ν(t , i0)D(i0)2

+R(i0) + ∑j0∈M qi0j0
(
ν(t , j0)−ν(t , i0)

)
= 0,

ν(T , i0) = S(i0).

(23)



Theorem
The optimal control ut ∈U for the linear quadratic control problem is
given in feedback form by

ut =−

[
B(αt−) + C(αt−)D(αt−)

]
νtXt +

[
B(αt−)γt + Ĉ(αt−)D(αt−)νt

]
X̂t

N(αt−) + D2(αt−)νt

where νt and γt are solutions to (21) and (22), respectively.



Numerical Simulation

Let us consider the linear quadratic equation in which the Markovian process
takes two possible values 1 and 2 (i.e., M = {1,2}) with the generator

Q =

(
−2 2
5 −5

)
and the initial condition x0 = 5. For illustration purpose, assume that T = 2
and that the coefficients of the dynamic equation are given by

A(1) = 2, Â(1) = 1, B(1) = 2, C(1) = 1, Ĉ(1) = 2, D(1) = 2,
A(2) = 5, Â(2) = 5, B(2) = 4, C(2) = 2, Ĉ(2) = 3, D(2) = 1.

We also consider the cost function defined by equation (19) with

N(1) = 1, R(1) = 2, S(1) = 4,
N(2) = 4, R(2) = 5, S(2) = 2.



To study the behavior of the solution to equation (18) and the corresponding
mean-field terms, we first generate 10000 independent Brownian motions
and then use Euler’s method to achieve approximations of Xt and
X̂t = E

(
Xt
∣∣F α

t−
)
. Their graphs are shown in Figure 2 in which the more

fluctuating function is Xt and the smoother function is X̂t .

(a) A trajectory of solution Xt and X̂t (b) The optimal control ut

Figure 2: Simulations for Xt , X̂t , and ut



Further Remarks



Remarks

Regarding the Limit Theory

I The McKean-Vlasov involves random measure
I The rate of convergence is a future research topic

Regarding maximum principle
I Consideration of the models is largely due to the current needs of

handling networked control systems.
I The results cannot be obtained using known results in the literature.
I Main idea and insight of the paper are the use of

conditional mean field and the use of a law of large numbers for
such processes.

I Future work: mean-field games , more

general maximum principles .
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Thank you



Assumptions for BSDE

(B1) E|ξ |2 < ∞.

(B2) F (t ,Y ,Z ,y ,z) is F -progressively measurable for each (Y ,Z ,y ,z)
and F (t ,0,0,0,0) ∈L 2

F (0,T ;R).
(B3) There exists a constant K > 0 such that for t ∈ [0,T ] and

Y ,Z ,Y ′,Z ′,y ,z,y ′,z ′ ∈ R,∣∣∣F(t ,Y ,Z ,y ,z
)
−F

(
t ,Y ′,Z ′,y ′,z ′

)∣∣∣
≤ K

(
|Y −Y ′|+ |Z −Z ′|+ |y −y ′|+ |z−z ′|

)
a.s.

and ∣∣Ψ(y)−Ψ(y ′)
∣∣∨ ∣∣Φ(z)−Φ(z ′)

∣∣≤ K
(
|y −y ′|+ |z−z ′|

)
.
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