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Outlines

• Constrained LQ problems and FBSDEs for primal and dual problems

• Examples to constrained quadratic risk minimization problems

• Deep reinforcement learning to solve FBSDEs
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Constrained Linear Quadratic Problem

The state Xu ∈ Rd has linear dynamics controlled by some process u ∈ A,
where A is the set of progressively measurable admissible processes that are
constrained to some closed convex set K ∈ Rm.

dXu(t) = (A(t)Xu(t)+B(t)u(t))dt+(C(t)Xu(t)+D(t)u(t))dW (t) X0 = x0,

where W is a 1 dimensional Brownian motion. We wish to minimise a
quadratic of the system, that is, a cost function J of the form

J(u) = E

[∫ T

0

f (t,Xu(t), u(t))dt + g(Xu(T ))

]
,

where

f (t, x, u) = x>Q(t)x + 2x>S(t)u + u>R(t)u + ξ(t)>x + ψ(t)>u

g(x) = x>Mx + η>x.

We assume that the matrices (
Q(t) S(t)
S(t)> R(t)

)
and M are positive definite, so J is a convex function.
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Dual Controlled State Process

Assume D has full rank, that is, D(t)D(t)>(t) invertible for each t. Define
H2(0, T ;Rn) to be the set of progressively measurable Rn valued processes

x satisfying E[
∫ T
0 ||x(t)||2dt] < ∞. Let y0 ∈ Rd and α, β ∈ H2(0, T ;Rn).

The dual state process Y y0,α,β is given by

dY y0,α,β(t) = (α(t)+Ã(t)Y y0,α,β(t)+B̃(t)β(t))dt+(C̃(t)Y y0,α,β(t)+D̃(t)β(t))dW (t), Y (0) = y0,

where Y (0) = y0 and

Ã(t) =
(
B(t)D>(t)

(
D(t)D(t)>

)−1
C(t)− A(t)

)>
B̃(t) = −

(
D>(t)

(
D(t)D(t)>

)−1
C(t)

)>
C̃(t) = −

(
B(t)D>(t)

(
D(t)D(t)>

)−1)>
D̃(t) =

(
D>(t)

(
D(t)D(t)>

)−1)>
and (y0, α, β) are admissible dual controls. Then

Xu(t)>Y y0,α,β(t)−
∫ t

0

(Xu(s)>α(s) + u(s)>β(s))ds

is a super martingale
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Dual Problem

Define the dual functions

f̃ (t, α, β) = sup
x,u∈K

{−f (t, x, u) + x>α + u>β}

g̃(y) = sup
x
{−g(x)− x>y}

= (y + η)>M̃(y + η),

where the matrix M̃ is given by

M̃ = [(M + M>)−1 − (M + M>)−1M(M + M>)−1].

In particular, if M is symmetric then M̃ = 1
2M

−1. These dual functions
allow us to form the following dual relation

inf
u
J(u) > − inf

y0,α,β

{
x>0 y0 + E

[∫ T

0

f̃ (t, α(t), β(t))dt + g̃(Y y0,α,β(T ))

]}
.
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Primal Optimality Condition

Define S2(0, T ;Rn) to be the set of progressively measurable Rn valued
processes x such that E[sup06t6T ||x(t)||2] <∞.

Theorem 1. Let û ∈ A be admissible. Then û is optimal for the primal
problem if and only if the solution X û and the adjoint process (p̂1, q̂1) ∈
S2(0, T ;Rn) of the FBSDE

dX û(t) = (A(t)X û(t) + B(t)û(t))dt + (C(t)X û(t) + D(t)û(t))dW (t)

X(0) = x0

dp̂1(t) =
(
−
(
A(t)>p̂1(t) + C(t)>q̂1(t)

)
+ 2Q(t)X û(t) + 2S(t)>û(t) + ξ(t)

)
dt

+ q̂1(t)dW (t)

p̂1(T ) = −(M + M>)X û(t)− η
(1)

satisfy the condition

[û− u]>
[
B(t)>p̂1(t) + D(t)>q̂1(t) + 2StX

û(t) + R(t)û(t) + ψ(t)
]
> 0

(2)

almost surely, for a.e t ∈ [0, T ], and u ∈ K.
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Dual Optimality Condition

The associated adjoint equation is the following linear BSDE in unknown
processes p2, q2 ∈ S2(0, T ;Rd).

Theorem 2. Let (ŷ0, α̂, β̂) be admissible dual controls. Then (ŷ0, α̂, β̂) is

a solution of the dual problem if and only if the solution Y ŷ0,α̂,β̂ and the
adjoint process (p̂2, q̂2) of the FBSDE

dY ŷ0,α̂,β̂(t) = (α̂(t) + Ã(t)Y ŷ0,α̂,β̂(t) + B̃(t)β(t))dt

+ (C̃(t)Y ŷ0,α̂,β̂(t) + D̃(t)β̂(t))dW (t)

Y ŷ0,α̂,β̂(0) = y0

dp̂2(t) = −
[
Ã(t)p̂2(t) + C̃(t)q̂2(t)

]
dt + q̂2(t)dW (t)

dp̂2(T ) = −M−1(Y ŷ0,α̂,β̂(T ) + η)

satisfy the conditions

p̂2(0) = x0

B̃(t)>p̂2(t) + D̃(t)>q̂2(t) ∈ K(
p̂2(t), B̃(t)>p̂2(t) + D̃(t)>q̂2(t)

)
∈ ∂f̃ (α̂(t), β̂(t))

(3)
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Dual to Primal Relations

Theorem 3. Suppose (ŷ0, α̂, β̂) is an optimal dual control. Let Y ŷ0,α̂,β̂, p̂2, q̂2
be the corresponding FBSDE solutions. Define

û(t) = B̃(t)>p̂2(t) + D̃(t)>q2(t).

Then û ∈ K is an optimal control for the primal problem. Furthermore, let-
ting X û, p̂1, q̂1 be the corresponding FBSDE solutions, we have the following
relations.

X û(t) = p̂2(t)

p̂1(t) = Y ŷ0,α̂,β̂(t)

q̂1(t) = D̃(t)β̂(t) + C̃(t)Y ŷ0,α̂,β̂(t).
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Primal to Dual Relations

Theorem 4. Suppose û ∈ A is an optimal primal control. Let X û, p̂1, q̂1 be
the corresponding FBSDE solutions. Define

ŷ0 = p̂1(0)

α̂(t) = 2Q(t)X û(t) + 2S(t)>û(t)

β̂(t) = D(t)>q1(t)−B(t)>p̂1(t).

Then (ŷ0, α̂, β̂) is an optimal control for the dual problem. Furthermore,

letting Y ŷ0,α̂,β̂, p̂2, q̂2 be the corresponding FBSDE solutions, we have the
following relations.

Y ŷ0,α̂,β̂(t) = p̂1(t)

p̂2(t) = X û(t)

q̂2(t) = C(t)X û(t) + D(t)û(t).
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Special Case

Assume that

d = 1, m = 1, A(t) = r(t), B(t) = µ(t)− r(t), C(t) = 0, D(t) = σ(t)

and K is a closed convex cone. Then X(t) is the wealth process satisfying
the SDE{

dXπ(t) = {r(t)Xπ(t) + πᵀ(t)σ(t)θ(t)}dt + πᵀ(t)σ(t)dW (t),
Xπ(0) = x0,

(4)

where θ(t) , σ−1(t) [b(t)− r(t)1] is the market price of risk at time t and
π(t) ∈ K.

Assume there is no running cost. Then quadratic risk minimization problem
is defined by Minimize J(π(·)) = E

[
1

2
aX(T )2

]
,

Subject to (X(·), π(·)) is admissible.

(5)
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Since there is no running cost, the dual control α(t) = 0 for all t. The dual
state process satisfies the SDE{

dY (t) = −r(t)Y (t)dt +
[
σ−1(t)β(t)− θ(t)Y (t)

]ᵀ
dW (t)

Y (0) = y,
(6)

where β(t) ∈ K0 = {v : vTπ 6 0,∀π ∈ K}, the negative polar cone of K.

The dual problem is given by

Minimize x0y + E

[
Y (T )2

2a

]
(7)

over (y, β) ∈ R×H2(0, t;RN).
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Unconstrained Case

Assume K = RN . Primal FBSDE for primal optimal solution is given by

dXπ(t) =
[
r(t)Xπ(t) + π(t)>σ(t)θ(t)

]
dt + π(t)>σ(t)dW (t)

Xπ(0) = x0

dp1(t) = −r(t)p1(t)dt + q1(t)
>dW (t)

p1(T ) = −aXπ(t).

The necessary and sufficient optimality condition for optimal control π̂ is

p1(t)σ(t)θ(t) + σ(t)q1(t) = 0 (8)

almost surely, for a.e t ∈ [0, T ]. It is difficult to solve the above FBSDE.
Note that (8 implies

dp1(t) = −r(t)p1(t)dt− p1(t)θ(t)>dW (t).
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We now use the dual method to solve it. Since K = RN , then K0 = {0},
so β(t) = 0 for ∀t ∈ [0, T ] a.e. The dual problem is

min
y

{
x0y + E

[
Y (T )2

2a

]}
.

Dual FBSDE for dual optimal solution is given by

dY (t) = −r(t)Y (t)dt + [−θ(t)Y (t)]> dW (t)

Y (0) = y

dp2(t) = [r(t)p2(t) + q2(t)θ(t)] dt + q2(t)
>dW (t)

p2(T ) = −Y (T )

a

The necessary and sufficient optimality conditions for optimal control ŷ is

p2(0) = x0

almost surely. We have
Y (t) = yΓ(t),

where Γ satisfies the linear SDE

dΓ(t) = Γ(t)[−r(t)dt− θᵀ(t)dW (t)], Γ(0) = 1.
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The dual objective function is a quadratic function of y:

x0y + y2E

[
Γ(T )2

2a

]
.

The minimum point ŷ is given by

ŷ = − x0

E

[
Γ(T )2

a

].
Optimal dual process is Ŷ (t) = ŷΓ(t). Let (p̂2, q̂2) be adjoint process asso-
ciated with optimal control (ŷ, 0), satisfying BSDE

dp̂2(t) = [r(t)p̂2(t) + θᵀ(t)q̂2(t)]dt + q̂ᵀ2(t)dW (t), p̂2(T ) = −Ŷ (T )

a
,

Hence we obtain that

p̂2(t) = Γ(t)−1E

[
Γ(T )p̂2(T )

∣∣∣∣Ft] = −ŷΓ(t)−1E

[
1

a
Γ(T )2

∣∣∣∣Ft] ,
which shows that p̂2(t) 6= 0 for t ∈ [0, T ] a.e. if and only if ŷ 6= 0.
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Define a process P (t) , − Ŷ (t)

p̂2(t)
, ∀t ∈ [0, T ]. Applying Ito’s formula, we

obtain

dP (t) = −2r(t)P (t)dt+
1

p̂2(t)2
P (t)q̂2(t)

T q̂2(t)dt−P (t)

(
θ(t) +

1

p̂2(t)
q̂2(t)

)T
dW (t).

Define a process

Λ(t) ,
q̂2(t)Ŷ (t)

p̂2(t)2
+
θ(t)Ŷ (t)

p̂2(t)
.

Substituting Λ into the above equation and rearranging, we have

dP (t) =

[
−2r(t)P (t) + 2θᵀ(t)Λ(t) + θT (t)θ(t)P (t) +

Λᵀ(t)Λ(t)

P (t)

]
dt + Λᵀ(t)dW (t),

which is the stochastic Riccati equation (SRE) introduced in Lim-Zhou
(2002). Using the dual approach, we obtain an explicit representation of
the unique solution to the SRE.
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Dual-Primal Relations

Let (ŷ, 0, 0) be optimal dual controls. Then the optimal primal control and
processes are given by

π(t) = σ−1(t)>q2(t)

Xπ(t) = p2(t)

p1(t) = Y (ŷ,0,0)(t)

q1(t) = −θ(t)Y (ŷ,α̂,β̂)(t)

Conversely, suppose π(t) is an optimal primal control. Then the optimal
dual controls and processes are given by

y = p1(0)

α(t) = 0

β(t) = 0

Y (y,α,β)(t) = p1(t)

p2(t) = X π̂(t)

q2(t) = σ(t)>π̂(t)
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Constrained Case

Assume K is a closed convex cone. Heunis-Labbe (2007) states that there

exists optimal control (ŷ, β̂) to (7) with assiciated optimal state process Ŷ .

Define γ̂ by β̂(t) = γ̂(t)Ŷ (t) for ∀t ∈ [0, T ], we obtain that Ŷ follows the
SDE {

dŶ (t) = −r(t)Ŷ (t)dt +
[
σ−1(t)γ̂(t)− θ(t)

]ᵀ
Ŷ (t)dW (t)

Ŷ (0) = ŷ.

Hence, we have
Ŷ (t) = ŷĤ(t),

where

Ĥ(t) , exp

(∫ t

0

{
−r(s)− 1

2

[
σ−1(s)γ̂(s)− θ(s)

]ᵀ [
σ−1(s)γ̂(s)− θ(s)

]}
ds

+
[
σ−1(s)γ̂(s)− θ(s)

]ᵀ
dW (s)

)
.

By the dual FBSDE, we obtain

p̂2(0) = E [Γ(T )p̂2(T )] = E

[
−Γ(T )

Ŷ (T )

a

]
= −ŷE

[
Γ(T )

Ĥ(T )

a

]
= x0,
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which implies

ŷ = − x0

E

[
Γ(T )Ĥ(T )

a

].
Moreover, we have

p̂2(t) = Γ(t)−1E

[
−Γ(T )

Ŷ (T )

a

∣∣∣∣Ft
]

= −ŷΓ(t)−1E

[
Γ(T )

Ĥ(T )

a

∣∣∣∣Ft
]
,

which shows that p̂2(t) 6= 0 P-a.e. for ∀t ∈ [0, T ].

If x0 > 0 then Ŷ (t) < 0 and p̂2(t) > 0 for ∀t ∈ [0, T ], P-a.e. Define

P+(t) , − Ŷ (t)

p̂2(t)
= − p̂1(t)

X̂(t)
, ∀t ∈ [0, T ].

Applying Ito’s formula, we have

dP+(t) =
{
−2r(t)P+(t)− ξ̂ᵀ+(t) [σ(t)θ(t)P+(t) + σ(t)Λ+(t)]

}
dt + Λ+(t)dW (t),

where

Λ+(t) , − q̂1(t)
X̂(t)

− P+(t)πᵀ(t)σ(t)

X̂(t)
, ξ̂+(t) ,

π̂(t)

X̂(t)
.
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Define the following functions:

H+(t, v, P,Λ) ,vᵀPσ(t)σᵀ(t)v + 2vᵀ [σ(t)θ(t)P + σ(t)Λ] ,

H∗+(t, P,Λ) , inf
v∈K

H+(t, v, P,Λ).

After some technical discussions involving Clarke (1990) nonsmooth opti-
mization, we can show that P+ is the solution to the following nonlinear
BSDE dP+(t) = − [2r(t)P+(t) + H∗+(t, P+(t),Λ+(t))] dt + Λᵀ

+(t)dW (t),
P+(T ) = a,
P+(t) > 0. ∀t ∈ [0, T ].

(9)

If x0 < 0, then we can define P−(t) that satisfies a similar nonlinear BSDE to
that of (9). Using the dual approach, we have obtained an explicit represen-
tation of the unique solution to the ESREs, introduced in Hu-Zhou (2005),
in terms of optimal dual state and adjoint processes. Optimal solution to
the primal problem is given by π̂ᵀ(t) = [σᵀ]−1(t)q̂2(t),

X̂(t) = p̂2(t) = −Ŷ (t)

[
1{x0>0}

P+(t)
+

1{x0<0}

P−(t)

]
.
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Deep Reinforcement Learning

Suppose we want to approximate a function ϕ : Rp → Rq for some p, q ∈ N.
We use the following algorithm to construct an approximate function.

We take several elements of Rp, say a batch of size k ∈ N. For our purposes,
k will be how many Brownian paths we generate. There is number of ‘layers’
L ∈ N. Suppose we have a matrix X ∈ Rk×p as our input. Set N0 = X ,
then for i = 1, . . . , L, perform the update

Ni = h(Ni−1Mi + vi)

where M1 ∈ Rp×`, Mj ∈ R`×` for j > 1, vi ∈ Rk×` and h : Rk×` → Rk×`

applies the non-linear function x 7→ max(x, 0) element-wise. Finally, we
output

Nθ(X) = NLML+1 + vL+1

where ML+1 ∈ R`×q and vL+1 ∈ Rk×q. The parameter vector θ representing
our network is Mi and vi matrices, and is optimised at the training step. We
do not know a priori the function ϕ, so we train the weights against some
other performance metric. In our case, this metric is the Hamiltonian of the
control problem, or the squared discrepancy of the terminal condition. This
is what is known as reinforcement learning.
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Solving Dual FBSDE via Deep Learning

Assume K is the whole space. Recall dual FBSDE for optimal dual solution
is given by

dY (t) = [−r(t)Y (t)] dt + [−θ(t)Y (t)]> dW (t)

Y (0) = y

dp2(t) = [r(t)p2(t) + q2(t)θ(t)] dt + q2(t)
>dW (t)

p2(T ) = −Y (T )

a
p2(0) = x0.

To solve this problem via machine learning we search for a control

q2 = q2(t, Y (t))

which is function determined by neural networks and depending on a finite
number of parameters which are chosen to ensure optimality condition hold,
and BSDEs is solved. We simulate all processes in the forward direction,
set p2(0) = x0 and choose the controls such that

y, q2 ∈ arg min
y,q2

E

[∣∣∣∣p2(T ) +
Y (T )

a

∣∣∣∣2
]
.
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Solving Primal FBSDE via Deep Learning

Recall primal FBSDE for optimal primal solution is given by

dXπ(t) =
[
r(t)Xπ(t) + π(t)>σ(t)θ(t)

]
dt + π(t)>σ(t)dW (t)

Xπ(0) = x0

dp1(t) = −r(t)p1(t)dt− p1(t)θ(t)>dW (t)

p1(T ) = −aXπ(t).

To solve this problem via machine learning we search for a control

π = π(t,Xπ(t))

which is function determined by neural networks and depending on a finite
number of parameters which are chosen to ensure optimality condition hold,
and BSDEs is solved. We simulate all processes in the forward direction,
and choose the controls such that

p1(0), π ∈ arg min
p1(0),π

E
[
|p1(T ) + aXπ(t)|2

]
.

Each if these minimisations is performed using the ADAM algorithm, which
is a variant of stochastic gradient descent.

22



Explicit Dual Solution for Unconstrained Problem

The state process is simply a geometric Brownian motion, with solution

Y (t) = y exp

(∫ t

0

(
−r(s)− 1

2
|θ(s)|2

)
ds−

∫ t

0

θ(s)>dW (s)

)
.

Under some integrability condition on theta, there exists a measure Q such
that the process

WQ(t) .
.=

∫ t

0

θ(s)ds + W (t)

is a Q- Brownian motion. p2 has the following condition expectation repre-
sentation:

p2(t) = e−
∫ T

t
r(s)dsEQ [p2(T )|Ft] = −

e−
∫ T

t
r(s)ds

a
EQ [Y (T )|Ft]

= −e
−
∫ T

t
r(s)ds

a
y exp

(∫ T

0

(
−r(s) + 1

2
|θ(s)|2

)
ds+

∫ T

t

1

2
|θ(s)|2ds−

∫ t

0

|θ(s)|2ds−
∫ t

0

θ(s)>dW (s)

)
Finally, the optimality condition p2(0) = x0 requires us to take

y = −ax0e
∫ T
0 r(s)ds exp

(∫ T

0

(
r(s)− |θ(s)|2

)
ds

)
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Numerical Tests

We take the processes r, σ, b to be constant, and set T = 0.5. We simulate 3
paths of each process with 50 time steps, and compare the processes which
the optimality relations say must be equal. The exact analytical path-wise
solutions are also given in red.

Figure 1: Comparison of the primal state process X and the dual adjoint process p2.
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Figure 2: Comparison of the dual state process Y and the dual adjoint process p1.
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Conclusions

•We study a constrained LQ problem with random market parameters.

•We characterise optimal conditions for both the primal and dual problem
in terms of FBSDEs plus additional conditions, and their relations.

•We apply the results to solve both unconstrained and cone-constrained
quadratic risk minimization problems. Solutions to SREs can be recov-
ered from optimal solutions to dual problem.

•We suggest to use deep reinforcement learning to solve FBSDEs and
show a numerical example for a simple case.
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