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What makes a blockchain market different from a
”traditional” market?

I No intermediaries (e.g., for
clearing)

I Settlement much faster

I Trust through proof of work

I Security through complexity of
verification

I On a public blockchain,
transactions are
(semi-)transparent

I ...
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Blockchain technology and stochastic latency

In ”classical” markets, process of trading and process of ownership transfer are
disconnected.

I Both transacting parties face counterparty risks during settlement period
(1-2 trading days).

I (Third-party) central clearing allows for continuous (high-frequency)
trading on non-settled positions.

In (pure) distributed ledger systems, transfer of ownership is connected to
trading.

I Funds cannot be further transfered before transaction is validated.

I Process of validation takes time (>30min): Consensus algorithms
introduce stochastic latency

What are the implications of stochastic latency for arbitrage?
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Stochastic latency through the blockchain
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Arbitrage possibilities in BTC-USD trading
on May 25, 2018?
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This paper

Research question:

I How much of observed cross-market price differences are explained by
limits to arbitrage due to (stochastic) latency?

This paper:

I Derivation of arbitrage bounds for markets with stochastic latency

I In-depth analysis of Bitcoin network based on limit order book data of 16
exchanges

I Estimation of arbitrage bounds and analysis of arbitrage opportunities in
the BTC vs. USD market
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2. Stochastic Latency and Limits to Arbitrage
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Market i ∈ {1, ..., N} continuously provides buy quotes (ask) Ait and sell
quotes (bid) Bit for one unit of the asset where Bit ≤ Ait at time t.

No short selling, margin trading or derivatives

Arbitrageur continuously monitors the quotes on markets b and s.

Instantaneous trading: Arbitrageur exploits price differences if

Bst −Abt > 0

Stochastic latency τ is the random waiting time until a transfer of the asset
between markets is settled.

Profit of arbitrageur’s trading decision if

P
(
Bst+τ ≤ Abt |It

)
> 0.
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Log return of arbitrageur’s strategy

rb,s(t:t+τ) = bst+τ − abt = δb,st︸︷︷︸
instantaneous return

+ bst+τ − bst︸ ︷︷ ︸
exposure to price risk

,

where δb,st = bst − abt
Assumption 1. For given latency τ , we model the log price changes on the
sell-side bst+τ − bst as a Brownian motion with drift µst such that

rb,s(t:t+τ) = δb,st + τµst +

t+τ∫
t

σst dW
s
k ,

We assume that µst and σst are locally constant over the interval [t, t+ τ ].

Assumption 2. Stochastic latency τ ∈ R+ is a random variable equipped with
a (conditional) probability distribution πt(τ) := π (τ |It). We assume that all
moments of τ are finite.
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Lemma. Under Assumptions 1 and 2, the arbitrage returns follow a normal
mean-variance mixture with probability distribution

πt
(
rb,s(t:t+τ)

)
=

∫
R+

πt
(
rb,s(t:t+τ)|τ

)
πt (τ) dτ

and characteristic function ϕx(t) = E[eitx],

ϕ
r
b,s
t:t+τ

(u) = eiuδ
b,s
t mτ

(
iuµst −

1

2
u2(σst )

2

)
,

where mτ (u) := Et (euτ ) is the moment-generating function of πt(τ).
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Example: Exponential distribution

I P.d.f. of stochastic latency: πt (τ) = λte
−λtτ , with moment generating

function mτ (u) =
(
1− λ−1

t u
)−1

.

I The characteristic function of the mixture is

ϕ
r
b,s
t:t+τ

(u) =
eiuδ

b,s
t

1− iµ
s
t
λt
u+

(σst )
2

2λt
u2

,

corresponding to the characteristic function of an asymmetric Laplace
distribution (Kotz, Kozubowski, Podgorski, 2001) with

Et
(
rb,st:t+τ

)
= δb,st +

µst
λt

Vt
(
rb,st:t+τ

)
=

1

λt

(
(µst )

2 + (σst )
2
)
.
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Distribution of returns under exponential latency and negative drift
⇒ Asymmetric Laplace
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Example: Inverse gamma distribution

I P.d.f. of inverse Gamma latency:

πt (τ) =
βαt

Γ(α)
τ−(α+1) exp

(
−βt
τ

)
,

with Et (τ) = βt
α−1

and Vt (τ) =
β2
t

(α−1)2(α−2)
, where Γ(α) denotes the

Gamma function.

I Then, the conditional distribution of the returns of the arbitrageur’s
future returns rb,s(t:t+τ) corresponds to a non-standard Student’s t
distribution with p.d.f. given by

πt
(
rb,s(t:t+τ)

)
=

Γ
(
2α+1

2

)
Γ (α)

√
2π(σst )

2βt

(
1 +

(rb,s(t:t+τ̃) − δ
b,s
t )2

α(σst )
2βt

)− 2α+1
2

,

with Et
(
rb,s(t:t+τ)

)
= δb,st and Vt

(
rb,s(t:t+τ)

)
= (σs)2βt

α−1
.
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Risk Aversion ...



2. Stochastic Latency and Limits to Arbitrage 15

Assumption 3. The arbitrageur has an utility function Uγ(r) with risk aversion
parameter γ > 1, and U ′γ(r) > 0 and U ′′γ (r) < 0.

Arbitrageur exploits price differences if and only if the certainty equivalent of
trading,

E
(
Uγ
(
rb,s(t:t+τ)

))
= Uγ (CE) ,

is positive.

Theorem. Under Assumptions 1-3, the certainty equivalent (CE) is given by

CE = δb,st + Et(τ)µst

+

∞∑
k=2

U
(k)
γ

(
δb,st + Et(τ)µst

)
k!U ′γ

(
δb,st + Et(τ)µst

)E((rb,s(t:t+τ) − δ
b,s
t − Et(τ)µst

)k) ,

where U
(k)
γ (µr) := ∂k

∂µkr
Uγ (µr)
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Arbitrage bound

The arbitrage boundary dst is defined as the minimum price difference necessary
such that the arbitrageur prefers to trade if δb,st > dst .

Definition. dst is the maximum of zero and the (unique) root of

F (d) =d+ Et(τ)µst

+

∞∑
k=2

U
(k)
γ (d+ Et(τ)µst )

k!U ′γ (d+ Et(τ)µst )
Et
((

rb,s(t:t+τ) − d− Et(τ)µst

)k)

Price differences below the arbitrage boundary might persist as the arbitrageur
prefers not to trade in such a scenario.
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Constant absolute risk aversion (CARA)

Assumption. The arbitrageur is equipped with constant absolute risk aversion

and exponential utility function Uγ(r) := 1−e−γr
γ

with risk aversion parameter
γ > 1.

Lemma. In case of an exponential utility function and the assumptions above,
price differences are exploited if

CE > 0 ⇔ δb,st > dst ,

with

dst := −Et (τ)µst +
γ

2

(
Vt (τ) (µst )

2 + (σst )
2 Et (τ)

)
−γ

2

6

(
3µst (σst )

2 Vt (τ) + (µst )
3 Et

(
(τ − Et (τ))3

))
+
γ3

24

(
(µst )

4 Et
(
(τ − Et (τ))4

)
+ 6 (σst )

2 (µst )
2 (E (τ)3 + Et

(
τ3
)
− 2Et (τ)Et (τ)

))
+
γ3

24

(
3Et

(
τ2
)

(σst )
4
)
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Lemma. Under the above assumptions with µst = 0, exponential utility and any
well defined latency distribution, the arbitrage bound is given by

dst =
1

2
γ(σst )

2Et(τ) +
1

8
γ3(σst )

4Et(τ2).

Stochastic latency implies limits to arbitrage, which increase if

I spot volatility is high

I expected latency is large

I latency uncertainty is high

I risk aversion is high
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Constant relative risk aversion (CRRA)

I Arbitrageur has power utility function

Uγ(r) :=
r1−γ − 1

1− γ ,

with relative risk aversion parameter γ > 1.

I Then, the arbitrage bound for µst = 0 is given by

dst =
1

2
σst

√
γEt (τ) +

√
γ2Et (τ)2 + 2γ(γ + 1)(γ + 2)Et (τ2).
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3. Transaction Costs & Settlement Fees
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Transaction costs

I Consider proportional transaction costs of the form

Bit(q) = Bit

(
1− ρi,B(q)

)
Ait(q) = Ait

(
1 + ρi,A(q)

)
,

with ρi,B(q) > 0 and ρi,A(q) > 0 denoting transaction cost functions in
dependence of the trading volume q > 0.

I Log return of arbitrage strategy changes to

r̃b,s(t:t+τ̃) = rb,s(t:t+τ̃) − ln

(
1 + ρb,A(q)

1− ρs,B(q)

)
.

I Lemma. Arbitrageur exploits price differences if

δb,st − ln

(
1 + ρb,A(q)

1− ρs,B(q)

)
> dst

for given quantity q > 0.
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Latency-reducing settlement fees

I Assumption. A settlement fee f > 0 implies a latency distribution
πt (τ |f) that can be ordered in the sense that for f̃ > f , πt (τ |f)

first-order stochastically dominates πt
(
τ |f̃
)

, i.e.,

P
(
τ ≤ x|f̃

)
> P (τ ≤ x|f) for all x ∈ R+.

I Denote by dst (f) the arbitrage boundary associated with the latency
distribution πt (τ |f). Then, dst (f) > dst (f̃).

I Arbitrageur’s trading decision features trade-off between q and f with
endogenous arbitrage boundaries.

I Lemma. Under the given assumptions the arbitrageur prefers to trade a
quantity q > 0 and pay a settlement fee f > 0 over staying idle if

δb,st − ln

(
1 + ρb,A(q + f)

1− ρs,B(q)

)
> dst (f).
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I Arbitrageur maximizes

max
{q,f}∈R2

+

Bst

(
1− ρs,B(q)

)
q −Abt(1 + ρb,A(q + f))(q + f)

subject to

δb,st − ln

(
1 + ρb,A(q + f)

1− ρs,B(q)

)
≥ dst (f).

Lemma. A total return maximizing arbitrageur chooses trading quantities
q∗ > 0 and settlement fees f∗ ≥ 0 such that

δb,st − ln

(
1 + ρb,A(q∗ + f∗)

1− ρs,B(q∗)

)
= dst (f

∗).

He pays f∗ > 0 to trade q∗ > 0 if the following necessary conditions are met:

1− ρs,B(q∗)

q∗
> ρs,B

′
(q∗)

− ∂

∂f
dst (f

∗) >
ρs,B

′
(q∗)

1 + ρs,B(q∗)
.

Otherwise, the arbitrageur optimally sets f∗ = 0.
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4. Data
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Bitcoin orderbook data

Minute-level Bitcoin/Dollar orderbooks from 16 large exchanges (≈ 95% of
trading volume)

Buy and sell orders for the first 25 levels since April 2018.

Orderbooks Spread (USD) Spread (bp) Taker Fee With. Fee Conf. Margin

Binance 677,930 2.88 3.77 0.10 0.10 2 TRUE
Bitfinex 676,019 0.52 0.68 0.20 0.08 3 TRUE
bitFlyer 656,244 12.80 19.95 0.15 0.08 TRUE
Bitstamp 675,256 4.53 6.09 0.25 0.00 3 FALSE
Bittrex 677,298 10.13 15.63 0.25 0.00 2 FALSE
CEX.IO 674,595 10.37 14.56 0.25 0.10 3 TRUE
Gate 644,379 108.80 122.00 0.20 0.20 2 FALSE
Coinbase Pro 678,216 0.14 0.24 0.30 0.00 3 TRUE
Gemini 651,425 2.00 3.08 1.00 0.20 3 FALSE
HitBTC 656,195 3.19 4.20 0.10 0.08 2 FALSE
Kraken 673,730 2.74 3.56 0.26 0.10 6 TRUE
Liqui 491,516 30.15 45.13 0.25 TRUE
Lykke 655,407 34.03 51.37 0.00 0.05 3 FALSE
Poloniex 654,104 5.46 8.25 0.20 1 TRUE
xBTCe 623,912 8.36 13.67 0.25 0.30 3 TRUE
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Avg. price differences (after transaction costs)
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Average cross-market price differences
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Bitcoin blockchain mempool

I Data from www.blockchain.com

I All confirmed blocks from January 2018 until April 2019

I 92,626,780 transactions verified in 71,992 blocks

I For each transaction: unique ID, size, fee, latency

Mean SD 5 % 25 % Median 75 % 95 %

Fee per Byte (Satoshi) 48.79 219.48 1.53 4.59 10.75 32.00 282.49
Fee per Transaction (USD) 2.09 29.13 0.02 0.07 0.18 0.62 10.84
Latency 38.71 335.02 0.73 3.55 8.75 20.10 92.42
Transaction Size 527.57 2274.81 192.00 225.00 247.00 372.00 963.00
Mempool Size 8437.26 14438.03 324.00 1336.00 3429.50 8064.50 39415.00
Block Validation Time 9.70 9.62 0.55 2.85 6.77 13.42 28.95

www.blockchain.com
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Limits to arbitrage for CRRA case are given by

d̂st =
1

2
σ̂st

√
γÊt (τ) +

√
γ2Êt (τ)2 + 2γ(γ + 1)(γ + 2)Êt (τ2).

Ingredients:

1. Spot volatility (σ̂st )
2

2. Estimates of Et (τ) and Et (τ)2.

3. Estimates of ρb,A(q) and ρs,B(q) for optimal q.
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Estimating spot volatilities σs
t

I Current volatility affects price risk of arbitrageur

dbst = σst dW
s
t

I Nonparametric filtering of the realized spot volatility (Kristensen, 2010)
I For each market n and time t, we estimate (σnt )2 by

(̂σnt )
2
(h) =

t∑
s=1

K (s− t, h) (bns − bns−1)2 ,

where K (s− t, h) denotes a one-sided Gaussian kernel smoother with
bandwidth h.

I Bandwidth h chosen by minimizing the Integrated Squared Error (ISE)

ÎSET−1 (h) =
I∑
i=1

[
(bni − bni−1)2 − (̂σni )

2
(h)
]2
,

where i = 1, . . . , I refers to the observations on day T − 1 and (̂σnt )
2
(h)

is the spot volatility estimator based on bandwidth h.
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Daily cross-exchange averages of spot volatilities
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Parameterizing waiting times π(τt|It)

I Exponential model:

πt(τi) = λi exp(−λiτi),
λi = exp(−x′iθt),

I Gamma model:

πt(τi) =
βiα

Γ (α)
τα−1e−βiτi

βi = exp(−x′iθt), α > 0

I Covariates xi: number of unconfirmed transactions in mempool; network
fee per byte
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Parameter estimates

Exponential Gamma

W/o Covariates W/ Covariates W/o Covariates W/ Covariates

Intercept 3.02 1.13 3.4 1.15
[ 2.442 , 3.687 ] [ -0.043 , 2.549 ] [ 2.514 , 4.379 ] [ -0.021 , 2.406 ]

α 0.7 0.72
[ 0.487 , 0.95 ] [ 0.505 , 0.945 ]

Fee per Byte -0.04 -0.02
[ -0.082 , -0.005 ] [ -0.082 , -0.005 ]

Mempool Size 2.04 2.43
[ 0.221 , 3.528 ] [ 0.535 , 4.099 ]

LR (Covariates) 93.61 84.33
LR (Gamma vs. Exponential) 92.58

MSPE (Out of Sample) 37.77 37.44 37.77 37.58
MSPE (In Sample) 35.82 35.22 35.82 35.29

I Higher fees reduce latency (Easley et al, 2019)
I Blockchain congestion increases latency
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Estimation of arbitrage bounds

I Limits to arbitrage for CRRA case are given by

d̂st =
1

2
σ̂st

√
γc1 +

√
γ2c21 + 2γ(γ + 1)(γ + 2)c2,

c1 = Êt (τ) + Ê (τB) · (Bs − 1)

c2 = V̂t (τ) + V̂ (τB) · (Bs − 1)2 +
(
Ê (τB) · (Bs − 1) + Êt (τ)

)2
,

where Bs refers to the number blocks that the sell-side exchange s
requires to consider incoming transactions as valid.

I Êt (τi) and V̂t (τi) computed based on (rolling window) day T − 1
parameter estimates.
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Estimated arbitrage bounds over time (γ = 2)
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Estimated arbitrage bounds (in bps, γ = 2)

I Average boundary about 96bps
I Latency uncertainty accounts for 9% on average
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Implied Relative Risk Aversion
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Price Differences (in%)
(1) (2) (3) (4) (5) (6)

Volatility 6.733∗∗∗ 6.749∗∗∗ 6.333∗∗∗

(17.13) (17.17) (16.09)

Latency (Median) 0.006∗∗∗ 0.006∗∗∗ 0.007∗∗∗

(5.21) (5.23) (5.24)

Latency (SD) 0.001∗∗∗

(5.72)

Arbitrage Boundary 0.968∗∗∗ 1.354∗∗∗

(26.80) (27.74)

Boundary × Margin Trading -0.750∗∗∗

(-10.51)

Margin Trading 1.585∗∗∗ 1.763∗∗∗ 1.587∗∗∗ 1.551∗∗∗ 1.432∗∗∗ 2.129∗∗∗

(23.67) (26.84) (23.69) (23.00) (21.44) (23.43)

Spread 0.281∗∗∗ 0.403∗∗∗ 0.282∗∗∗ 0.280∗∗∗ 0.239∗∗∗ 0.196∗∗∗

(5.83) (8.56) (5.86) (5.80) (5.00) (4.05)

Number of Confirmations 1.164∗∗∗ 1.133∗∗∗ 1.166∗∗∗ 1.189∗∗∗ 0.969∗∗∗ 0.889∗∗∗

(53.05) (52.22) (53.09) (53.04) (44.24) (40.28)

Tether 0.617∗∗∗ 0.483∗∗∗ 0.614∗∗∗ 0.670∗∗∗ 0.357∗∗∗ 0.201∗∗∗

(8.21) (6.44) (8.17) (8.80) (4.85) (2.69)

Business Account -0.791∗∗∗ -0.761∗∗∗ -0.796∗∗∗ -0.829∗∗∗ -0.911∗∗∗ -0.957∗∗∗

(-9.18) (-8.94) (-9.25) (-9.59) (-10.63) (-11.17)

Exchange Fixed Effects Yes Yes Yes Yes Yes Yes

Adjusted R2 .23 .22 .23 .23 .23 .23
Exchange-Hour Observations 178,215 178,215 178,215 178,215 178,215 178,215
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6. Limits to Arbitrage and Cross-Exchange Flows
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Flow dataset

I We identify 62 million wallets associated to 15 exchanges in our sample
I 3.7 million transactions with 54 million USD average daily volume
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Exchange flows and arbitrage opportunities

I We estimate the simple linear model

yi,t = αi + βxi,t + εi,t,

where yi,t are (hourly) flows between exchanges and xi,t are different
measures of price differences.

Exchange Flows (in USD)

(1) (2) (3)

Price Differences 182.263
(0.00)

Price Differences Adjusted for Transaction Costs 84.945∗∗∗

(6.65)

Price Differences Adjusted for Transaction Costs 111.010∗∗∗

in Excess of Arbitrage Boundaries (4.57)

Exchange Pair Fixed Effect Yes Yes Yes
Observations 39,246,152 39,246,152 38,806,690
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Conclusions

Stochastic latency imposes limits to arbitrage

Key friction of blockchain-based settlement systems

Quantitatively important friction in Bitcoin markets

I Arbitrage bounds range around 90bp

I On average, 75% of all cross-market price differences are explained by
stochastic latency solely.

I Additionally accounting for trading costs, 95% are captured.

Far reaching implications:

I Reduction of price efficiency; hindering price discovery

I Pricing of securities difficult; risk-neutral probabilities not unique

I Market makers have more room for quoting
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