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Outline

portfolio liquidation models
I general stochastic models
I deterministic models

empirical implementation
I linking market impact to market microstructure
I empirical liquidation startegies
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Portfolio liquidation

Ulrich Horst (HU Berlin) Implementing Portfolio Liquidation Models March 18, 2019 3 / 37



Portfolio Liquidation

almost all trading nowadays takes place in limit order markets
I limit order book: list of prices and available liquidity
I limited liquidity available at each price level

models of optimal portfolio liquidation:
I unaffected benchmark price
I execution price: benchmark price + impact from trading
I cost of trading: book value - revenues (+risk)
I liquidation constraint: singular control problem
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Forms of market impact

instantaneous impact
I current trade does not affect future trades
I pure liquidity cost; immediate recovery

permanent impact
I current trade affects all future trades
I generates a drift of the benchmark price/midquote

persistent impact
I impact of current trade on future trades decays over time
I generates a mean-reverting drift of the benchmark price/midquote
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General stochastic models
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Stochastic models

Consider an order to sell X shares by time T . The portfolio process is

Xt = X −
∫ t

0
ξs ds;

the liquidation constraint is XT = 0. The transaction price process is

S̃t = St︸︷︷︸
unaffected price

− ηtξt︸︷︷︸
instantaneous impact

− Yt︸︷︷︸
persistent impact

−
∫ t

0
λsξsds︸ ︷︷ ︸

permanent impact

where

Yt =

∫ t

0
{−ρYs + γtξs} ds.

denotes a mean-reverting “spread” or “midquote” or ...
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Stochastic models

The liquidation cost is defined as

C = book value− revenue

= S0X −
∫ T

0
S̃tξt dt = S0X −

∫ T

0
S̃t dXt

= S0X −
∫ T

0
ξtdSt +

∫ T

0
λtξtXtdt +

∫ T

0
ηtξ

2
t dt +

∫ T

0
Ytξt dt

Taking expectations, doing partial integration, adding a risk term:

E

[∫ T

0

(
λtξtXt + ηtξ

2
t + Ytξt + κtX

2
t

)
dt

]
−→ min

ξ
s.t. XT = 0.

The impact terms award, the risk term penalises slow liquidation.
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Theorem (Graewe, H. & Sere (2018), H. & Xia (2018), ...)

Suppose there is only instantaneous market impact and that

ηt ≡ η(Zt); κt ≡ κ(Zt)

for some Itô diffusion Z . Under standard assumptions,

V (t, z , x) = v(t, z)x2, ξ∗(t, z , x) = 2v(t, z)x

where v is the unique continuous viscosity/classical/π-strong solution in

Cpoly ([0,T−]× Rd)

to a singular terminal value problem of the form−∂tv − Lv − F = 0, on [0,T )× Rd ,

lim
t→T

v(t, z) = +∞ locally uniformly on Rd .
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Theorem (Graewe & H. (2017), H.& Xia (2018))

Suppose there is only instantaneous and persistent impact

ηt ≡ η; γt ≡ γ; (ρt), (κt) adapted processes.

Then,

ξ∗t =
At − γBt

η
Xt −

γCt − Bt + 1

η
Yt

where (A,B,C ) is the unique solution to a coupled (matrix-valued)
BS(R)DE system with singular terminal condition

(At ,Bt ,Ct) −→ (∞, 1, 0) as t → T .
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Deterministic models
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Constant coefficients and risk neutrality

Consider the state dynamics

Xt = x −
∫ t

0
ξsds

Yt = −ρ
∫ t

0
Ysds + γ

∫ t

0
ξsds

as well as the following cost terms:

instantaneous impact: Ht = η
∫ t

0 ξ
2
s ds

permanent impact: Gt = λ
∫ t

0 ξsds

persistent impact: Yt = γ
∫ t

0 ξse
−ρ(t−s)ds

total cost:

C = HT +

∫ T

0
ξsYsds +

∫ T

0
ξsGsds

Ulrich Horst (HU Berlin) Implementing Portfolio Liquidation Models March 18, 2019 12 / 37



Constant coefficients and risk neutrality

the cost from permanent impact is independent of the strategy

the Euler-Lagrange ansatz yields:

γ

2η

∫ T

0
y ′e−ρ|t−s|ds + y ′ = C

this is a Wiener-Hopf integral equation of the second kind
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Constant coefficients and risk neutrality

only instantaneous impact (Almgren-Chris model)

X ∗t = x − t

T
x

only persistent impact (Obizhaeva-Wang model)

X ∗t = x − x

ρT + 2
(H0(t) + ρt + HT (t))

instantaneous and persistent impact (Graewe-H model)

X ∗t = x − x

(
a + bt + c sinh(k(t − T

2 ))

2a + bT

)

for constants a, b, c , k depending on the impact parameters
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Interpolating between AC and OW
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Figure: Optimal portfolio processes in the GH model
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Microstructure and market impact
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Microstructure and market impact

permanent impact: drift added to the fundamental price process after
each trade

I information asymmetries
I order imbalances

temporary impact: expectation of future permanent impact, due to
the persistence of trade flows

I herding effects
I splitting effects
I mathematical model: Hawkes processes

instantaneous impact: market makers’ demand for carrying additional
inventory (offer curve)
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Permanent impact (added drift)

let
δt = #buy−#sell MOs since last price change

let the probability pt of a mid-price up movement be

pt = f (g(δt)), g(δ) = B0 + B1δ, f (x) =
1

1 + e−x

mid-price process is a martingale if

δt = δ̄ =
f −1( 1

2 )− B0

B1

we define the permanent impact and permanent impact factor as

Λ := f (g(δ̄ + 1))Z̄ ; λ := f (g(δ̄ + 1))
Z̄

L̄
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Temporary impact (expected future perm. impact)

we assume that MO arrivals follow a Hawkes process N with intensity

Imt = µm + A

∫ t

0
e−B(t−ti )dNm

s

adding our market order placement dynamics, the intensity becomes

Imt = µm +
x0

T
+ A

∫ t

0
e−B(t−ti )dNm

s

the expected number of additional orders is

x0
P

1− P
, P =

A

B

Ulrich Horst (HU Berlin) Implementing Portfolio Liquidation Models March 18, 2019 19 / 37



Temporary impact (expected future perm. impact)

equating this with the total impact in a continuous time model:

x0γ

T

∫ T

0
e−ρ(T−s)ds = λx0

P

1− P

assuming γ = λ, using a Taylor approximation of order two,

ρ ≈ 2

T

1− 2P

1− P
, P < 0.5

if we only consider first generation offsprings,

ρ ≈ 2

T
(P−1 − 1)
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Instantaneous impact (limit order arrivals)

orders are added/cancelled at Poison rates

order sizes are random

mid-price shift implies a shift in the queues
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Instantaneous impact (limit order arrivals)

liquidity is scattered throughout the book (“many holes”)

regression equation
Oi = p0 + ηEi + εi

where
I Oi are the price offsets (differences between price levels with liquidity)
I p0 is the minimum spread
I Ei is the aggregated average liquidity

level 1 2 3 4
arrival 0.875 0.254 0.156 0.098

cancellation 0.507 0.130 0.079 0.084
aggregate shares 95 190 290 356

offests 42.8 61.6 76.3 89.7
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Figure: Instantaneous impact factor for AMZN.
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A two-layer order book model

order layer:
I limit orders + cancellation (Poisson arrivals)
I market orders (Hawkes arrivals)

F originating from the market
F originating from us

price layer (Poisson arrivals with rate µP)
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A two-layer order book model

we calibrate the model

simulate the LOB with and without our strategy

compute the cost of liquidation for different models
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Figure: A sample path of midprice shift due to our trading activity.
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Calibration
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Data (LOBSTER, April 4, 2018)

Level 1 2 3 4 5 6
Submission 39,767 11,937 7,603 4,953 3,395 2,804
Cancellation 30,987 10,392 6,453 4,176 2,846 2,363

Execution 8,775 1,537 1,142 772 548 439

Table: Event counts per level: AMZN
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Impact factors: AMZN, 5% of ADV (Φ = 20 sec.)

price change parameters:

Parameters µP B0 B1 L̄ Z̄

Mid price change 2.38 0.033 0.894 33.807 10.797

market order parameters:

Parameters µm A B

Sell orders 0.167 8.375 18.53

impact factors:

λ ρ η

0.0162 bps 0.0034 %/second 0.013 bps
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Optimal strategies

Figure: Optimal liquidation strategies for Amazon (+6%)
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Optimal strategies

Figure: Optimal liquidation strategies for McDonald’s (+6%)
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Optimal strategies

Figure: Optimal liquidation strategies for Ivesco (+10%)
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Optimal strategies

Figure: Optimal liquidation strategies for Intel (+17%)
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Optimal strategies

Figure: Optimal liquidation strategies for HP (+20%)
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Cost comparison

Figure: Model performance: AC vs. GH; for AMZN we save 1/3 spread
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Conclusion

models of optimal portfolio liquidation with continuous trading
I abstract existence and uniqueness of solutions results
I closed form solutions for models with constant coefficients

we compared the performance of models:
I only instantaneous impact (AC model)
I instantaneous and persistent impact (GH model)

GH outperforms AC in most cases
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Thank you!
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