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Motivation

Goal: understand how default cascades arise in banking networks.

More generally: how do microscopic effects in a large system lead to

macroscopic phenomena?

Example 1: systemic risk

@ Banking system with banks borrowing from each other.
@ Banks default — losses to other banks.

@ Losses — new defaults.

@ New defaults — new losses — default cascade.



Other examples

Example 2: neural networks
e Neurons in a part of the brain, e.g. 10° in the human hippocampus.
@ Membrane potential of a neuron reaches a critical level
(“spike”) — the neuron fires.
@ Neuron firing — spike in surrounding neurons.
@ Surrounding neurons may fire — synchronization.
Example 3: supercooling
o Liquid, e.g. water, cooled below its freezing temperature, but
remaining liquid. Freezes when poured onto a warmer surface.

@ Local freezine — global freezing.



Basic structural model for default cascades, in words

Log-assets of N banks: Y1(0), Y?(0),..., YN(0) € [0, ).

@ Evolve according to indepedent Brownian motions,

each with drift «, dispersion o.

When a process hits 0, it is absorbed. > default

@ This leads to immediate downward jumps by other processes,

tuned by a parameter C > 0. > losses

If some processes cross O due to jumps, these processes are removed,

jump sizes of remaining particles are adjusted, etc. <+ new losses

@ When cascade resolved: remaining processes continue as BMs, etc.



Our model, in formulas

e Process locations: Y1, Y2 ... YN,

As long as processes on (0, c0):
dY/ =adt+odBi, i=1,2,...,N,

B!, B2, ..., BN independent standard BMs.

Hitting times:
i =inf{t>0:Y/ <0}, i=12... N.

Suppose Y/ hits 0 at time t and is removed.



Our model: cascades, in words

@ Shift the remaining processes by

Clog (1—51_),

where S;_ is the pre-cascade size of the system.
@ Note: factor | in size S;_, 1 in parameter C.
o Update may lead to processes i1, ia, ..., ik crossing 0, these are

removed, and we adjust the shift to

k
5 )

o May cause more immediate absorptions, in which case repeat

Clog (1 —

procedure etc., until determine all processes to remove at time t.



Our model: cascades, in formulas

e System size: S; (= Efvzl 1 isgy-
o Order statistics: Y < Y® <... < YD) of (Y[ : 71 > ¢).
@ # of processes removed at time t:

D; =inf {k: Y + Clog (1 - &1) > 0} — 1.

o Log-asset dynamics:

Yi=Y§+at+oBi+Y,.,Clog(l— L

).



Large system limit: starting point

To study macroscopic default cascades:
o take N — oc;

@ macroscopic default cascades <+ blow-ups in a limiting process.

Crucial observation: sum of jumps

Zu<t Clog ( Dli) = Zu<t Clog ( ) log ( 1{7J>t})'

— functional of the empirical measure o Z

— interaction of mean-field type



Large system limit: McKeav-Vlasov heuristics

McKean-Vlasov heuristics (cf. Sznitman ’89):
o Classical setting:
Yi=Yi+ [y b(Yi0M)ds + [y o(Yi,0M)dBL, i=1,2,...,N.
o Guess: gN —3° o, deterministic.
e — for large N, particle locations well-approximated by
Y= Yo+ [Eb(Yi, 05)ds + [fo(Ve,0)dBL, i=1,2,...,N.
0 — p=limy_o 0V = limy_oe 0" = E(V ).
e Conclusion: in N — oo limit, Y’ converge to unique solution of

Ye=Yo+ f§b(Ys, £(Ys))ds + [{ o(Vs, £(Ys)) dBs.



Large system limit: our setting

e McKean-Vlasov heuristics suggests Y’ converge to unique sol. of
Y:=Yo+at+oB:+ A,
where
At :=ClogP(7 > t), 7:=inf{t>0: Y, <0}
e Problems: non-uniqueness, non-existence in C([0,0),R).
o P(T>t)or g Zszl 1(,j~¢ do not specify cascade mechanism.
o ~» Dy:i=inf{y >0: y— F(y) >0}
::inf{y>0: y—i—CIog(l—W) >O}.
e Specify Ay = At— + F(Dy), rcll.

o Call solutions with correct cascade mechanism physical solutions.



A first limit theorem

Theorem (Nadtochiy, S. "17) Suppose +; Zf\lzl dy,(0) = V; v has a
bounded density f, on [0, c0) vanishing in a neighborhood of 0.

Then:

The sequence % ZlNzl dyi, N € Nis tight and any limit point is supported

on physical solutions Y with Y 4,

Technical points: theorem for auxiliary log capitalization processes;
Skorokhod M1 topology on rcll paths (key observation of Delarue, Inglis,
Rubenthaler, Tanré '15).



Connection to Stefan problem

@ Consider a variant of the limiting problem:

Yi=Yo+B:—At, t<7, Yi=Yr t>T,

Ae=CP(T <t).

e If A exists on [0, T), densities p(t,-) of Y; solve

1

Otp = §8xxp + A,taxp7 p(O, ) =f, p(-,O) =0,
C

Ny = 5 0xp(t,0), t€[0,T).

o Change of variables: u(t,x) := p(t,x —A¢), x >N\, t€][0,T).



Connection to Stefan problem cont.

e Supercooled Stefan problem (1D, one phase):

Oru = %&(Xu on {(t,x) e [O,oo)2 Dx > Ny
N, = Coxu(t,\), t>0,
u(0,x) =f(x), x>0 and u(t,A;)=0, t>0,
where f >0, C > 0.
@ Blow-up: for some T < oo, limg7 A} = o0.

e Classical solution on [0, T).



Brief history of Stefan problems

o Stefan 1889-1891: free boundary problems for the heat

equation.
@ Physical models of ice formation; evaporation & condensation.
@ Dormant until Brillouin '31, Rubinshtein: ~2500 papers by '67.
o Kamenomostkaja '61: definitive solution.
@ '70-today: supercooled Stefan problem.
@ Sherman ’70: presence of blow-ups.

@ For some T < co: boundary speed — cc.



Back to our physical solutions: questions

@ By the theorem, a physical solution Y with rcll paths exists.

e How do the jumps in Y arise? «+— systemic crises, synchronization

of neurons, leaps of the solid/liquid frontier.

e E.g., what can one say about
ta ;== inf{t >0: AY, # 0}

and the empirical log-asset distribution £(Y,_) right before ta?



Main theorem I: regular interval

Theorem (Nadtochiy, S. *17) Suppose Yo < v has a density
f, € W}([0,00)) and £,(0) = 0.
Then: there exists trg > 0 such that on [0, t.eg) all physical solutions are
indistinguishable and satisfy
t

Yt:Yo—|—at—i—aBt—|—/ Asds, t€[0,TA treg),
0

At = COrlogP(T > t), te(0,trg).

Moreover, treg = inf{t > 0: [[A[12(j0,¢) = o0}



Main theorem Il: description of jumps

Theorem (Nadtochiy, S. '17) Consider a physical solution Y.

Then:

(a) the time of the first jump ta :=inf{t > 0: AY, # 0} is given by
tA:inf{tZO: dn >0 s.t. wz%,ye[o,n]},

and

(b) the size of the jump at ta is

P(F>tp, Yen—€(0,
sup {n >0: 2 *t%(?;tj( ) > A [0,71]}-




All regimes, uniqueness (Delarue, Nadtochiy, S. '19)

o For uniqueness, need to understand all regimes.
e Case 1: Y, has a density f € C1([0,00)) N C¥((0,0)), f(0) = 0.
— A = X is continuous on [t, t + ¢) for some ¢ > 0.
e Case 2: Y,_ has a density f € C¥((0,0)), f(0+) €[0,1/C).
= Nis (1/2 + §)-Holder on [t,t + ¢), back to Case 1 on (t,t +¢).
e Case 3: Y, has a density f € C¥((0,0)), f(0+) >1/C.
= At —NAem = —inf{y >0: P(Ye_ € (0,y] <y/C)},
back to Case 1 on (t,t + ¢).
@ Uniqueness follows from this and sandwiching between two maximal

physical solutions.



General networks (Nadtochiy, S. '18)

@ More generally, may replace

Yi=Yo+at+oB:+ A,

At == ClogP(7 > t), 7:=inf{t>0:Y,;<0}
by its network version:
Y: = Y0+/ oz’s(ds~|—/ o dBs + Af,
0 0
A = CX/ log IP)(?X, > t) k(x,dx’), > = inf{t >0: V)t(l < 0}.
X

@ Hereby, x € X are different types of banks, stochastic kernel « defines

a weighted directed network on X.



General networks: questions

@ Does a solution { Y™ }.cx with rcll paths still exist?
Yes, can prove this directly using a new Schauder’s theorem for the

Skorokhod M1 topology.

o How do the jumps in {Y } cx arise?

<— systemic crises/synchronization of neurons.

e E.g., what can one say about
ta = inf{t >0: AY} # 0 for some x € X'}

and empir. log-asset distributions {E(V);A,)}Xex right before tp?



Preparation: logarithmic Perron-Frobenius eigenvalue

o Let X is finite.
@ Suppose that the time t— configuration satisfies

P(™ > t, Y, €(0,y))
P(7> > t)

>y, ye[0,7n], xed.

o If the matrix (C*k(x, {x'})c* )xxcx is irreducible, the limit

lim Iog/ H (Cmc*m+1) K(x, dx1) ... K(Xp—1,dXn)

n—oo N

is referred to as its logarithmic Perron-Frobenius eigenvalue.



General networks: jump criterion

Theorem (Nadtochiy, S. '18) Suppose that o* <@, x € X and
g < 0¥ <7, x € X with suitable @ € R and ¢,7 € (0, c0).

If (C*r(x, {x'})c* )xxrex is irreducible with a strictly positive logarithmic

Perron-Frobenius eigenvalue, then
AY; #0

for at least one x € X.
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