PRINCETON UNIVERSITY

Systemic risk & supercooled Stefan problem on networks

Mykhaylo Shkolnikov (with Sergey Nadtochiy and Francois Delarue)

Princeton University

March 18, 2019

Motivation: default cascades in systemic risk

2 Basic models of banking networks

- 3 Large system limit & supercooled Stefan problem
- Regular behavior vs. systemic crises 4

Motivation

Goal: understand how default cascades arise in banking networks. **More generally**: how do microscopic effects in a large system lead to macroscopic phenomena?

Example 1: systemic risk

- Banking system with banks borrowing from each other.
- Banks default \rightarrow losses to other banks.
- Losses \rightarrow new defaults.
- New defaults \rightarrow new losses \rightarrow default cascade.

Other examples

Example 2: neural networks

- Neurons in a part of the brain, e.g. 10^6 in the human hippocampus.
- Membrane potential of a neuron reaches a critical level
 - ("spike") \rightarrow the neuron fires.
- Neuron firing \rightarrow spike in surrounding neurons.
- Surrounding neurons may fire \rightarrow synchronization.

Example 3: supercooling

- Liquid, e.g. water, cooled below its freezing temperature, but remaining liquid. Freezes when poured onto a warmer surface.
- Local freezing \rightarrow global freezing.

Basic structural model for default cascades, in words

- Log-assets of *N* banks: $Y^{1}(0), Y^{2}(0), ..., Y^{N}(0) \in [0, \infty)$.
- Evolve according to indepedent Brownian motions, each with drift α , dispersion σ .
- When a process hits 0, it is **absorbed**. \leftrightarrow default
- This leads to immediate downward jumps by other processes, tuned by a parameter C > 0. ↔ losses
- If some processes cross 0 due to jumps, these processes are removed, jump sizes of remaining particles are adjusted, etc. ↔ new losses
- When cascade resolved: remaining processes continue as BMs, etc.

Our model, in formulas

- Process locations: Y^1, Y^2, \ldots, Y^N .
- As long as processes on $(0,\infty)$:

$$\mathrm{d}Y_t^i = \alpha\,\mathrm{d}t + \sigma\,\mathrm{d}B_t^i, \quad i = 1, 2, \dots, N,$$

 B^1, B^2, \ldots, B^N independent standard BMs.

Hitting times:

$$\tau^{i} = \inf\{t > 0: Y_{t}^{i} \leq 0\}, \quad i = 1, 2, \dots, N.$$

• Suppose Y^i hits 0 at time t and is **removed**.

Our model: cascades, in words

• Shift the remaining processes by

$$C \log \left(1 - \frac{1}{S_{t-}}\right),$$

where S_{t-} is the pre-cascade size of the system.

- **Note**: factor \downarrow in size S_{t-} , \uparrow in parameter C.
- Update may lead to processes i₁, i₂, ..., i_k crossing 0, these are removed, and we adjust the shift to

$$C\log\Big(1-rac{k+1}{S_{t-}}\Big).$$

• May cause more immediate absorptions, in which case repeat procedure etc., until determine all processes to remove at time t.

Our model: cascades, in formulas

- System size: $S_t := \sum_{i=1}^N \mathbf{1}_{\{\tau^i > t\}}$.
- Order statistics: $Y_{t-}^{(1)} \leq Y_{t-}^{(2)} \leq \cdots \leq Y_{t-}^{(S_{t-})}$ of $(Y_{t-}^i : \tau^i \geq t)$.
- # of processes removed at time t: $D_t := \inf \{k : Y_{t-}^{(k)} + C \log (1 - \frac{k-1}{S_{t-}}) > 0\} - 1.$
- Log-asset dynamics:

$$Y_t^i := Y_0^i + \alpha t + \sigma B_t^i + \sum_{u \le t} C \log \left(1 - \frac{D_u}{S_{u-}}\right).$$

Large system limit: starting point

To study macroscopic default cascades:

- take $N \to \infty$;
- macroscopic default cascades \leftrightarrow blow-ups in a limiting process.

Crucial observation: sum of jumps

$$\sum_{u \leq t} C \log \left(1 - \frac{D_u}{S_{u-}} \right) = \sum_{u \leq t} C \log \left(\frac{S_u}{S_{u-}} \right) = C \log \left(\frac{1}{N} \sum_{j=1}^N \mathbf{1}_{\{\tau^j > t\}} \right).$$

 \longrightarrow functional of the **empirical measure** $\varrho^N := \frac{1}{N} \sum_{i=1}^N \delta_{Y^i}$

 \longrightarrow interaction of mean-field type

Large system limit: McKeav-Vlasov heuristics

McKean-Vlasov heuristics (cf. Sznitman '89):

• Classical setting:

 $Y_t^i = Y_0^i + \int_0^t b(Y_s^i, \varrho_s^N) \,\mathrm{d}s + \int_0^t \sigma(Y_s^i, \varrho_s^N) \,\mathrm{d}B_s^i, \ i = 1, 2, \dots, N.$

• Guess: $\varrho^N \xrightarrow{N \to \infty} \varrho$, deterministic.

- Conclusion: in $N \to \infty$ limit, Y^i converge to unique solution of $\overline{Y}_t = \overline{Y}_0 + \int_0^t b(\overline{Y}_s, \mathcal{L}(\overline{Y}_s)) \, \mathrm{d}s + \int_0^t \sigma(\overline{Y}_s, \mathcal{L}(\overline{Y}_s)) \, \mathrm{d}B_s.$

Large system limit: our setting

• McKean-Vlasov heuristics suggests Yⁱ converge to unique sol. of

$$\overline{Y}_t = \overline{Y}_0 + \alpha t + \sigma \overline{B}_t + \Lambda_t,$$

where

$$\Lambda_t := C \log \mathbb{P}(\overline{\tau} > t), \quad \overline{\tau} := \inf\{t \ge 0 : \ \overline{Y}_t \le 0\}.$$

- Problems: non-uniqueness, non-existence in $C([0,\infty),\mathbb{R})$.
- $\mathbb{P}(\overline{\tau} > t)$ or $\frac{1}{N} \sum_{j=1}^{N} \mathbf{1}_{\{\tau^{j} > t\}}$ do not specify cascade mechanism. • $\rightsquigarrow D_t := \inf\{y > 0 : y - F_t(y) > 0\}$ $:= \inf\left\{y > 0 : y + C \log\left(1 - \frac{\mathbb{P}(\overline{\tau} \ge t, \overline{Y}_{t-} \in (0, y))}{\mathbb{P}(\overline{\tau} \ge t)}\right) > 0\right\}.$ • Specify $\Lambda_t = \Lambda_{t-} + F_t(D_t)$, rcll.
- Call solutions with correct cascade mechanism physical solutions.

A first limit theorem

<u>Theorem</u> (Nadtochiy, S. '17) Suppose $\frac{1}{N} \sum_{i=1}^{N} \delta_{Y_i(0)} \rightarrow \nu$; ν has a bounded density f_{ν} on $[0, \infty)$ vanishing in a neighborhood of 0. Then:

The sequence $\frac{1}{N} \sum_{i=1}^{N} \delta_{\widetilde{Y}^{i}}$, $N \in \mathbb{N}$ is tight and any limit point is supported on physical solutions \overline{Y} with $\overline{Y}_{0} \stackrel{d}{=} \nu$.

Technical points: theorem for auxiliary log capitalization processes;

Skorokhod M1 topology on rcll paths (key observation of **Delarue, Inglis, Rubenthaler, Tanré '15**).

Connection to Stefan problem

• Consider a variant of the limiting problem:

$$\overline{Y}_t = \overline{Y}_0 + B_t - \Lambda_t, \quad t \le \overline{\tau}, \quad \overline{Y}_t = \overline{Y}_{\overline{\tau}}, \quad t > \overline{\tau},$$
$$\Lambda_t = C \mathbb{P}(\overline{\tau} \le t).$$

• If Λ' exists on [0, T), densities $p(t, \cdot)$ of \overline{Y}_t solve

$$\partial_t p = \frac{1}{2} \partial_{xx} p + \Lambda'_t \partial_x p, \quad p(0, \cdot) = f, \quad p(\cdot, 0) = 0,$$

 $\Lambda'_t = \frac{C}{2} \partial_x p(t, 0), \quad t \in [0, T).$

• Change of variables: $u(t,x) := p(t,x - \Lambda_t), x \ge \Lambda_t, t \in [0, T).$

Connection to Stefan problem cont.

• Supercooled Stefan problem (1D, one phase):

$$\partial_t u = \frac{1}{2} \partial_{xx} u \quad \text{on} \quad \{(t, x) \in [0, \infty)^2 : x \ge \Lambda_t\},$$
$$\Lambda'_t = C \partial_x u(t, \Lambda_t), \quad t \ge 0,$$
$$u(0, x) = f(x), \quad x \ge 0 \quad \text{and} \quad u(t, \Lambda_t) = 0, \quad t \ge 0,$$

where $f \ge 0$, $C \ge 0$.

- Blow-up: for some $T < \infty$, $\lim_{t \uparrow T} \Lambda'_t = \infty$.
- Classical solution on [0, T).

Brief history of Stefan problems

- Stefan 1889–1891: free boundary problems for the heat equation.
- Physical models of ice formation; evaporation & condensation.
- Dormant until Brillouin '31, Rubinshtein: \approx 2500 papers by '67.
- Kamenomostkaja '61: definitive solution.
- '70-today: supercooled Stefan problem.
- Sherman '70: presence of blow-ups.
- For some $T < \infty$: **boundary speed** $\rightarrow \infty$.

Back to our physical solutions: questions

- By the theorem, a physical solution \overline{Y} with rcll paths exists.
- How do the jumps in Y arise? ↔ systemic crises, synchronization of neurons, leaps of the solid/liquid frontier.
- E.g., what can one say about

$$t_{\Delta} := \inf\{t \ge 0 : \Delta \overline{Y}_t \neq 0\}$$

and the empirical log-asset distribution $\mathcal{L}(\overline{Y}_{t_{\Delta}-})$ right before t_{Δ} ?

Main theorem I: regular interval

<u>Theorem</u> (Nadtochiy, S. '17) Suppose $\overline{Y}_0 \stackrel{d}{=} \nu$ has a density $f_{\nu} \in W_2^1([0,\infty))$ and $f_{\nu}(0) = 0$.

Then: there exists $t_{reg} > 0$ such that on $[0, t_{reg})$ all physical solutions are indistinguishable and satisfy

$$\overline{Y}_t = \overline{Y}_0 + \alpha t + \sigma B_t + \int_0^t \lambda_s \, \mathrm{d}s, \quad t \in [0, \overline{\tau} \wedge t_{reg}),$$
$$\lambda_t = C \, \partial_t \log \mathbb{P}(\overline{\tau} > t), \quad t \in [0, t_{reg}).$$

Moreover, $t_{reg} = \inf\{t > 0 : \|\lambda\|_{L^2([0,t])} = \infty\}.$

Main theorem II: description of jumps

<u>Theorem</u> (Nadtochiy, S. '17) Consider a physical solution \overline{Y} . Then:

(a) the time of the first jump $t_{\Delta} := \inf\{t \ge 0 : \Delta \overline{Y}_t \neq 0\}$ is given by $t_{\Delta} = \inf\{t \ge 0 : \exists \eta > 0 \text{ s.t. } \frac{\mathbb{P}(\overline{\tau} \ge t, \overline{Y}_{t-} \in (0, y))}{\mathbb{P}(\overline{\tau} \ge t)} \ge \frac{y}{C}, y \in [0, \eta]\},$ and

(b) the size of the jump at t_{Δ} is $\sup \left\{ \eta \ge 0 : \frac{\mathbb{P}(\overline{\tau} \ge t_{\Delta}, \overline{Y}_{t_{\Delta}} - \in(0, y))}{\mathbb{P}(\overline{\tau} \ge t_{\Delta})} \ge \frac{y}{C}, y \in [0, \eta] \right\}.$

All regimes, uniqueness (Delarue, Nadtochiy, S. '19)

- For uniqueness, need to understand all regimes.
- Case 1: \overline{Y}_{t-} has a density $f \in C^1([0,\infty)) \cap C^{\omega}((0,\infty))$, f(0) = 0. $\Longrightarrow \dot{\Lambda} = \lambda$ is continuous on $[t, t + \varepsilon)$ for some $\varepsilon > 0$.
- Case 2: \overline{Y}_{t-} has a density $f \in C^{\omega}((0,\infty))$, $f(0+) \in [0,1/C)$.
 - $\implies \Lambda \text{ is } (1/2 + \delta) \text{-Hölder on } [t, t + \varepsilon), \text{ back to Case 1 on } (t, t + \varepsilon).$
- Case 3: \overline{Y}_{t-} has a density $f \in C^{\omega}((0,\infty))$, $f(0+) \ge 1/C$. $\implies \Lambda_t - \Lambda_{t-} = -\inf \{ y > 0 : \mathbb{P}(\overline{Y}_{t-} \in (0, y] < y/C) \}$,

back to **Case 1** on $(t, t + \varepsilon)$.

• Uniqueness follows from this and sandwiching between two maximal physical solutions.

General networks (Nadtochiy, S. '18)

• More generally, may replace

$$\begin{split} \overline{Y}_t &= \overline{Y}_0 + \alpha t + \sigma \overline{B}_t + \Lambda_t, \\ \Lambda_t &:= C \log \mathbb{P}(\overline{\tau} > t), \quad \overline{\tau} := \inf\{t \ge 0 : \ \overline{Y}_t \le 0\} \end{split}$$

by its network version:

$$\begin{split} \overline{Y}_t^x &= \overline{Y}_0^x + \int_0^t \alpha_s^x \, \mathrm{d}s + \int_0^t \sigma_s^x \, \mathrm{d}\overline{B}_s + \Lambda_t^x, \\ \Lambda_t^x &:= C^x \int_{\mathcal{X}} \log \, \mathbb{P}(\overline{\tau}^{x'} > t) \, \kappa(x, \mathrm{d}x'), \quad \overline{\tau}^{x'} := \inf\{t \ge 0 : \ \overline{Y}_t^{x'} \le 0\}. \end{split}$$

Hereby, x ∈ X are different types of banks, stochastic kernel κ defines
 a weighted directed network on X.

General networks: questions

- Does a solution { *Y*[×]}_{x∈X} with rcll paths still exist?
 Yes, can prove this directly using a new Schauder's theorem for the Skorokhod M1 topology.
- How do the **jumps** in $\{\overline{Y}^x\}_{x\in\mathcal{X}}$ arise?

 \leftrightarrow systemic crises/synchronization of neurons.

• E.g., what can one say about

$$t_{\Delta} := \inf\{t \ge 0 : \Delta \overline{Y}_t^x \neq 0 \text{ for some } x \in \mathcal{X}\}$$

and empir. log-asset distributions $\{\mathcal{L}(\overline{Y}_{t_{\Delta}}^{\times})\}_{x \in \mathcal{X}}$ right before t_{Δ} ?

Preparation: logarithmic Perron-Frobenius eigenvalue

- Let X is finite.
- Suppose that the time *t* configuration satisfies

$$rac{\mathbb{P}(\overline{ au}^{ ext{x}} \geq t, \, \overline{Y}_{t-}^{ ext{x}} \in (0, y))}{\mathbb{P}(\overline{ au}^{ ext{x}} \geq t)} \geq c^{ ext{x}}y, \;\; y \in [0, \eta^{ ext{x}}], \;\;\; ext{x} \in \mathcal{X}.$$

• If the matrix $(C^{x}\kappa(x, \{x'\})c^{x'})_{x,x'\in\mathcal{X}}$ is **irreducible**, the limit

$$\lim_{n\to\infty}\frac{1}{n}\log\int_{\mathcal{X}^n}\prod_{m=0}^{n-1}(C^{x_m}c^{x_{m+1}})\kappa(x_0,\mathrm{d} x_1)\ldots\kappa(x_{n-1},\mathrm{d} x_n)$$

is referred to as its logarithmic Perron-Frobenius eigenvalue.

<u>Theorem</u> (Nadtochiy, S. '18) Suppose that $\alpha^x \leq \overline{\alpha}, x \in \mathcal{X}$ and $\underline{\sigma} \leq \sigma^x \leq \overline{\sigma}, x \in \mathcal{X}$ with suitable $\overline{\alpha} \in \mathbb{R}$ and $\underline{\sigma}, \overline{\sigma} \in (0, \infty)$. If $(C^x \kappa(x, \{x'\})c^{x'})_{x,x' \in \mathcal{X}}$ is irreducible with a strictly positive logarithmic Perron-Frobenius eigenvalue, then

$$\Delta \overline{Y}_t^x \neq 0$$

for at least one $x \in \mathcal{X}$.

THANK YOU FOR YOUR ATTENTION!