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Motivation

Goal: understand how default cascades arise in banking networks.

More generally: how do microscopic effects in a large system lead to

macroscopic phenomena?

Example 1: systemic risk

Banking system with banks borrowing from each other.

Banks default → losses to other banks.

Losses → new defaults.

New defaults → new losses → default cascade.
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Other examples

Example 2: neural networks

Neurons in a part of the brain, e.g. 106 in the human hippocampus.

Membrane potential of a neuron reaches a critical level

(“spike”) → the neuron fires.

Neuron firing → spike in surrounding neurons.

Surrounding neurons may fire → synchronization.

Example 3: supercooling

Liquid, e.g. water, cooled below its freezing temperature, but

remaining liquid. Freezes when poured onto a warmer surface.

Local freezing → global freezing.
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Basic structural model for default cascades, in words

Log-assets of N banks: Y 1(0),Y 2(0), . . . ,Y N(0) ∈ [0,∞).

Evolve according to indepedent Brownian motions,

each with drift α, dispersion σ.

When a process hits 0, it is absorbed. ↔ default

This leads to immediate downward jumps by other processes,

tuned by a parameter C > 0. ↔ losses

If some processes cross 0 due to jumps, these processes are removed,

jump sizes of remaining particles are adjusted, etc. ↔ new losses

When cascade resolved: remaining processes continue as BMs, etc.
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Our model, in formulas

Process locations: Y 1, Y 2, . . . , Y N .

As long as processes on (0,∞):

dY i
t = α dt + σ dB i

t , i = 1, 2, . . . ,N,

B1, B2, . . . , BN independent standard BMs.

Hitting times:

τ i = inf{t > 0 : Y i
t ≤ 0}, i = 1, 2, . . . ,N.

Suppose Y i hits 0 at time t and is removed.
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Our model: cascades, in words

Shift the remaining processes by

C log
(

1− 1

St−

)
,

where St− is the pre-cascade size of the system.

Note: factor ↓ in size St−, ↑ in parameter C .

Update may lead to processes i1, i2, . . . , ik crossing 0, these are

removed, and we adjust the shift to

C log
(

1− k + 1

St−

)
.

May cause more immediate absorptions, in which case repeat

procedure etc., until determine all processes to remove at time t.
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Our model: cascades, in formulas

System size: St :=
∑N

i=1 1{τ i>t}.

Order statistics: Y
(1)
t− ≤ Y

(2)
t− ≤ · · · ≤ Y

(St−)
t− of (Y i

t− : τ i ≥ t).

# of processes removed at time t:

Dt := inf
{
k : Y

(k)
t− + C log

(
1− k−1

St−

)
> 0
}
− 1.

Log-asset dynamics:

Y i
t := Y i

0 + αt + σB i
t +

∑
u≤t C log

(
1− Du

Su−

)
.
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Large system limit: starting point

To study macroscopic default cascades:

take N →∞;

macroscopic default cascades ↔ blow-ups in a limiting process.

Crucial observation: sum of jumps∑
u≤t C log

(
1− Du

Su−

)
=
∑

u≤t C log
(

Su
Su−

)
= C log

(
1
N

∑N
j=1 1{τ j>t}

)
.

−→ functional of the empirical measure %N := 1
N

∑N
i=1 δY i

−→ interaction of mean-field type
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Large system limit: McKeav-Vlasov heuristics

McKean-Vlasov heuristics (cf. Sznitman ’89):

Classical setting:

Y i
t = Y i

0 +
∫ t

0 b(Y i
s , %

N
s )ds +

∫ t
0 σ(Y i

s , %
N
s ) dB i

s , i = 1, 2, . . . ,N.

Guess: %N
N→∞−→ %, deterministic.

=⇒ for large N, particle locations well-approximated by

Y
i
t = Y

i
0 +

∫ t
0 b(Y

i
s , %s) ds +

∫ t
0 σ(Y

i
s , %s) dB i

s , i = 1, 2, . . . ,N.

=⇒ % = limN→∞ %
N = limN→∞ %

N = L(Y
1
).

Conclusion: in N →∞ limit, Y i converge to unique solution of

Y t = Y 0 +
∫ t

0 b(Y s ,L(Y s))ds +
∫ t

0 σ(Y s ,L(Y s))dBs .
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Large system limit: our setting

McKean-Vlasov heuristics suggests Y i converge to unique sol. of

Y t = Y 0 + αt + σBt + Λt ,

where

Λt := C logP(τ > t), τ := inf{t ≥ 0 : Y t ≤ 0}.

Problems: non-uniqueness, non-existence in C ([0,∞),R).

P(τ > t) or 1
N

∑N
j=1 1{τ j>t} do not specify cascade mechanism.

 Dt := inf{y > 0 : y − Ft(y) > 0}

:= inf

{
y > 0 : y + C log

(
1− P(τ≥t,Y t−∈(0,y))

P(τ≥t)

)
> 0

}
.

Specify Λt = Λt− + Ft(Dt), rcll.

Call solutions with correct cascade mechanism physical solutions.
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A first limit theorem

Theorem (Nadtochiy, S. ’17) Suppose 1
N

∑N
i=1 δYi (0) → ν; ν has a

bounded density fν on [0,∞) vanishing in a neighborhood of 0.

Then:

The sequence 1
N

∑N
i=1 δỸ i , N ∈ N is tight and any limit point is supported

on physical solutions Y with Y 0
d
= ν.

Technical points: theorem for auxiliary log capitalization processes;

Skorokhod M1 topology on rcll paths (key observation of Delarue, Inglis,

Rubenthaler, Tanré ’15).

Mykhaylo Shkolnikov (with Sergey Nadtochiy and Francois Delarue) (Princeton University)Systemic risk & supercooled Stefan problem on networks March 18, 2019 12 / 24



Connection to Stefan problem

Consider a variant of the limiting problem:

Y t = Y 0 + Bt − Λt , t ≤ τ , Y t = Y τ , t > τ,

Λt = C P(τ ≤ t).

If Λ′ exists on [0,T ), densities p(t, ·) of Y t solve

∂tp =
1

2
∂xxp + Λ′t∂xp, p(0, ·) = f , p(·, 0) = 0,

Λ′t =
C

2
∂xp(t, 0), t ∈ [0,T ).

Change of variables: u(t, x) := p(t, x − Λt), x ≥ Λt , t ∈ [0,T ).
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Connection to Stefan problem cont.

Supercooled Stefan problem (1D, one phase):

∂tu =
1

2
∂xxu on {(t, x) ∈ [0,∞)2 : x ≥ Λt},

Λ′t = C∂xu(t,Λt), t ≥ 0,

u(0, x) = f (x), x ≥ 0 and u(t,Λt) = 0, t ≥ 0,

where f ≥ 0, C ≥ 0.

Blow-up: for some T <∞, limt↑T Λ′t =∞.

Classical solution on [0,T ).
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Brief history of Stefan problems

Stefan 1889–1891: free boundary problems for the heat

equation.

Physical models of ice formation; evaporation & condensation.

Dormant until Brillouin ’31, Rubinshtein: ≈2500 papers by ’67.

Kamenomostkaja ’61: definitive solution.

’70-today: supercooled Stefan problem.

Sherman ’70: presence of blow-ups.

For some T <∞: boundary speed →∞.
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Back to our physical solutions: questions

By the theorem, a physical solution Y with rcll paths exists.

How do the jumps in Y arise? ←→ systemic crises, synchronization

of neurons, leaps of the solid/liquid frontier.

E.g., what can one say about

t∆ := inf{t ≥ 0 : ∆Y t 6= 0}

and the empirical log-asset distribution L(Y t∆−) right before t∆?
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Main theorem I: regular interval

Theorem (Nadtochiy, S. ’17) Suppose Y 0
d
= ν has a density

fν ∈W 1
2 ([0,∞)) and fν(0) = 0.

Then: there exists treg > 0 such that on [0, treg ) all physical solutions are

indistinguishable and satisfy

Y t = Y 0 + αt + σBt +

∫ t

0
λs ds, t ∈ [0, τ ∧ treg ),

λt = C ∂t logP(τ > t), t ∈ [0, treg ).

Moreover, treg = inf{t > 0 : ‖λ‖L2([0,t]) =∞}.
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Main theorem II: description of jumps

Theorem (Nadtochiy, S. ’17) Consider a physical solution Y .

Then:

(a) the time of the first jump t∆ := inf{t ≥ 0 : ∆Y t 6= 0} is given by

t∆ = inf
{
t ≥ 0 : ∃ η > 0 s.t. P(τ≥t,Y t−∈(0,y))

P(τ≥t) ≥ y
C , y ∈ [0, η]

}
,

and

(b) the size of the jump at t∆ is

sup
{
η ≥ 0 :

P(τ≥t∆,Y t∆−∈(0,y))

P(τ≥t∆) ≥ y
C , y ∈ [0, η]

}
.
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All regimes, uniqueness (Delarue, Nadtochiy, S. ’19)

For uniqueness, need to understand all regimes.

Case 1: Y t− has a density f ∈ C 1([0,∞)) ∩ Cω((0,∞)), f (0) = 0.

=⇒ Λ̇ = λ is continuous on [t, t + ε) for some ε > 0.

Case 2: Y t− has a density f ∈ Cω((0,∞)), f (0+) ∈ [0, 1/C ).

=⇒ Λ is (1/2 + δ)-Hölder on [t, t + ε), back to Case 1 on (t, t + ε).

Case 3: Y t− has a density f ∈ Cω((0,∞)), f (0+) ≥ 1/C .

=⇒ Λt − Λt− = − inf
{
y ≥ 0 : P(Y t− ∈ (0, y ] < y/C )

}
,

back to Case 1 on (t, t + ε).

Uniqueness follows from this and sandwiching between two maximal

physical solutions.
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General networks (Nadtochiy, S. ’18)

More generally, may replace

Y t = Y 0 + αt + σBt + Λt ,

Λt := C logP(τ > t), τ := inf{t ≥ 0 : Y t ≤ 0}

by its network version:

Y
x
t = Y

x
0 +

∫ t

0
αx
s ds +

∫ t

0
σxs dBs + Λx

t ,

Λx
t := C x

∫
X

log P(τ x
′
> t)κ(x , dx ′), τ x

′
:= inf{t ≥ 0 : Y

x ′

t ≤ 0}.

Hereby, x ∈ X are different types of banks, stochastic kernel κ defines

a weighted directed network on X .
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General networks: questions

Does a solution {Y x}x∈X with rcll paths still exist?

Yes, can prove this directly using a new Schauder’s theorem for the

Skorokhod M1 topology.

How do the jumps in {Y x}x∈X arise?

←→ systemic crises/synchronization of neurons.

E.g., what can one say about

t∆ := inf{t ≥ 0 : ∆Y
x
t 6= 0 for some x ∈ X}

and empir. log-asset distributions {L(Y
x
t∆−)}x∈X right before t∆?
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Preparation: logarithmic Perron-Frobenius eigenvalue

Let X is finite.

Suppose that the time t− configuration satisfies

P(τ x ≥ t, Y
x
t− ∈ (0, y))

P(τ x ≥ t)
≥ cxy , y ∈ [0, ηx ], x ∈ X .

If the matrix (C xκ(x , {x ′})cx ′)x ,x ′∈X is irreducible, the limit

lim
n→∞

1

n
log

∫
X n

n−1∏
m=0

(C xmcxm+1)κ(x0, dx1) . . . κ(xn−1,dxn)

is referred to as its logarithmic Perron-Frobenius eigenvalue.
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General networks: jump criterion

Theorem (Nadtochiy, S. ’18) Suppose that αx ≤ α, x ∈ X and

σ ≤ σx ≤ σ, x ∈ X with suitable α ∈ R and σ, σ ∈ (0,∞).

If (C xκ(x , {x ′})cx ′)x ,x ′∈X is irreducible with a strictly positive logarithmic

Perron-Frobenius eigenvalue, then

∆Y
x
t 6= 0

for at least one x ∈ X .

Mykhaylo Shkolnikov (with Sergey Nadtochiy and Francois Delarue) (Princeton University)Systemic risk & supercooled Stefan problem on networks March 18, 2019 23 / 24



THANK YOU
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