
A Short Tutorial on Stochastic Dynamic
Programming and Reinforcement Learning

Nan Chen

Systems Engineering & Engineering Management
The Chinese University of Hong Kong

Institute for Mathematical Sciences, National University of
Singapore

July 31 & August 1, 2019

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)
Basic Idea
Value Function Approximation
Stochastic Optimization
Value Function Approximation through Learning

Duality of SDP

Q-Learning

Exploitation and Exploration

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)

Duality of SDP

Q-Learning

Exploitation and Exploration

Mathematical Formulation

I Stochastic dynamic programming (SDP) provides a powerful
framework for modeling and solving decision-making problems
under a random environment where uncertainty is resolved
and actions are taken sequentially over time.

I It also has become increasingly important to help us
understand the general principle of reinforcement learning, a
rapidly developing area of artificial intelligence.

I The agent-environment interaction:

Agent

Environment

State
xt

Action
atCost rt

Random
Shock:
New State:

ξt
xt+1 = f (xt,at,ξt)

Mathematical Formulation (Continued)

I Time horizon: t = 0, 1, ...
I A finite time horizon is possible and more relevant in financial

applications

I State space: S = {1, 2, · · · , S}
I Action space: A(s), s ∈ S
I System evolution:

I Use {xt : t = 0, 1, · · · } to denote the state evolution of the
system

I Transitional probability matrix is known: P(xt+1|xt , at).
I For simplicity, we consider a Markovian case in which there is

only one-step dependence in the state sequence {xt}.
Sometimes people refer to this special case as Markov decision
processes (MDP)

I Reward: r(s, a)

Mathematical Formulation (Continued)

I Let Ft represent the σ-algebra spanned by the history of the
system state up to time t, i.e., Ft = σ(x0, x1, · · · , xt), ∀t.

I Policy: a mapping from past observation of the system state
to the set of actions, i.e., πt is an Ft−measurable function
valued in A.

I Objective: Find a policy π = (πt , t = 0, 1, · · ·) to maximize

V (x) = max
π

E

[
+∞∑
t=0

γtr(xt , πt)
∣∣∣x0 = x

]
,

where γ ∈ (0, 1) is a discount factor used by the decision
maker.

The Principle of Optimality: Bellman Equation

I We can easily show that the optimal value of the problem in
the last slide is characterized by the following Bellman
equation:

I

V (x) = max
a∈A

E
[
r(xt , at) + γV (xt+1)

∣∣∣xt = x
]
. (1)

I The optimal policy π∗t = a∗t (x) maximizes the right hand side
of (1).

I Intuitively, the term V (xt+1) encodes the long-term impact
when the agent takes actions to steer the system into a new
state xt+1.

I Stationary policy

Illustrative Examples: American Options

I American options entitle the holder the right to buy/sell a
certain amount of assets for a pre-determined price by a time
point in the future.

I American put
I Time to maturity T
I Underlying asset price follows a Markovian process living in a

state space S = {p1, p2, · · · , pS}
I Strike price K
I Value:

V0(p) = max
τ∈{0,1,··· ,T}

E
[
γτ (K − xτ)+

∣∣∣x0 = p
]
,

where τ is a stopping time.

Illustrative Examples: American Options (Continued)

I We can easily see that the aforementioned general formulation
applies to this problem.

I Action space: A = {0, 1} where 0 represents “stop and
exercise” and 1 “continue”

I Let δ be an absorbing state and enlarge the state space to
S̃ = S ∪ {δ}.

I The state variable evolves according to

P(x̃t+1|x̃t , a) =


P(xt+1|xt), a = 1 and x̃t , x̃t+1 ∈ S;
1, a = 0 and x̃t+1 = δ;
0, a = 0 and xt+1 ∈ S;
1, x̃t = δ.

I Reward:

r(x̃t , a) =

 0, a = 1;
(K − x̃t)

+, a = 0 and x̃t ∈ S;
0, x̃t = δ.

Illustrative Examples: American Options (Continued)

I The objective:

Vt(x) = max
π∈A

E

[
T∑
s=t

γtr(x̃s , πs)
∣∣∣x̃t = x

]
.

I The Bellman equation:

Vt(x) = max
{

(K − x)+, γE[Vt+1(x̃t+1)|x̃t = x]
}
.

Illustrative Examples: Investment and Consumption

I Time horizon: t = 0, 1, ...,T

I Universe of investment: one risk free asset offering interest r
and N stocks

I Stock processes: {S1
t , · · · ,SN

t }, t = 0, 1, · · · ,T , N-dim
Markovian process

I In each period, the agent needs to determine
I Consumption amount ct
I Investment portfolio: $yt in risk free asset and {x1

t , · · · , xNt }
shares in the stocks

I These actions should satisfy

Wt = yt +
N∑

n=1

xnt S
n
t − ct

and some other constraints: no borrowing, no shorting,
trading constraints, and so on.

Illustrative Examples: Investment and Consumption
(Continued)

I Objective: the agent intends to determine the
investment-consumption plan πt = (ct ; yt , x

1
t , · · · , xNt),

t = 0, · · · ,T such that

max
π∈A(W)

E

[
T−1∑
t=0

γtUt(ct) + γTUT (WT)
∣∣∣x0 = x

]

I Wealth process:

Wt = (1 + r)yt−1 +
N∑

n=1

xnt−1S
n
t .

Illustrative Examples: Investment and Consumption
(Continued)

I The Bellman equation in this case should be

Vt(W ;S)

= max
π

{
Ut(ct) + γE

[
Vt(Wt+1,St+1)

∣∣∣Wt = W ; St = S
]}

.

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)

Duality of SDP

Q-Learning

Exploitation and Exploration

Value Iteration

I Value iteration is perhaps the most widely used algorithm in
MDP. It is based on the above principle of optimality.

I Recall that we actually need to solve a fixed-point problem to
determine V in an infinite-time horizon MDP. Then, the
following recursive method is natural:

I Step 0. Initialize v0 and select a tolerance parameter ε
I Step 1. For each x ∈ S, compute

vn(x) = max
a∈A

E
[
r(xt , a) + γvn−1(xt+1)

∣∣∣xt = x
]

= max
a∈A

[
r(x , a) + γ

∑
x′

P(x ′|x , a)vn−1(x ′)

]

I Step 2. If ‖vn − vn−1‖ ≤ ε, let a∗ be the resulting policy that
solves the above equality and output vn as an approximation
to V ; Otherwise, set n = n + 1 and go to Step 1.

Policy Iteration

I In policy iteration we start with a policy and then find its
corresponding value. This value is used to help us to find
another policy.

I Consider any stationary policy π. To evaluate this policy, we
have

vπ(x) = E

[
+∞∑
t=0

γtr(xt , πt)
∣∣∣x0 = x

]

= E

[
r(x , π(x)) +

+∞∑
t=1

γtr(xt , π(xt))
∣∣∣x0 = x

]
(stationarity)

= r(x , π(x)) + γE

[
+∞∑
t=1

γt−1r(xt , π(xt))
∣∣∣x0 = x

]
= r(x , π(x)) + γ

∑
x ′

vπ(x ′)P(x ′|x , π(x)) (2)

Policy Iteration (Continued)

I Notice that we can solve for vπ using some numerical routines
for linear equation systems.

I Policy iteration:
I Step 0. Start with a policy π0 and set n = 1
I Step 1. Use (2) to compute vπ

n−1

I Step 2. Update policy by

πn(x) = arg max
a∈A

E
[
r(xt , a) + γvπ

n−1

(xt+1)
∣∣∣xt = x

]
.

I Step 2. If πn(x) = πn−1(x) for all states x , then stop and
output π∗ = πn; Otherwise, set n = n + 1 and go to Step 1.

Policy Iteration (Continued)

I There are two ways to determine vπ from (2)
I via matrix inversion

vπ = (I − γPπ)−1rπ

I via iteration, i.e., repeapting

vπ,n = rπ + γPπvπ,n−1.

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)

Duality of SDP

Q-Learning

Exploitation and Exploration

Three Curses of Dimensionality

I Both value iteration and policy iteration are not
computationally tractable for large scaled problems because of
the “curse of dimensionality”.

I Take the previous investment/consumption example.
I State space: (N + 1)-dim
I Action space: (N + 2)-dim
I Transition matrix: (N + 1)× (N + 1)

I The number of the combination of state, action, and
stochastic transition that both iteration methods need to visit
grows exponentially as the dimensionality of the problem
increases.

The Basic Idea of ADP

I The ADP algorithm steps forward in time to update the
estimates of value function iteratively.

I Main Steps:
I Step 0. Initialize V 0(x) for all x ; choose an initial state x0; set

n = 1;
I Step 1. For t = 0, 1, 2, · · · ,T do:

I Step 1a. At xn
t , solve

un
t = max

a∈A

[
r(xt , at) + γ

∑
x′

V n−1(x ′)P(x ′|xn
t , a)

]
. (3)

and let ant be the value of a that solves the above
maximization problem.

I Step 1b. Update

V n(x) =

{
(1− αn−1)V n−1(x) + αn−1u

n
t , for x = xn

t

V n−1(x), otherwise

I Step 1c. Simulate xn
t+1 from the distribution P(·|xn

t , a
n
t)

I Step 2. Let n = n + 1. If n < N, go to Step 1.

Key Issues of ADP

I The algorithm is known as the “forward pass” algorithm,
where we step forward in time, updating value functions as we
progress. Another variation involves simulating forward
through the horizon without updating the value function.
Then, after the simulation is done, we step backward through
time to update the value function, using information about
the entire future trajectory.

Key Issues of ADP (Continued)

I There are several issues we have to address to develop an
effective ADP strategy:

1. In the above ADP algorithm, we only update the value of
states we visit, but we need the value of all the states to
obtain V n.

2. We assume that we can compute the expectation, which is
often not the case.

3. We need to determine how to update the approximation.
4. We can easily get caught in a circle of choosing actions that

take us to states that we have already visited, simply because
we may have pessimistic estimates of states that we have not
yet visited. We need some mechanism to force us to visit
states just to learn the values of those states.

Approximate Value Function

I To address the first issue, we need to discuss some techniques
of value approximation:

I Regression and basis functions
I Other nonparametric methods

I k-nearest neighbors
I Kernel regression
I Local polynomial regression
I Neural networks

Approximate Value Function: Regression

I The regression method approximates functions as a linear
combination of some pre-selected basis functions.

I Consider a set of basis functions {φ1, · · · , φm} and suppose
that we have observed the values (with noise) of V at states
x1, · · · , xn, denoted by v(x1), · · · , v(xn).

I We can use the following least square method to build up an
optimal approximation from the basis functions:

min
θ

n∑
i=1

v(xi)−
m∑
j=1

θjφj(xi)

2

.

I Tremendous possibilities of variations from here: robust,
LASSO, logistic, ...

Approximate Value Function: k-Nearest Neighbors

I How to select suitable basis functions in a given case still
remains a (frustrating) art. Nonparametric alternatives more
depend on observed data to build local approximations and
can help avoid the art of specification of parametric models.
The regression method approximates functions as a linear
combination of some pre-selected basis functions.

I The k-nearest neighbor regression may be the simplest form
of nonparametric regressions. It estimates functions by using a
weighted average of their values at the k-nearest neighbors:

V (x) =
1

k

∑
i∈N k (x)

v(xi).

where N k(x) contains k indices of the nearest neighbors of x
among {x1, · · · , xn}.

I metric, determination of k , weights

Approximate Value Function: Kernel Regression

I Using the k-nearest neighbor model, the estimate can change
abruptly as x changes continuously, as the set of nearest
neighbors changes.

I Kernel regression forms an estimate by using a weighted sum
of observations

V (x) =
m∑
i=1

kh(x , xi)

kh(x)
v(xi).

where kh(x , x i) is a weightimg function that declines with the
distance between x and xi and

kh(x) =
∑
i

kh(x , xi).

Approximate Value Function: Kernel Regression
(Continued)

I One of the most popular choice of the kernel function
kh(x , x i) is the following Gaussian kernel

kh(x , xi) = exp(−‖x − xi‖/h)2

Here h plays the role of the bandwidth.

I Other popular choices of kernels:

I Choice of h, curse of dimensionality comes back.

Approximate Value Function: Local Polynomial Regression

I Local polynomial regression estimates regression models
locally around each observation xi by solving a least square
problem that minimizes a weighted sum of least squares.

I That is, at each x , we solve

min
θ

 n∑
i=1

Kh(x , xi) ·

v(xi)−
m∑
j=1

θjφj(xi)

2 .

As the result of minimization, the optimal θ depends on x .

Approximate Value Function: Neural Network
I Neural networks represent an unusually powerful and general

class of approximation tools that have been widely used in
machine learning.

I The simplest neural network is nothing more than a linear
regression model. Consider a case that we have observed
(X1, · · · ,Xl) and Y . Recall that if we want to fit a linear
model from these data, we need to solve the following least
square error:

min
w

∑
k

(Y k − (w1X
k
1 + · · ·+ wlX

k
l))2.

I Representing linear regression models as a single-layer
feed-forward neural network.

Approximate Value Function: Neural Network (Continued)

I We may extend the single layer neural network to multiple
layered network.

I Input layer: (X1, · · · ,Xl)
I Hidden layer:

aj = φ

(∑
k=1

wk,jXk + bj

)
for some activation function φ.

I Output layer: o =
∑

j vjaj

I Popular activation functions include tanh, arctan, rectified
linear unit (ReLu), logistic (sigmoid).

Approximate Value Function: Neural Network (Continued)

I Universal approximation theorem (Cybenko 1989, Hornik
1991)

I Let activation function φ be non-constant, bounded, and
continuous function. Let Im denote the m-dimensional unit
hypercube [0, 1]m and C (Im) denote the space of real-valued
continuous functions on Im. Then, the set of functions
constructed from the two-layer neural network is dense in
C (Im).

I One popular way to train the network is through the gradient
descent method.

Example: American Option Pricing

I We may adopt the variation of the ADP to approximately
solve this optimal stopping problem. The method is based on
the regression expansion (Longstaff and Schwartz 2001,
Tsitsiklis and Van Roy 2001).

I Forward to simulate states
I Backward to update the value

Example: American Option Pricing (Continued)

I More precisely,
I Step 1. Simulate b independent sample paths {x1j , · · · , xmj},

j = 1, 2, · · · , b, of the underlying asset price;
I Step 2. At terminal nodes, set Vmj = (K − xmj)

+

I Step 3. Apply backward induction to update value: for
i = m − 1, · · · , 1

I Step 3a. Use the regression method to estimate

Ci (x) = E[γVi+1|xi = x]

I Step 3b. Set

Vij = max{(K − xij)
+,Ci (xij)}

for all j = 1, 2, · · · , b.

I Step 4. Set
V0 = (V11 + · · ·+ V1b)/b.

Example: American Option Pricing (Continued)
I American put, 4 periods, strike price $1.10, discount factor

0.9417, the current price of the underlying $1.00.
I Step 1: simulate sample paths of the underlying stock

I Step 2: determine ultimate payoff

Example: American Option Pricing (Continued)
I Step 3: move backwardly to time 2

Using {1,X ,X 2} as the basis functions to fit E [Y |X], we have

c2(x) = −1.070 + 2.983x − 1.813x2.

I Step 4: determine the option value at time 2

I Repeat the above steps until time 1.

Example: Extension to a General Control Problem
I Bachouch et al. (2019) and Húre et al. (2019) suggest a deep

neural network based approach to solve a general
high-dimensional control problem

I Objective: find the optimal control policy to maximize

max
π∈A(W)

E

[
T−1∑
t=0

ft(xt , πt) + gT (xT)
∣∣∣x0 = x

]
with the underlying state process:

xn+1 = F (xt , πt , ξt)

I The Bellman equation:

VT (x) = gT (x)

and

Vt(x) = max
at

E
[
ft(xt , at) + Vt+1(xt+1)

∣∣∣xt = x
]

= max
at

E [ft(x , at) + Vt+1(F (x , at , ξt))]

Example: Extension to a General Control Problem
(Continued)

I Main idea: Use two deep neural networks to approximate the
policy and value function respectively.

I Algorithm:
I Use training distributions µn to sample K states
{xkt : k = 1, · · · ,K} at time t = 1, · · · ,T .

I Set V̂T (x) = gT (x).
I For t = T − 1, · · · , 1 do:

I Let Πt(xt ;βt) represent the neural network to approximate the
optimal policy at time t. Train βt , the parameters of the
network.

β̂t = arg max
βt

E
[
ft(x ,Πt(x ;βt)) + V̂t+1(F (x ,Πt(x ;βt), ξt))

]
I Let V̂t(xt ;αt) represent the neural network to approximate the

value function at time t. Train αt such that

α̂t

= arg min
αt

E
[(

ft (x,Πt (x ; β̂t)) + V̂t+1(F (x,Πt (x ; β̂t), ξt))− V̂t (xt ;αt)
)2
]

Stochastic Optimization and Gradient Search
I On many occasions we discussed before, we have to solve the

following optimization problem:

min
θ

E[f (θ,W)]

where W is a random quantity and the expectation is taken
with respect to W .

I It is not computationally feasible in a lot of applications of
practical interest to obtain the explicit expression of
E[f (θ,W)] (cf. the second issue about ADP). There are two
major classes of approaches to solve the optimization problem.

I Sample average approximation: draw independent samples of
W and estimate E[f (θ,W)] by

1

n

n∑
i=1

f (θ,Wi)

Solve the above for the optimal θ∗ using some deterministic
optimization routines.

I Stochastic approximation

Stochastic Optimization and Gradient Search (Continued)
I Stochastic approximation finds local optima of the

optimization problem for an unconstrained decision set using
its noisy sub-gradient observations.

I Batch gradient descent: update

θk+1 = θk − αk ·
1

n

n∑
i=1

∇θf (θk ,Wi)

where αk is the step size at step k .
I Stochastic gradient descent:

θk+1 = θk − αk∇θf (θk ,Wk)

where Wk is a random copy of W drawn from its distribution
at step k .

I Mini-batch gradient:

θk+1 = θk − αk ·
1

n

b∑
i=1

∇θf (θk ,W
i
k)

where a small amount of samples of W is drawn to compute
the gradient.

Recursive Least Square
I We discussed how to approximate value functions using a

batch of data. However, in the setting of ADP, it would be
very expensive to use batch methods to estimate. To address
the third issue of ADP, we develop a recursive least square to
update the coefficient from one more observation.

I Suppose that we want to fit the following linear model

y = θ1x1 + · · ·+ θpxp + ε

We have observed n − 1 pairs of (y , {x1, · · · , xp}):

yn−1 =


y1
y2
· · ·
yn−1


and

Xn−1 =


x11 x12 · · · x1p

x21 x22 · · · x2p

· · · · · · . . . · · ·
x(n−1),1 x(n−1),2 · · · x(n−1),p



Recursive Least Square (Continued)
I The least square estimate of θ should be given by

θ̂n−1 = (XT
n−1Xn−1)−1XT

n−1yn−1.

I Now let’s assume that we have one more observation of
(y , {x1, · · · , xp})

yn =


y1

y2

· · ·
yn−1

yn

 =:

(
yn−1

yn

)

and

Xn =


x11 x12 · · · x1p

x21 x22 · · · x2p

· · · · · · . . . · · ·
x(n−1),1 x(n−1),2 · · · x(n−1),p

xn,1 xn,2 · · · xn,p

 =:

(
Xn−1

xn

)

Recursive Least Square (Continued)

I The new estimate with this new observation should be
updated to

θ̂n = (XT
n Xn)−1XT

n yn

= (XT
n−1Xn−1 + xTn xn)−1(XT

n−1yn−1 + xTn yn)

I By Sherman-Morrison formula,

(XT
n−1Xn−1 + xTn xn)−1

= (XT
n−1Xn−1)−1 − 1

γn

[
(XT

n−1Xn−1)−1(xTn xn)(XT
n−1Xn−1)−1

]
where

γn = 1 + xn(XT
n−1Xn−1)−1xTn .

I Some algebra leads to

θ̂n = θ̂n−1 −
1

γn
(XT

n−1Xn−1)−1xTn (xnθ̂n−1 − yn).

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)

Duality of SDP

Q-Learning

Exploitation and Exploration

Motivation

I We use American option as an example to motivate the
discussion on SDP duality. For notational simplicity, let’s
assume the discount factor γ = 1.

I Recall that the exercising policy used by the option holder
must be a stopping time; that is, the decision she makes
should depend on what has happened in the history. If we
relax this requirement, allowing her to make the decision after
she observed the entire trajectory of the underlying asset
price, then

V0(p) = max
τ∈{0,1,··· ,T}

E
[
(K − xτ)+

∣∣∣x0 = p
]

≤ E
[

max
0≤t≤T

(K − xt)
+
∣∣∣x0 = p

]

Motivation (Continued)

I One analogy

Primal : min cT x Dual :
s.t. Ax ≤ b (λ) ⇔ maxλ≥0 minx c

T x + λT (b − Ax)

I Key idea of duality in solving constrained optimization
problems:

I Introduce a penalty λ to relax the constraint
I Formulate a saddle-point duality
I Weak and strong duality

I Can we construct a proper penalty such that

V0(p) = inf
M

E
[

max
0≤t≤T

{
(K − xt)

+ −Mt

} ∣∣∣x0 = p

]
?

Dual Theory for Optimal Stopping

I Rogers (2002) and Haugh and Kogan (2004):
I Let

M = {M : M is a martingale and M0 = 0}.

Then,

V0(p) = inf
M∈M

E
[

max
0≤t≤T

{
(K − xt)

+ −Mt

} ∣∣∣x0 = p

]
(4)

I Proof
I For any martingale M ∈M and stopping time τ ,

E
[

max
0≤t≤T

{
(K − xt)

+ −Mt

} ∣∣∣x0 = p

]
≥ E

[{
(K − xτ)+ −Mτ

} ∣∣∣x0 = p
]

= E
[
(K − xτ)+

]
.(Optional sampling theorem)

Dual Theory for Optimal Stopping (Continued)

I Proof (Continued)
I Let Vt represent the option value at time t and define

∆t = Vt(Xt)− E[Vt(Xt)|Xt−1].

Set

Mt =
t∑

i=1

∆t .

It is easy to check that M0 = 0 and M is a martingale.
I Use induction to show that

Vt(Xt) = max
t≤i≤T

{
(K − xi)

+ − (Mi −Mt)
}
.

Strong and Weak Duality

I The relationship (4) implies that
I weak duality: for any martingale M,

V0(p) ≤ E
[

max
0≤t≤T

{
(K − xt)

+ −Mt

} ∣∣∣x0 = p

]
I strong duality: there exists a martingale such that

V0(p) = E
[

max
0≤t≤T

{
(K − xt)

+ −M∗t
} ∣∣∣x0 = p

]

Martingale Construction

I It is not possible to obtain the exact optimal martingale
because the proof shows that it is equivalent to solving the
original optimal stopping problem.

I There are two main approaches proposed in the literature for
constructing the optimal martingales used in the penalty:

I martingales from approximate value functions (Rogers (2002)
and Haugh and Kogan (2004)):

I From the above proof, we know that one way to construct the
optimal penalty is to define

Mt =
t∑

i=1

(Vt(Xt)− E[Vt(Xt)|Xt−1]) .

We may use approximate value function V̂t in it.

Martingale Construction (Continued)

I (Continued)
I martingales from approximate policies (Andersen and Broadie

(2006)):
I Sometimes we may have good approximation to the optimal

exercising policies.
I Note that

Vt(Xt) = E [(K − Xτt)
+|Xt]

and

E[Vt(Xt)|Xt−1] = E[Vt(Xt)|Xt−1] = E [(K − Xτt)
+|Xt−1]

I We may use simulations to estimate ∆t .

Policy Assessment

I Given a value function/a policy obtained from some ADP
methods, we want to assess their quality, i.e., how far it is
away from the optimality. The duality provides us a
systematic way to do it.

I For any value/policy, they are suboptimal. We have

V̂0 ≤ V0.

I On the other hand, we can use the value functions/polices to
construct duality to obtain an upper bound

V0 ≤ V 0.

I Duality gap:
0 ≤ V0 − V̂0 ≤ V 0 − V̂0

Duality in a General SDP

I Consider the optimal control policy to maximize

max
π∈A(W)

E

[
T−1∑
t=0

ft(xt , πt) + gT (xT)
∣∣∣x0 = x

]

with the underlying state process:

xn+1 = F (xt , πt , ξt)

I Take any sequence of functions W = (W0(·), ...,WT (·)).
Define a penalty function z such that

z(a, ξ) =
T−1∑
t=0

Dt(at , ξt)

where

Dt (at , ξt)

= E[ft (xt , at) + Wt+1(Ft (xt , at , ξt))]− (ft (xt , at) + Wt+1(Ft (xt , at , ξt))).

Information Relaxation and Duality

I Brown et al. (2009) show that the strong duality achieves if
we choose Wt = Vt for all t, i.e.,

sup
W

E

[
inf
a

{ T−1∑
t=0

rt(xt , at , ξt) + rT (xT) + z(a, ξ)
}∣∣∣x0

]
= V0(x0).

I Information relaxation

Using Information Relaxation to Assess Control Quality

I The information relaxation-based duality indicates a
systematic approach to assess the quality of a given control
policy α.

I Evaluating the policy, we obtain

W 0(x) := E

[
T−1∑
s=0

rs(xs , αs(xs), ξs) + rT (xT)

∣∣∣∣∣x0 = x

]
≥ V0(x)

for all t and x .
I Using W to construct penalty to solve the duality in the last

slide, we have
W 0(x) ≤ V0(x)

for all t and x .
I We may assess the control quality from the gap between W 0

and W 0. Note that W 0(x)− V0 ≤W 0(x)−W 0(x).

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)

Duality of SDP

Q-Learning

Exploitation and Exploration

Reinforcement Learning

I Reinforcement learning (RL) is an active area of machine
learning concerned with how agents ought to take actions in
an environment so as to maximize cumulative reward.

I The environment is typically formulated as a Markov decision
process (MDP), as many reinforcement learning algorithms for
this context utilize dynamic programming techniques. The
main difference between the classical dynamic programming
methods and reinforcement learning algorithms is that the
latter do not assume knowledge of an exact mathematical
model of the MDP.

Reinforcement Learning (Continued)

I In the RL community, the term “model” often refers to the
transition probability of the underlying system. Some physical
systems are so complex that their mathematical description is
intractable. In such systems, we may make a decision but then
have to observe the outcomes of the decision from a physical
process, rather than depending on mathematical equations.

Q-Learning
I Q-learning is one of the oldest algorithm from the RL

community, named after the variable Q(x , a), which is an
estimate of the value of being in a state s and taking action a.

I Recall the Bellman equation in the case of infinite-time horizon
SDP indicates that the optimal value function V satisfies

V (x) = max
a∈A(x)

E
[
r(xt , a) + γV (xat+1)

∣∣∣xt = x
]
.

I Let
Q(x , a) = E

[
r(xt , a) + γV (xat+1)

∣∣∣xt = x
]
.

Then, Q(x , a) satisfies

V (x) = max
a

Q(x , a)

and

Q(x , a) = E
[
r(xt , a) + γ max

b∈A(xa
t+1)

Q(xat+1, b)
∣∣∣xt = x

]
.

Q-Learning (Continued)
I Q-learning algorithm:

I Step 1: Initialize Q0(s, a) for all s and a and set n = 0.
I Step 2: At xn, choose action an according to

an = arg max
a

Qn(xn, a)

I Step 3: Observe that the state evolves to xn+1 and collect the
reward r(xn, an). Let

δn = r(xn, an) + γ max
b∈A(xn+1)

Qn(xn+1, b).

Update

Qn+1(xn, an) = (1− αn)Qn(xn, an) + αnδ
n

and

Qn+1(x , a) = Qn(x , a)

for the other state-action pair (x , a). Let n = n + 1 and go to
Step 2.

Q-Learning (Continued)

I Remarks:
I The power of Q-learning arises when we either do not have

explicit transition probabilities of the system or do not know
the explicit distribution of rewards. Some literature would like
to refer to this formulation as model-free dynamic
programming.

I We adopt a “greedy” method in selecting actions in Step 2.
That will lead to a serious exploration problem. A huge
literature is proposed to deal with this problem.

Outline

Mathematical Formulation

Value Iteration and Policy Iteration

Introduction to Approximate Dynamic Programming (ADP)

Duality of SDP

Q-Learning

Exploitation and Exploration

Exploitation and Exploration

I The essence of ADP is that we try to visit states to estimate
the value function of being in the state. Therefore, a
fundamental challenge is: should we make a decision because
we think it is the best decision based on our current estimate
of the values of states, or do we make a decision just to try
something new?

I This choice is known in the ADP literature as the exploitation
vs. exploration problem.

Example: Nomadic Trucker (Powell, 2011)

I A trucker moves around the US to meet random demands
arising in different cities.

I State: cities
I Action: which city to move to in the next period
I Reward: Some bonus earned from moving into a city to meet

the stochastic demands in that city
I Q-learning

I Different initial Q values:
I Q0 = 0 in the top panel
I Q0 = 2, 000 in the bottom panel

Heuristic Learning Policies

I The tradeoff between exploration and exploitation points to
the importance of Step 2 in the generic Q-learning algorithm.

I Pure exploitation (or greedy strategy): the one presented in
the above generic Q-learning algorithm is known as a pure
exploitation policy. We always try the best action based on the
current estimation. As shown by the trucker example, it is easy
to become struck in a local solution.

I Pure exploration: use an exogenous process to choose either a
state to visit or a state-action pair. As long as we can
guarantee that we will visit every possible state, we can show
that the Q learning algorithm will converge to the optimal
value with the help of some ergodic properties. However, such
strategy is unlikely to work in large-scaled problems.

Heuristic Learning Policies (Continued)

I (Continued)
I ε-greedy method: take an action according to{

The action taken by the greedy method, prob. = 1− ε;
a random action, prob. = ε.

I The ε-greedy method maintains a certain degree of forced
exploration, while the exploitation steps focus attention on the
actions that appear to be most valuable.

I Intuitively, we should use more exploratory strategies in the
early stage of the Q-learning because we know little about the
environment. As our knowledge increases, we should gradually
switch to exploitation. However, a fixed ε does not reflect this
consideration. In practice, people also use

εn(s) =
c

Nn(s)

where Nn(s) is the number of times we have visited state s by
iteration n.

Heuristic Learning Policies (Continued)
I (Continued)

I Boltzmann exploration: In Step 2, the decision maker choose
an action with “mistake”. That is,

a∗ = arg max
a

[Q(x , a) + εa]

where εa are independent random variables indexed by action.
I It is easy to prove, under some assumptions of the distribution
ε (say, it follows the double-exponential distribution), the
probability to choose action a in state s is given by the
following Boltzmann distribution:

P(s, a) =
exp(Q(x , a)/T)∑
b exp(Q(x , b)/T)

.

I Here T is known as the temperature. As T → +∞, the
probability of choosing different actions becomes uniform (pure
exploration). As T → 0, the probability of choosing the action
corresponding to the largest Q(x , a) approaches 1 (pure
exploitation).

	Mathematical Formulation
	Value Iteration and Policy Iteration
	Introduction to Approximate Dynamic Programming (ADP)
	Basic Idea
	Value Function Approximation
	Stochastic Optimization
	Value Function Approximation through Learning

	Duality of SDP
	Q-Learning
	Exploitation and Exploration

