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|. Background and Motivation



What is an irreducible diffusion?

» Consider an m-dim diffusion process X satisfying
dX (s) = p* (s, X (s))ds + 0% (s, X (s))dW (s), X(t)=mz, s>t

where X (s) € Dx CR™, p*(5,€) €R™, 0¥(s,£) € R™** and
{W(s); s > 0} is a d-dim standard Brownian motion.

» The diffusion X is said to be reducible if there exists a one-to-one
map A(s, &) such that Y(s) = A(s, X (s)) satisfying (Ait-Sahalia,
2008):

dY (s) = p¥ (5,Y(s))ds +dW(s), Y(t)=1y, s>t;

otherwise X is irreducible.

» Univariate diffusions are always reducible because of the existence of
the Lamperti transform: BS, OU, CIR, CEV



Background and Related Literature

Backgroud:
» The diffusion processes are widely used in asset pricing, derivatives
pricing, term structure modelling, etc.
» The explicit form of transition density allows us to
> perform MLE of model parameters based on discretely observed data
> derive option pricing formulas in closed-form
» Most multivariate diffusions do not have explicit transition densities

> (multi-factor) stochastic volatility models: Heston/GARCH/CEVSV
> multivariate term structure models
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» The explicit form of transition density allows us to
> perform MLE of model parameters based on discretely observed data
> derive option pricing formulas in closed-form
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> (multi-factor) stochastic volatility models: Heston/GARCH/CEVSV
> multivariate term structure models

Related literature:

> Ait-Sahalia (2002) presents the Hermite expansion for reducible
models to deriving a series representation of the transition density
» Several methods are proposed to derive small-time expansion for
(multivariate) irreducible diffusions. Typical ones are
> Ait-Sahalia (2008): the Kolmogorov method
> Li (2013): the pathwise expansion based on Malliavin calculus
> Yang, Chen and Wan (2019): the It6-Taylor (delta) expansion



Motivations

(i) Can we naturally extend the Hermite method to irreducible diffusions
at least in the sense of small-time expansion?
> Ait-Sahalia (2008) points out: “The Hermite method requires,
however, that the diffusion be reducible’
» The advantages of Hermite expansion: calculating moments (Lee,
Song and Lee, 2014) and option prices (Xiu, 2014), etc.

(ii) What is the relationship among various expansion methods?
» Deep understanding of different methods

» Guidelines for choosing an appropriate method
» Partial answers are provided by Yang, Chen and Wan (2019)
> For reducible case, they show in Proposition 5.1 that both the
Hermite expansion and the expansion of Yang, Chen and Wan
(2019) with po = 0 lead to the same formulas
> Using symbolic computations, they verify that expansions of Li
(2013) and Yang, Chen and Wan (2019) coincides with each other
for general one- and two-dimsional models
> They further conjecture that the expansions of Li (2013) and Yang,
Chen and Wan (2019) are the same for multivariate models



Motivations and Contributions

Motivations:
» Can we naturally extend the Hermite method to irreducible
diffusions at least in the sense of small-time expansion?

» What is the relationship among various expansion methods?

Contributions: in this work we provide affirmative answers to above
questions and contribute to the literature as follows

» developing the Hermite expansion for transition densities of
irreducible diffusions which admitting explicit formulas

» deriving explicit approximation formulas for European option prices,
which is also an illustration for the advantage of the Hermite
expansion

» showing that the derived Hermite expansion unifies the path
expansion of Li (2013) and the It6-Taylor (delta) expansion of Yang,
Chen and Wan (2019)



lI. Review of Hermite Expansion for
Reducible Diffusions



Review of Hermite Expansion for the Reducible Case
Consider the following time-homogenous 1-dim model (m = d = 1)
dX (s) = ™~ (X (s))ds + o™ (X (s))dW (s).

Step 1: Do the Lamperti transform X — Y
Define a new process

X
Y::)\(X):/ U%@dg.




Review for the Reducible Case (cont'd)

Step 2: Expand py (t',y’|t,y) using Hermite polynomials {H,(v)} as
an orthonormal basis (ONB) (Theorem 1, Ait-Sahalia, 2002)

1 J . o
Pty |t y) = TR0 1P Al y)H, () T2 py (¢, [t y),

where A =t/ —t, v = y\l/g’, o(y) = ﬁe"ﬂm



Review for the Reducible Case (cont'd)

Step 2: Expand py (t',y’|t,y) using Hermite polynomials {H,(v)} as
an orthonormal basis (ONB) (Theorem 1, Ait-Sahalia, 2002)

J— 00

D (¢ o[t y) = NG () - '
Py (Y|t y) == \/Z¢(7)Zj2077 (Alt,y)Hj(7) == py (t',4/[t,y),

where A =t —t, v = y\,/g’, (v) = \/%e_'ﬂm

Step 3: Calculate 7)(Alt,y) via the Ité-Taylor expansion

N9 (Alt,y) = %E[H (%)‘Y =]

i — J
D DA (5 M=) TP G

n( K (Alt,y)

1 oo AF k C—vy
=i (&) 1))l
where LE/ = puY (€)o¢ + 82/2. The last equality holds if Y is stationary and sz has
purely discrete spectrum.



Review for the Reducible Case (cont'd)

Step 2: Expand py (t',y’|t,y) using Hermite polynomials {H,(v)} as
an orthonormal basis (ONB) (Theorem 1, Ait-Sahalia, 2002)

D (4 ) e L ) () T 'y
Py (Y [t y) = \/Z¢(7)Zj2077 (Alt,y)Hj(7) = py (¢, [t,y),

where A =t —t, v = y\l/g’, (v) = ﬁe"ﬂm

Step 3: Calculate 7)(Alt,y) via the Ité-Taylor expansion

N9 (Alt,y) = %E[H (%)‘Y =]

i — J
D DA (5 M=) TP G

n( K (Alt,y)

1 oo AF k C—vy
=i (&) 1))l
where LE/ = puY (€)o¢ + 8?/2. The last equality holds if Y is stationary and LY has

¢
purely discrete spectrum. _
A key observation is that for K > j — 1, we have the following characterization of 7(/)

0 (Alt,y) ~ nU ) (At y) ~ O(A2)



Examples of nU%): OU Model
dY (s) =a(b—Y(s))ds+ dW(s) fors >tand Y(t) =y

a®(b — y)(a(2b® — 4by — A + 2%) — 6))
@~ = A2 (%aQ (a®(b—y)?(26° — 4by — TA + 2y%)
— 4a(30® — 6by — A + 3y?) + 6))
NOBUMCONIDN (éag’(b — y)(a®(8b* — 326%y + 467 (125 — 25A) — 8b(4y” — 25Ay
+ A%+ 8y* — 100Ay%) — 5a (166° — 32by — 41A + 16y°) +120) )
n© ~n©® = A3 (%f (a®(b — ) (8b" — 32b%y + 46> (1252 — 65A)
— 8b(4y® — 65Ay) + 31A% + 8y* — 260Ay?)
—2a” (600" — 240b%y + 15b°(24y” — 41A) — 30b(8y” — 41Ay)
+8A% 4+ 60y" — 615Ay%) + 8a(45b° — 90by — 56A + 45y°) — 120))



[Il. Hermite Expansion for Irreducible
Diffusions



Quasi-Lamperti Transform for the Irreducible Diffusion
Consider the multivariate time-inhomogeneous diffusion
dX(s) = uX(s, X (s))ds + o~ (s, X(s))dW (s)

Step 1: Introduce a novel quasi-Lamperti transform X — Y
Given t and X (t) = x, define a new process Y as follows

Y(s) =1y ?X(s), s>t
where vg == vX(t, ) and vX(s,¢) := 0% (s,€) (JX(s,g))T. Then,
dY (s) = pY¥ (s,Y (s))ds + ¥ (s5,Y(5)dW(s), Y(t) =y,

Specifically, v¥ (t,y) = Id,, where v¥ (5,¢) := ¥ (5,{)(c¥ (5,¢)) "

For the irreducible case, the quasi-Lamperti transform lies at the
heart of the whole analysis, which allows us to



Quasi-Lamperti Transform for the Irreducible Diffusion
Consider the multivariate time-inhomogeneous diffusion
dX(s) = uX(s, X (s))ds + o~ (s, X(s))dW (s)

Step 1: Introduce a novel quasi-Lamperti transform X — Y
Given t and X (t) = x, define a new process Y as follows

Y(s) = yal/QX(s), s>t
where vg == vX(t, ) and vX(s,¢) := 0% (s,€) (ax(s,g))T. Then,
dY (s) = pY¥ (s,Y (s))ds + ¥ (s5,Y(5)dW(s), Y(t) =y,

Specifically, v¥ (t,y) = Id,, where v¥ (5,¢) := ¥ (5,{)(c¥ (5,¢)) "

For the irreducible case, the quasi-Lamperti transform lies at the
heart of the whole analysis, which allows us to

> show the small-time convergence of the Hermite expansion
» derive explicit approximations for option prices

» compare various expansion methods analytically



Hermite Expansion for the Transformed Diffusion Y

Step 2: Formally expand py (t',y'|t,y) using multivariate Hermite
polynomials {H(y)} as an ONB

J
Byt y) =A"F o) S0 ST M (Al y) - Hu(),
J=0 |h|=3

whereAzt’—t,vz%,h (h1,hay -+ hy) € ZT with

|h| ;== h1 + ho+ -+ + hyp, and Hy,(v) = [1:2; Hp, (7i). The coefficient
n™ (Alt,y) is given by the conditional expectation as follow:

1 (80t) = e [ (KR ] Y=y

Questions?
» How about the expansion error?

» How to calculate the explicit expansion coefficients?



Convergence of the Hermite Expansion

» Recall the key observation for reducible diffusions: 7/) = O(A%)

» For irreducible diffusions, is the expansion coefficients ) a high
order term of A?
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Convergence of the Hermite Expansion

» Recall the key observation for reducible diffusions: 7/) = O(A%)

» For irreducible diffusions, is the expansion coefficients ) a high

order term of A7 X
Yes! Actually 7") ~ O(A)

Step 3: Calculate 7(")(Alt,y) via the Ité-Taylor expansion and
analyze its order
Still use the It6-Taylor expansion to calculation the expansion coefficients:

ot =2 5 (€0 ()

nE) (Alt,y)

+O(ARHTE,

s=t,(=y

Carefully analysing (%) above, we have its explicit expression, and we
can show that for K > 2|h|/3,

bl

(K — O(A%L%J) ~O(AT),

with j = |h| and |h] := h1 + ho + - + hyy.



Examples of n»5): CIR after Quasi-Lamperti Transform

dY (s) =a(b=Y(s))dt + /Y (s)/ydW (s) for s >t and Y (t) =y

n00 = AS =1
PIER) :A%(a(b— ))

2.2) _ a(2ab’y—4aby®+2ay”+b—3y)
n(22) = A3 - )

1/ 3(a?Ay(b—y)+1
7’](372) = AQ —( y2y Y )
2 ((6a® Ay? (b—y)?+a2 Ay(3b—Ty)+6ay(b—y)+3)
y2

77(5’4) - Aé( 5(a*Ay® (—(b—y)) (24b> —48by — A+24y?) —12a° Ay? (3b2 —11by+8y> ) —2a

8y3
15(32a*bAy° —8a* Ay"+2a° Ay® (- 24ab2+7aA+48)+4a3bAy4(8ab2—7aA—s




Examples of 1

=a(b—Y(s))dt + /Y (s)/ydW (s)

(cont'd)
dY (s)
,7(0 ,0) — Az
n(l 1) Az .
77(272) — AE .
7D = AS .
n®3) = A3 .
n®9 = AZ .
& = — A3
n(7%) = A3 .
,7(8 6) Az .

AAAAAAAA

)
)
)
)
)
)

K). CIR after Quasi-Lamperti Transform

fors>tand Y(t) =y

L, Al

— h=0,1,2;
\_3J’ ) ) K
L 1| h=3,4,5;
L, Al _ .
§L?Js h—6,7,8,

Select fL‘hlj because it is nondecreasing in |h|



Explicit Expansion Coefficients for Y

Thus, we have the following key lemma for the explicit formulas of the
expansion coefficients which ensuring the convergence

Lemma

For each integer j > 1, |h| = j and K > 2j/3, then

K J

yANG} i

M@ty = Y () + O(AKTITE),
n=2j/3]

where w}f w(t,y) is defined below. Moreover, we have
11

nM(Alt,y) = O (A%L%J) ~O(As)

The introduction of the quasi-Lamperti transform is the key to prove this
lemma.



The Weights Function w;, Y (s,0)

For a non-negative integer n and an m-dimensional integer valued vector
h = (hi,..., hm), the weights function w) , (s, ¢), defined for each
(s,¢) €[0,00) x Dy, satisfies: for n. =0, wg o(s,¢) = 1 and

w(};h(s,g)—Oforh#O forn>1, w, h( ¢) =0 if either
min{hy,...,hm} <0, either h =0 or |h\ > 2n; forn >1and h € Z7",

w{h(s,é) *Ey,gwn 1( +ZBsgwn Lh—e; (8,C)

Z (Viil/(sa C) - Viil/(tvx))wz:—l,h—ei—el(sa C)a

i,l=1

1/1

N | =

+

where v} (t,2)) = 1;;;y by definition and
i 1 % e;+e
Lic=0s+ Z“z Q% + 5 Z Qo

85,2::u5<s,<>+2uﬁ<s,<>-a§z i=1,...,m



The Explicit Expansion Formulas for Y

» Recall the Hermite expansion py) and the expansion coefficients

(Y ) = Z > (Al y) - Hu(y),
J=0|h|=j
_ 1l
M (At y) = 1" (At y) + O(AF =)
» Then we have the explicit expansion formulas

W 1) = SD S T 0 ) 10 )

7=0 |h|=3

PO (4 [ty)



The Explicit Expansion Formulas for Y

» Recall the Hermite expansion py) and the expansion coefficients

W) = A 500) S T A A - Hio)
J=0 |h|=j
_1nl
M (At y) = 1" (At y) + O(AF =)

» Then we have the explicit expansion formulas

)yt y) Z 3" g E (At y) Hy(y) +O(AF 157 %)
=0 |h|=j
Py [ty)
» Taking J =3Land K >2L = K +1—4 >2L+1-3 =L

2
» Define p( A) by throwing away terms whose order higher than
Y y g y

AL/2=m/2 i p(3L7K)

21
(L,

L
. 1
ANy =SS AE ST S Tl )

I=0  p=[L]|h|=2n—1




The Explicit Expansion Formulas for Y: An Alternative

The rearranged Hermite expansion pgf“ A s given by

(LAY 1 _ (V) L AL 1 Y :
WO <SR S ab T LS ) )

where A =t —t, v = vy, w}f,h(t, y) are known explicitly.

VA
Moreover, under mild conditions, for L > m, as A — 0, we have
L,A L+l _ m
sup oy (', [t y) — 3 (¢, 9 It y)| = O(A 2 2 );

(t,y,y")€[0,T]x D, X Dy
for J > 3m, as A — 0, the Hermite expansion pg;] ) converges as follows:

J 1oL _m
Sup |pY(t/7y/|t7y)—pgz)(t',y'|t,y)’ :(/)(AQ(L;,JH) 2)'
(t,y,9")€[0,T]x D§, X Dy

We can express the approximation for the original process X by defining a
sequence of approximations to px as

P (o |t ) = det(vo) 2PN (g 2 8 0 ).



The Explicit Expansion Formulas for X

The density expansion for X has the following representation:

L
(L,A) a1 s _ ¢(z;10) L 1 X )
p (2 |t ) = AT IZA2 Z = Z wi  (t, ) Hp (23 10),

Il
(=}
3
Il
=
W~
=
=
Il
™)
S
|

’
7 =ap

VA '

where wy, are defined similarly to w}; n (explicitly known), z =

exp( éZTl/O z)
(2m)™ det(vo)

Moreover, under mild conditions, for L > m, as A — 0, we have

$(z;v0) = Hy(z;v0) = (=1)"¢ ™" (z;10)0L 6 (25 10).

o lpx (2|t 2) — ¢V, 't 2)| = O(A7F ),

(t,z,2")€[0,T]x DS XD x

) (', 2'|t, x) is the same as the It6-Taylor (delta) expansion (22) in Yang,

Chen and Wan (2019) under the choice of po = 0.



V. Explicit Approximations for
Option Prices



European Option Pricing via the Density Expansion for X

Assume X is defined under the risk-neutral measure Q. At time ¢ with
X (t) = x, the price of European option with payoff f(-) and maturity ¢/
is given below:

C(t,z) = e_rA/ px (t', 2|t z) f(x')dx'.

Using the expansion p& A) , we have an approximation as

cW(t,z) = e"’A/ p(L D ot x) f(2)da'

The structure of the expansion p(X’ ) simplify the above integral into a

linear combination of the following integrals:

)= [ e (St ) (S ) s, he



Explicit Approximation Formulas for European Options

The price of the European call option with the payoff function
f(z}) = (e®r — A)T has the following approximation:

L 21
— _ L 1
CO(t,x) =PIy + e A E Az E Ew,}f,%#(t,x)[gn,l,
=1 n=[(71)/2]

where w),(t,2) = w) ;o (tz) Io= et A LB (dy) — A - B(dy)
and for { >1

I VA emitiota ~®(dy) + A Z \F OV H (—dn)g(dy).

1<i<i—1

Here d; = %, dy = di + VA, and 5 := /v (t, x)
Moreover, let DS be a compact subsect of Dx. Under mild conditions,
for L > m, as A — 0, we have

swp[Ct,a) — CP (1) = 0 (A

(t,2)€[0,T]x D%



V. Relations to Existing Density
Approximations



Relations to Existing Density Approximations

> We prove that the Hemite expansion derived in this paper unifies the
expansions of Li (2013) and Yang, Chen and Wan (2019), that is,

Theorem (Equivalence)

The following three expansion formulas are the same:

(i) the Hermite expansion p(XL’A) in this paper;

(ii) the pathwise expansion (3.21) in Li (2013);
(iii) the Ité-Taylor (delta) expansion (22) in Yang, Chen and Wan (2019)
under the choice of po = 0.

» The equivalence between the Hermite expansion and the It6-Taylor
expansion, i.e., “(i)<(iii)"
> For the reducible (univariate) case, it is proved in Proposition 5.1,
Yang, Chen and Wan (2019)
> For irreducible case, it is proved in the previous theorem(s), i.e., the
explicit expansion formulas for X and/or Y

» Different from the Kolmogorov method of Ait-Sahalia (2008)



Main Ideas: the Hermite Expansion < the Expansion of Li (2013)

> Li (2013) develops an expansion for transition density of a
time-homogenous diffusion

» providing explicit algorithm to compute high order terms

> the transition density can be as the conditional expectation of the
Dirac delta function below:

py (¢, 2'[t,x) = B[§(X (') — 2")| X (t) = 2]

> expanding the above conditional expectation via the pathwise

expansion, i.e., Watanabe (1987)’s theory in Malliavin calculus

» The following steps are used to prove the equivalence.

(a) We further derive explicit formulas of Li's expansion (relying on the
quasi-Lamperti transform) and express it in terms of the Hermite
polynomials

(b) Derive the explicit formulas for ") (the coefficient of the Hermite
expansion) via the pathwise expansion

(c) Using (a) and (b), we prove that the Hermite expansion calculated
via the pathwise expansion is the same as that of Li (2013)

(d) The Hermite expansion derived via the Itd-Taylor and pathwise
expansions are the same (Because n™ derived in two methods are
both v/A-expansion of n(h))

(c) + (d)= two expansions are the same



VI. Numerical Experiments



The Stochastic Volatility Models

» Consider the following general stochastic volatility model:

dlnS(t):((rfé)ffV ))dt 4+ /V (t)dWy (¢
av(t) = k(a = V(t))dt + VP (t) (pdW1(t) + /(1 — p2)dWa(t)),

» The above process nests three kinds of models:
» [ =1/2: the Heston stochastic volatility model
» B =1: the GARCH stochastic volatility model
» B €(1/2,1): the stochastic CEV model (SVCEV)
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Relative Errors for the Heston Model with A = 1/2

Heston Model (A =1/2)
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Relative Errors for the Heston Model with A =1
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the benchmark is computed via the finite different method and “Appr” calculated via the 6-th
order of the approximation. Values of model parameters: (r, 6, x, «, o, p, 3) = (0.04,0.015, 3,
0.1,0.25, —0.8,0.5), the initial volatility V' (0) = 0.1 and the strike,is 100:



Percentage Relative Errors (%) with Different .S
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The relative errors for European call is calculated via R

E = [EDM_APerl \here “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the 6-th

order of the approximation. The values of parameter vector (r, d, k, «, o, p, 3) for three models
are Heston: (0.04,0.015, 3,0.1,0.25, —0.8,0.5); GARCH: (0.04,0.015,1.6,0.07, 2.2, —0.75,
1); SVCEV: (0.04,0.015,4,0.05,0.75, —0.75, 0.8). The strike price is 100 for all options. For

each model, the default initial volatility is V' (0) = «.
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E = [EDM_APerl \here “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the 6-th

order of the approximation. The values of parameter vector (r, d, k, «, o, p, 3) for three models
are Heston: (0.04,0.015, 3,0.1,0.25, —0.8,0.5); GARCH: (0.04,0.015,1.6,0.07, 2.2, —0.75,
1); SVCEV: (0.04,0.015,4,0.05,0.75, —0.75, 0.8). The strike price is 100 for all options. For
each model, the default initial stock price is S(0) = 100.



Conclusions

In this work, we contribute to the literature in the following aspects:

» developing the Hermite expansion for transition densities of
irreducible diffusions which admitting explicit formulas

» deriving explicit approximation formulas for European option prices,
which is also an illustration for the advantage of the Hermite
expansion

» showing that the derived Hermite expansion unifies the pathwise
expansion of Li (2013) and the It6-Taylor (delta) expansion of Yang,
Chen and Wan (2019)
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The Pathwise Expansion of Li (2013)

» Li (2013) develops the pathwise expansion for the transition density
of a time-homogeneous diffusion X satisfying

dX(s) = pX (X (s))ds + X (X (s))dW(s), X(t)=z (1)

He provides an explicit algorithm to compute the high order terms.

» To facilitate the comparison, we also contribute to the pathwise
expansion as follows:
» deriving explicit expansion formulas
> express the pathwise expansion in terms of the Hermite polynomials

» A sketch of the derivation

» The quasi-Lamperti transform. Letting Y (s) := (G'X(:L’))ilX(S)
for s >t and X (t) = x, we have

dY (s) = p¥ (Y ())ds + o (Y (s))dW (s), Y(t) =y,

where 0¥ (y) = v¥ (y) = Idm.
> Define Y¢(s) := Y (e?s +t) and t' = +t (i.e. e =+VA)

dY<(s) = u¥ (Y(s))ds + e’ (Y(s))dW (s), Y(0) =y



The Pathwise Expansion of Li (2013) (cont'd)

» Define a random variable I'® below. As ¢ — 0, we have
Ye(l) — ! !

Y-y :e/ MY(Yﬁ(s))dH/ oY (Y(s))dW (s) — W(1)
0 0

» Using It6's lemma iteratively leads to the pathwise expansion of I'¢
L

T :ijo (ZieMjH CY (y) 'Hi(1)> ce 0P

M 41 is some index set. Cy (y) is defined by the derivatives of ¥ (-) and ¥ (-) with

Ire:
€

i= (41,42,..., in) €{0,1,..., m}". Let Wy (t) = t. I;(t) is the iterated It6 integral,
th—
Li(t) = fg Job - fo " AWy (8) - - - dWiy (t2)dWi, (t1)
» The transition density is given by the conditional expectation below

py (', y'It,y) =E[6(Y*(1) — y")|Y(0) = y]
=ATEEB(I -V () =y, vi=( -y)/VA
» The pathwise expansion of py is given below

m m L k
py(tsylty) =A7F () +ATE Y ABQ(riy) +O(A

Py )

L+l—-m
2

)




The Explicit Formulas for the Expansion of Li (2013)

Proposition B.2, Yang, Chen and Wan (2019) states that the iterated It6 integral can be expressed
as Hermite polynomials, i.e.,

[IRY]
B0 = vl = Yo, (1),

where n; = (ni(1), -+ ,nij(m)) with n;(c) being the number of & (for « = 0,1,--- ,m) in i,
and [|i[| = 2n4(0) + 3204 ni().

The L-th order density expansion of Li (2013) for the diffusion Y can be represented as follows:

—m —m 3L
POy 1) =ATE o) + AT R o) DT ST He ()0 (Al ),

where A =t —t, v = (y' — y)/V/A, and the expansion coefficient n"' T (A, y) is given by

L
n®ED (Al y) =3 AL 3 l' 3 =
k=1

o ) I .
(3192531 €SKE  re{1,2,...,m}LiwE€M; 11
w=1,---,

L
. 1
<w1;[1 G (y)> e [N liaczmy-

Here, r:= (r1,...,71), by := 3L _ er.,, a:= (n(i) + b, — h)/2; the index sets S, and M,
the coefficients Ci}; o (y) and W, i are recursively defined.



Calculating ™) (Alt,y) via the Pathwise Expansion
» Recall the coefficient (") (Alt,y) in the Hermite expansion.

W (Alty) = IE[Hh(W)wu):y]

Bl
1 AE & c—y .
T g 2 () 1 (P ooy +OAIHE,

n(F)(Alt,y), the [t6-Taylor expansion

» Rewrite (™ (Alt,y) using I'°.

" (Alt,y) = HE[H;L (T)Y(0) = o]

pe= Y-y

L
1 Lo
—E[H — y)AS
= 7B [Hr ( h; +0(A™27)

n\" (Alt,y), the pathwise expansion

» Both n"¥)(Alt,y) and néh)(A\t,y) are coefficients of the Taylor
expansion of n(h) as a function of ¢ = VA, thus they are the same.



The Hermite Expansion < the Expansion of Li (2013)

For h € Z' and h # 0, the coefficients of the pathwise expansion
n"WED (Alt,y) and the Hermite expansion 0\ (Alt,y) satisfies
I

1 (Alt,y) = n™ED (At y)



The It6-Taylor (Delta) Expansion of Yang, Chen and Wan (2019)

> Recall the multivariate time-inhomogeneous diffusion
dX (s) = p* (s, X (s))dt + o (5, X (5))dW (s)

> Select a smooth sequence to approximate the Dirac delta function.
Fix po and vg. Define

exp (— (Z'fyfuo(t'*S));(:}fsl)(r'fyfuo(t’*S)))

@r ' — s))™/2 det(vo)1/2

q(t', 2’5 s,y) =
» Formally, px can be expressed as follows:
px(t',a']t,2) = EIS(X(¢) = )X (1) = a] = BmE™[q(t','s 5, X (5))]

J — N
st/ N=0 N!

ZN . N| (0s + LIV a(t' 258, 6)]_, , + R

» Choose 1y = v~ (t,r) and keep 1 free. Then, the first term on
RHS is the 1t6-Taylor expansion with error as follows:

(0s+ LX) ot 2'55,6)] o, |

[ )/2]—-m
px (2t x) = pIoD @ |t ) +O(ATTTE)
—

I1t5-Taylor expansion



The It6-Taylor (Delta) Expansion of Yang, Chen and Wan (2019)
(cont'd)
> Let z = (2' — z — ppA)/VA. The general term is

2N

i OV (5, )0y a(t 2|5, €)

(s + Lo)Na(t 2'|s,6) =

2N 1
:Z|M=1 m’wN,h(S;g) x Hp(z;v0) X q(t/,a:/|s,§)

» Given vy = v(t,x;6), we can show that
”U?N_h(t., l) - /w]\“',h(57 y)|s:t,y::t,110:1/(t,:1:;9) =0 for Ih| > SN/Ql
» Then we have the It6-Taylor expansion

(Ito,J) /1,1 1 P J L3n/2) wN,n (¢ @) Ha(z5v0) | v— 10l
Py ", 't z) = q(t', 2 |t, z) (1 + ZN=1 ZIM=1 — A )

» Collecting terms in pgto"]) in an ascending order of /A up to the

order of AL/2, we can arrive at the delta expansion, i.e., p%to’L’A)

> Taking po = 0, we can show wn 1 (5,8)|ue=0 = Wy 5, (£, ), the latter

(L,A

is defined in the Hermite expansion p ), Consequently, we have

(L,A)

Ito,L,A
pg(to )(t/,xl‘t,]})lm):o =Px (t’,x'|t,x)



Yang, Chen and Wan (2019): the Coefficients wy 1 (5, &)|vy=v(t,2:0)

(i). For any N > 1, define wn,n(s,&) = 0 if either min{h1, -+ ,hm} <0,
h =0, or |h| > 2N.
(ii). When N = 1,

Wie,; (8,8) = pi(8,6) — poi, i=1,---,m;
w19, (5,8) = 3 (wii(s,6;0) — vii(t,z)), i=1,---,m;
W1,e;+e; (875) = l/i‘,‘(S,g) - V’irj(tvx% 7'#]7 17] =1---,m,

where v;; (-, +; 0) is the (4, j)-element of the diffusion matrix v.
(iii).When N > 1 and all the components in h are nonnegative, 0 < |h| < 2N,
define recursively

wrn(5,€) =(0s + LE)wn1(5,) + > AN 1,n-e,(5,€)

=1

Z Vl] S 'gv - l/ij(t,l‘;e))’lUN_l,h_ei—cj (876)7

l\D\»—A

(A)F(5,€) = (ua(5,€:0) — pos) f(5,€) + S vy (5,€:0)e, £(5,).

j=1
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