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What is an irreducible diffusion?
I Consider an m-dim diffusion process X satisfying

dX(s) = µX(s,X(s))ds+ σX(s,X(s))dW (s), X(t) = x, s ≥ t

where X(s) ∈ DX ⊂ Rm, µX(s, ξ) ∈ Rm, σX(s, ξ) ∈ Rm×d and
{W (s); s ≥ 0} is a d-dim standard Brownian motion.

I The diffusion X is said to be reducible if there exists a one-to-one
map λ(s, ξ) such that Y (s) = λ(s,X(s)) satisfying (Äıt-Sahalia,
2008):

dY (s) = µY (s, Y (s))ds+ dW (s), Y (t) = y, s ≥ t;

otherwise X is irreducible.

I Univariate diffusions are always reducible because of the existence of
the Lamperti transform: BS, OU, CIR, CEV
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Background and Related Literature

Backgroud:

I The diffusion processes are widely used in asset pricing, derivatives
pricing, term structure modelling, etc.

I The explicit form of transition density allows us to
I perform MLE of model parameters based on discretely observed data
I derive option pricing formulas in closed-form

I Most multivariate diffusions do not have explicit transition densities
I (multi-factor) stochastic volatility models: Heston/GARCH/CEVSV
I multivariate term structure models

Related literature:

I Äıt-Sahalia (2002) presents the Hermite expansion for reducible
models to deriving a series representation of the transition density

I Several methods are proposed to derive small-time expansion for
(multivariate) irreducible diffusions. Typical ones are

I Äıt-Sahalia (2008): the Kolmogorov method
I Li (2013): the pathwise expansion based on Malliavin calculus
I Yang, Chen and Wan (2019): the Itô-Taylor (delta) expansion
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Motivations

(i) Can we naturally extend the Hermite method to irreducible diffusions
at least in the sense of small-time expansion?

I Äıt-Sahalia (2008) points out: “The Hermite method requires,
however, that the diffusion be reducible”

I The advantages of Hermite expansion: calculating moments (Lee,
Song and Lee, 2014) and option prices (Xiu, 2014), etc.

(ii) What is the relationship among various expansion methods?

I Deep understanding of different methods

I Guidelines for choosing an appropriate method
I Partial answers are provided by Yang, Chen and Wan (2019)

I For reducible case, they show in Proposition 5.1 that both the
Hermite expansion and the expansion of Yang, Chen and Wan
(2019) with µ0 = 0 lead to the same formulas

I Using symbolic computations, they verify that expansions of Li
(2013) and Yang, Chen and Wan (2019) coincides with each other
for general one- and two-dimsional models

I They further conjecture that the expansions of Li (2013) and Yang,
Chen and Wan (2019) are the same for multivariate models
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Motivations and Contributions

Motivations:

I Can we naturally extend the Hermite method to irreducible
diffusions at least in the sense of small-time expansion?

I What is the relationship among various expansion methods?

Contributions: in this work we provide affirmative answers to above
questions and contribute to the literature as follows

I developing the Hermite expansion for transition densities of
irreducible diffusions which admitting explicit formulas

I deriving explicit approximation formulas for European option prices,
which is also an illustration for the advantage of the Hermite
expansion

I showing that the derived Hermite expansion unifies the path
expansion of Li (2013) and the Itô-Taylor (delta) expansion of Yang,
Chen and Wan (2019)
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II. Review of Hermite Expansion for
Reducible Diffusions
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Review of Hermite Expansion for the Reducible Case

Consider the following time-homogenous 1-dim model (m = d = 1)

dX(s) = µX(X(s))ds+ σX(X(s))dW (s).

Step 1: Do the Lamperti transform X → Y
Define a new process

Y := λ(X) =

∫ X 1

σX(ξ)
dξ.

Let µY (y) = [µ
X(x)

σX(x)
− 1

2
∂σX(x)

∂x ]x=λ−1(y). Then,

dY (s) = µY (Y (s))ds+ dW (s).
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Review for the Reducible Case (cont’d)
Step 2: Expand pY (t

′, y′|t, y) using Hermite polynomials {Hj(γ)} as
an orthonormal basis (ONB) (Theorem 1, Äıt-Sahalia, 2002)

p
(J)
Y (t′, y′|t, y) :=

1
√
∆

ϕ(γ)
∑J

j=0
η(j)(∆|t, y)Hj(γ)

J→∞−−−−→ pY (t′, y′|t, y),

where ∆ = t′ − t, γ = y′−y√
∆

, ϕ(γ) = 1√
2π

e−γ2/2

Step 3: Calculate η(j)(∆|t, y) via the Itô-Taylor expansion

η(j)(∆|t, y) =
1

j!
E
[
Hj

(Y (t+∆)− y
√
∆

)∣∣∣Y (t) = y
]

=
1

j!

∑K

k=0

∆k

k!

((
Lζ

)k
·Hj

( ζ − y
√
∆

))∣∣∣
ζ=y︸ ︷︷ ︸

η(j,K)(∆|t,y)

+O(∆K+1− j
2 )

=
1

j!

∑∞

k=0

∆k

k!

((
Lζ

)k
·Hj

( ζ − y
√
∆

))∣∣∣
ζ=y

where LY
ζ := µY (ζ)∂ζ + ∂2

ζ/2. The last equality holds if Y is stationary and LY
ζ has

purely discrete spectrum.
A key observation is that for K ≥ j − 1, we have the following characterization of η(j)

η(j)(∆|t, y) ∼ η(j,K)(∆|t, y) ∼ O(∆
j
2 )
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Examples of η(j,K): OU Model

dY (s) = a(b− Y (s))ds+ dW (s) for s ≥ t and Y (t) = y

η(1) ∼ η(1,1) = ∆
1
2

(
a(b− y)

)
η(2) ∼ η(2,2) = ∆

2
2

(
a(a(b− y)2 − 1)

)
η(3) ∼ η(3,3) = ∆

3
2

(1
2
a2(b− y)

(
a(2b2 − 4by −∆+ 2y2)− 6

))
η(4) ∼ η(4,4) = ∆

4
2

(1
2
a2(a2(b− y)2(2b2 − 4by − 7∆ + 2y2)

− 4a(3b2 − 6by −∆+ 3y2) + 6
))

η(5) ∼ η(5,5) = ∆
5
2

(1
8
a3(b− y)

(
a2(8b4 − 32b3y + 4b2(12y2 − 25∆)− 8b(4y3 − 25∆y)

+ ∆2 + 8y4 − 100∆y2)− 5a
(
16b2 − 32by − 41∆ + 16y2)+ 120

))
η(6) ∼ η(6,6) = ∆

6
2

(1
8
a3(a3(b− y)2

(
8b4 − 32b3y + 4b2(12y2 − 65∆)

− 8b(4y3 − 65∆y) + 31∆2 + 8y4 − 260∆y2)
− 2a2(60b4 − 240b3y + 15b2(24y2 − 41∆)− 30b(8y3 − 41∆y)

+ 8∆2 + 60y4 − 615∆y2)+ 8a(45b2 − 90by − 56∆ + 45y2)− 120
))
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III. Hermite Expansion for Irreducible
Diffusions
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Quasi-Lamperti Transform for the Irreducible Diffusion

Consider the multivariate time-inhomogeneous diffusion

dX(s) = µX(s,X(s))ds+ σX(s,X(s))dW (s)

Step 1: Introduce a novel quasi-Lamperti transform X → Y
Given t and X(t) = x, define a new process Y as follows

Y (s) := ν
−1/2
0 X(s), s ≥ t,

where ν0 := νX(t, x) and νX(s, ξ) := σX(s, ξ)
(
σX(s, ξ)

)⊤
. Then,

dY (s) = µY (s, Y (s))ds+ σY (s, Y (s))dW (s), Y (t) = y,

Specifically, νY (t, y) = Idm where νY (s, ζ) := σY (s, ζ)(σY (s, ζ))⊤

For the irreducible case, the quasi-Lamperti transform lies at the
heart of the whole analysis, which allows us to

I show the small-time convergence of the Hermite expansion

I derive explicit approximations for option prices

I compare various expansion methods analytically
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Hermite Expansion for the Transformed Diffusion Y

Step 2: Formally expand pY (t
′, y′|t, y) using multivariate Hermite

polynomials {Hh(γ)} as an ONB

p
(J)
Y (t′, y′|t, y) :=∆−m

2 ϕ(γ)

J∑
j=0

∑
|h|=j

η(h)(∆|t, y) ·Hh(γ),

where ∆ = t′ − t, γ = y′−y√
∆
, h = (h1, h2, · · · , hm) ∈ Zm

+ with

|h| := h1 + h2 + · · ·+ hm, and Hh(γ) =
∏m

i=1 Hhi(γi). The coefficient
η(h)(∆|t, y) is given by the conditional expectation as follow:

η(h)(∆|t, y) = 1

h!
E
[
Hh

(
Y (t+∆)− y√

∆

)∣∣∣∣Y (t) = y

]

Questions?

I How about the expansion error?

I How to calculate the explicit expansion coefficients?
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Convergence of the Hermite Expansion
I Recall the key observation for reducible diffusions: η(j) = O(∆

j
2 )

I For irreducible diffusions, is the expansion coefficients η(h) a high
order term of ∆?

Yes! Actually η(h) ≈ O(∆
|h|
6 )

Step 3: Calculate η(h)(∆|t, y) via the Itô-Taylor expansion and
analyze its order
Still use the Itô-Taylor expansion to calculation the expansion coefficients:

η(h)(∆|t, y) = 1

h!

K∑
k=0

∆k

k!

((
LY
s,ζ

)k ·Hh

(
ζ − y√

∆

))∣∣∣∣
s=t,ζ=y︸ ︷︷ ︸

η(h,K)(∆|t,y)

+O(∆K+1− |h|
2 ),

Carefully analysing η(h,K) above, we have its explicit expression, and we
can show that for K ≥ 2|h|/3,

η(h,K) = O
(
∆

1
2 ⌊

j
3 ⌋
)
≈ O(∆

|h|
6 ),

with j = |h| and |h| := h1 + h2 + · · ·+ hm.
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Examples of η(h,K): CIR after Quasi-Lamperti Transform

dY (s) = a(b− Y (s))dt+
√

Y (s)/ydW (s) for s ≥ t and Y (t) = y
η(0,0) = ∆

0
2 = 1

η(1,1) = ∆
1
2

(
a(b− y)

)
η(2,2) = ∆

2
2

(
a(2ab2y−4aby2+2ay3+b−3y)

2y

)

η(3,2) = ∆

1
2

(
3(a2∆y(b−y)+1)

2y

)
η(4,3) = ∆

2
2

(
(6a3∆y2(b−y)2+a2∆y(3b−7y)+6ay(b−y)+3)

y2

)
η(5,4) = ∆

3
2

(
− 5(a4∆y3(−(b−y))(24b2−48by−∆+24y2)−12a3∆y2(3b2−11by+8y2)−2a2y(12b2y+6b(∆−4y2)+12y3−25∆y)+12ay(5y−3b)−12)

8y3

)

η(6,4) = ∆

2
2

(
15(32a4b∆y6−8a4∆y7+2a3∆y5(−24ab2+7a∆+48)+4a3b∆y4(8ab2−7a∆−54)+a2b∆y2(−24ab2+7a∆+184)+y(−22a2b2∆+60a∆+12)+a2∆y3(a2(14b2∆−8b4)+3a(48b2−5∆)−202)−6ab∆)

8y3

)
η(7,5) = ∆

3
2

(
7(−120a5b∆y8+24a5∆y9−30a4∆y7(−8ab2+5a∆+18)−30a4b∆y6(8ab2−15a∆−58)+15aby2(a2∆(5∆−14b2)+132a∆+12)−30y(5a2b2∆−18a∆−6)+15ay3(a3b2∆(15∆−8b2)+2a2∆(74b2−9∆)−197a∆−12)+a3∆y5(a2(120b4−450b2∆+∆2)+a(535∆−1980b2)+2600)−a3b∆y4(a2(24b4−150b2∆+∆2)+a(760∆−900b2)+4610)−36ab∆)

8y4

)
;

η(8,6) = ∆
4
2

(
− 7(−288a6b∆y10+48a6∆y11−60a5∆y9(−12ab2+13a∆+30)−120a5b∆y8(8ab2−26a∆−63)+9aby2(5a2∆(30b2−13∆)−1738a∆−300)+6y(137a2b2∆−630a∆−270)+2a4∆y7(a2(360b4−2340b2∆+31∆2)−3060a(2b2−∆)+8040)−4a4b∆y6(a2(72b4−780b2∆+31∆2)−45a(52b2−81∆)+10770)+15ay3(a3b2∆(68b2−143∆)−6a2∆(243b2−35∆)+a(2034∆−72b2)+252)+a2by4(a3∆(360b4−2340b2∆+31∆2)−120a2∆(108b2−91∆)+60600a∆+2160)+a2y5(2a4b2∆(24b4−390b2∆+31∆2)−9a3∆(360b4−1200b2∆+7∆2)+3a2∆(12980b2−3389∆)−42480a∆−1080)+180ab∆)

12y5

)
;
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Examples of η(h,K): CIR after Quasi-Lamperti Transform
(cont’d)

dY (s) = a(b− Y (s))dt+
√

Y (s)/ydW (s) for s ≥ t and Y (t) = y

η(0,0) = ∆
0
2

η(1,1) = ∆
1
2 ·

(
· · ·

)
η(2,2) = ∆

2
2 ·

(
· · ·

)
 −→ 0

2
=

1

2
⌊ |h|
3
⌋, h = 0, 1, 2;

η(3,2) = ∆
1
2 ·

(
· · ·

)
η(4,3) = ∆

2
2 ·

(
· · ·

)
η(5,4) = ∆

3
2 ·

(
· · ·

)
 −→ 1

2
=

1

2
⌊ |h|
3
⌋, h = 3, 4, 5;

η(6,4) = ∆
2
2 ·

(
· · ·

)
η(7,5) = ∆

3
2 ·

(
· · ·

)
η(8,6) = ∆

4
2 ·

(
· · ·

)
 −→ 2

2
=

1

2
⌊ |h|
3
⌋, h = 6, 7, 8;

Select 1
2
⌊ |h|

3
⌋ because it is nondecreasing in |h|
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Explicit Expansion Coefficients for Y

Thus, we have the following key lemma for the explicit formulas of the
expansion coefficients which ensuring the convergence

Lemma

For each integer j ≥ 1, |h| = j and K ≥ 2j/3, then

η(h,K)(∆|t, y) =
K∑

n=⌈2j/3⌉

∆n− j
2

n!
wY

n,h(t, y) +O(∆K+1− j
2 ),

where wY
n,h(t, y) is defined below. Moreover, we have

η(h)(∆|t, y) = O
(
∆

1
2 ⌊

j
3 ⌋
)
≈ O(∆

|h|
6 )

The introduction of the quasi-Lamperti transform is the key to prove this
lemma.
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The Weights Function wY
n,h(s, ζ)

For a non-negative integer n and an m-dimensional integer valued vector
h = (h1, . . . , hm), the weights function wY

n,h(s, ζ), defined for each

(s, ζ) ∈ [0,∞)×DY , satisfies: for n = 0, wY
0,0(s, ζ) = 1 and

wY
0,h(s, ζ) = 0 for h ̸= 0; for n ≥ 1, wY

n,h(s, ζ) ≡ 0 if either
min{h1, . . . , hm} < 0, either h = 0 or |h| > 2n; for n ≥ 1 and h ∈ Zm

+ ,

wY
n,h(s, ζ) =LY

s,ζw
Y
n−1,h(s, ζ) +

m∑
i=1

BY,i
s,ζw

Y
n−1,h−ei(s, ζ)

+
1

2

m∑
i,l=1

(νYil (s, ζ)− νYil (t, x))w
Y
n−1,h−ei−el

(s, ζ),

where νYil (t, x)) = 1{i=l} by definition and

LY
s,ζ = ∂s +

m∑
i=1

µY
i (s, ζ)∂

ei
ζ +

1

2

m∑
i,l=1

νYil (s, ζ)∂
ei+el
ζ

BY,i
s,ζ := µY

i (s, ζ) +

m∑
l=1

νYil (s, ζ) · ∂
el
ζ , i = 1, . . . ,m.
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The Explicit Expansion Formulas for Y
I Recall the Hermite expansion p

(J)
Y and the expansion coefficients

p
(J)
Y (t′, y′|t, y) = ∆−m

2 ϕ(γ)

J∑
j=0

∑
|h|=j

η(h)(∆|t, y) ·Hh(γ),

η(h)(∆|t, y) = η(h,K)(∆|t, y) +O(∆K+1− |h|
2 )

I Then we have the explicit expansion formulas

p
(J)
Y (t′, y′|t, y) = ϕ(γ)

∆
m
2

J∑
j=0

∑
|h|=j

η(h,K)(∆|t, y)Hh(γ)︸ ︷︷ ︸
p
(J,K)
Y (t′,y′|t,y)

+O(∆K+1− J
2 −m

2 )

I Taking J = 3L and K ≥ 2L =⇒ K + 1− J
2 ≥ 2L+1− 3L

2 = L
2 +1

I Define p
(L,∆)
Y by throwing away terms whose order higher than

∆L/2−m/2 in p
(3L,K)
Y

p
(L,∆)
Y (t′, y′|t, y) :=ϕ(γ)

∆
m
2

L∑
l=0

∆
l
2

2l∑
n=⌈ l

2 ⌉

∑
|h|=2n−l

1

n!
wY

n,h(t, y) ·Hh(γ)
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The Explicit Expansion Formulas for Y
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∆
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n=⌈ l

2 ⌉
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wY
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The Explicit Expansion Formulas for Y : An Alternative

Theorem
The rearranged Hermite expansion p

(L,∆)
Y is given by

p
(L,∆)
Y (t′, y′|t, y) =ϕ(γ)

∆
m
2

∑L

l=0
∆

l
2

∑2l

n=⌈l/2⌉

1

n!

∑
|h|=2n−l

wY
n,h(t, y) ·Hh(γ),

where ∆ = t′ − t, γ = y′−y√
∆

, wY
n,h(t, y) are known explicitly.

Moreover, under mild conditions, for L > m, as ∆ → 0, we have

sup
(t,y,y′)∈[0,T ]×Dc

Y
×DY

∣∣pY (t′, y′|t, y)− p
(L,∆)
Y (t′, y′|t, y)

∣∣ = O
(
∆

L+1
2

−m
2

)
;

for J ≥ 3m, as ∆ → 0, the Hermite expansion p
(J)
Y converges as follows:

sup
(t,y,y′)∈[0,T ]×Dc

Y
×DY

∣∣pY (t′, y′|t, y)− p
(J)
Y (t′, y′|t, y)

∣∣ = O
(
∆

1
2
(⌊ J

3
⌋+1)−m

2

)
.

We can express the approximation for the original process X by defining a
sequence of approximations to pX as

p
(L,∆)
X (t′, x′|t, x) := det(ν0)

−1/2p
(L,∆)
Y (t′, ν

−1/2
0 x′|t, ν−1/2

0 x).
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The Explicit Expansion Formulas for X

Theorem
The density expansion for X has the following representation:

p
(L,∆)
X (t′, x′|t, x) =ϕ(z; ν0)

∆
m
2

L∑
l=0

∆
l
2

2l∑
n=⌈ l

2
⌉

1

n!

∑
|h|=2n−l

wX
n,h(t, x)Hh(z; ν0),

where wX
n,h are defined similarly to wY

n,h (explicitly known), z = x′−x√
∆

,

ϕ(z; ν0) =
exp

(
− 1

2
z⊤ν−1

0 z
)√

(2π)m det(ν0)
, Hh(z; ν0) = (−1)|h|ϕ−1(z; ν0)∂

h
z ϕ(z; ν0).

Moreover, under mild conditions, for L > m, as ∆ → 0, we have

sup
(t,x,x′)∈[0,T ]×Dc

X
×DX

∣∣pX(t′, x′|t, x)− p
(L,∆)
X (t′, x′|t, x)

∣∣ = O
(
∆

L+1
2

−m
2
)
.

p
(L,∆)
X (t′, x′|t, x) is the same as the Itô-Taylor (delta) expansion (22) in Yang,

Chen and Wan (2019) under the choice of µ0 = 0.
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IV. Explicit Approximations for
Option Prices
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European Option Pricing via the Density Expansion for X

Assume X is defined under the risk-neutral measure Q. At time t with
X(t) = x, the price of European option with payoff f(·) and maturity t′

is given below:

C(t, x) = e−r∆

∫
Rm

pX(t′, x′|t, x)f(x′)dx′.

Using the expansion p
(L,∆)
X , we have an approximation as

C(L)(t, x) := e−r∆

∫
Rm

p
(L,∆)
X (t′, x′|t, x)f(x′)dx′.

The structure of the expansion p
(L,∆)
X simplify the above integral into a

linear combination of the following integrals:

Ih(f) :=

∫
Rm

1

∆m/2
ϕ

(
x′ − x√

∆
; ν0

)
Hh

(
x′ − x√

∆
; ν0

)
f(x′)dx′, h ∈ Zm

+ .



. . . . . .

Explicit Approximation Formulas for European Options

The price of the European call option with the payoff function
f(x′

1) = (ex
′
1 −A)+ has the following approximation:

C(L)(t, x) =e−r∆I0 + e−r∆
L∑

l=1

∆
l
2

2l∑
n=⌈(l+1)/2⌉

1

n!
wX

n,2n−l(t, x)I2n−l,

where wX
n,l(t, x) ≡ wX

n,(l,0,··· ,0)(t, x), I0 = ex1+
1
2 σ̄

2∆ · Φ(d2)−A · Φ(d1)
and for l ≥ 1

Il =
√
∆

l
ex1+

1
2 σ̄

2∆ · Φ(d2) +A
∑

1≤i≤l−1

√
∆

i
(σ̄)

−(l−i)
Hl−1−i(−d1)ϕ(d1).

Here d1 = x1−lnA

σ̄
√
∆

, d2 = d1 + σ̄
√
∆, and σ̄ :=

√
νX11(t, x)

Moreover, let Dc
X be a compact subsect of DX . Under mild conditions,

for L > m, as ∆ → 0, we have

sup
(t,x)∈[0,T ]×Dc

X

∣∣C(t, x)− C(L)(t, x)
∣∣ = O

(
∆

L+1
2

)
.
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V. Relations to Existing Density
Approximations
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Relations to Existing Density Approximations
I We prove that the Hemite expansion derived in this paper unifies the

expansions of Li (2013) and Yang, Chen and Wan (2019), that is,

Theorem (Equivalence)

The following three expansion formulas are the same:

(i) the Hermite expansion p
(L,∆)
X in this paper;

(ii) the pathwise expansion (3.21) in Li (2013);
(iii) the Itô-Taylor (delta) expansion (22) in Yang, Chen and Wan (2019)

under the choice of µ0 = 0.

I The equivalence between the Hermite expansion and the Itô-Taylor
expansion, i.e., “(i)⇔(iii)”

I For the reducible (univariate) case, it is proved in Proposition 5.1,
Yang, Chen and Wan (2019)

I For irreducible case, it is proved in the previous theorem(s), i.e., the
explicit expansion formulas for X and/or Y

I Different from the Kolmogorov method of Äıt-Sahalia (2008)
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Main Ideas: the Hermite Expansion ⇔ the Expansion of Li (2013)

I Li (2013) develops an expansion for transition density of a
time-homogenous diffusion

I providing explicit algorithm to compute high order terms
I the transition density can be as the conditional expectation of the

Dirac delta function below:

pY (t′, x′|t, x) = E[δ(X(t′)− x′)|X(t) = x]
I expanding the above conditional expectation via the pathwise

expansion, i.e., Watanabe (1987)’s theory in Malliavin calculus

I The following steps are used to prove the equivalence.

(a) We further derive explicit formulas of Li’s expansion (relying on the
quasi-Lamperti transform) and express it in terms of the Hermite
polynomials

(b) Derive the explicit formulas for η(h) (the coefficient of the Hermite
expansion) via the pathwise expansion

(c) Using (a) and (b), we prove that the Hermite expansion calculated
via the pathwise expansion is the same as that of Li (2013)

(d) The Hermite expansion derived via the Itô-Taylor and pathwise
expansions are the same (Because η(h) derived in two methods are
both

√
∆-expansion of η(h))

(c) + (d)⇒ two expansions are the same
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VI. Numerical Experiments
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The Stochastic Volatility Models
I Consider the following general stochastic volatility model:

d lnS(t) =
(
(r − δ)− 1

2
V (t)

)
dt+

√
V (t)dW1(t),

dV (t) = κ(α− V (t))dt+ σV β(t)
(
ρdW1(t) +

√
(1− ρ2)dW2(t)

)
,

I The above process nests three kinds of models:
I β = 1/2: the Heston stochastic volatility model
I β = 1: the GARCH stochastic volatility model
I β ∈ (1/2, 1): the stochastic CEV model (SVCEV)
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Relative Errors for the Heston Model with ∆ = 1/4
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The relative errors for European call is calculated via RE =
|FDM−Appr.|

FDM , where “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the L-th

order of the approximation. Values of model parameters: (r, δ, κ, α, σ, ρ, β) = (0.04, 0.015, 3,

0.1, 0.25,−0.8, 0.5), the initial volatility V (0) = 0.1 and the strike is 100.
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Relative Errors for the Heston Model with ∆ = 1/2
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The relative errors for European call is calculated via RE =
|FDM−Appr.|

FDM , where “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the L-th

order of the approximation. Values of model parameters: (r, δ, κ, α, σ, ρ, β) = (0.04, 0.015, 3,

0.1, 0.25,−0.8, 0.5), the initial volatility V (0) = 0.1 and the strike is 100.
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Relative Errors for the Heston Model with ∆ = 1
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The relative errors for European call is calculated via RE =
|FDM−Appr.|

FDM , where “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the 6-th

order of the approximation. Values of model parameters: (r, δ, κ, α, σ, ρ, β) = (0.04, 0.015, 3,

0.1, 0.25,−0.8, 0.5), the initial volatility V (0) = 0.1 and the strike is 100.
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Percentage Relative Errors (%) with Different S0

Heston GARCH SVCEV
S0 1/52 1/12 1/4 1/52 1/12 1/4 1/52 1/12 1/4

97 0.005 0.002 0.009 0.006 0.006 0.137 0.004 0.004 0.076
98 0.002 0.001 0.009 0.001 0.003 0.145 0.001 0.001 0.082
99 0.001 0.000 0.008 0.001 0.001 0.150 0.001 0.000 0.086
100 0.009 0.002 0.006 0.013 0.003 0.151 0.017 0.003 0.086
101 0.001 0.000 0.006 0.001 0.000 0.151 0.001 0.001 0.086
102 0.001 0.000 0.005 0.001 0.000 0.148 0.001 0.001 0.083
103 0.001 0.001 0.005 0.001 0.000 0.143 0.001 0.000 0.077

The relative errors for European call is calculated via RE =
|FDM−Appr.|

FDM , where “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the 6-th

order of the approximation. The values of parameter vector (r, δ, κ, α, σ, ρ, β) for three models

are Heston: (0.04, 0.015, 3, 0.1, 0.25,−0.8, 0.5); GARCH: (0.04, 0.015, 1.6, 0.07, 2.2,−0.75,

1); SVCEV: (0.04, 0.015, 4, 0.05, 0.75,−0.75, 0.8). The strike price is 100 for all options. For

each model, the default initial volatility is V (0) = α.
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Percentage Relative Errors (%) with Different V0

Heston GARCH SVCEV
V0 1/52 1/12 1/4 1/52 1/12 1/4 1/52 1/12 1/4

0.08 0.011 0.004 0.070 0.011 0.003 0.211 0.011 0.002 0.264
0.1 0.009 0.002 0.006 0.009 0.002 0.386 0.009 0.004 0.352
0.12 0.008 0.001 0.054 0.008 0.000 0.638 0.008 0.005 0.435
0.14 0.006 0.000 0.092 0.007 0.002 0.973 0.007 0.007 0.513
0.16 0.006 0.001 0.126 0.006 0.008 1.394 0.006 0.008 0.587
0.18 0.005 0.001 0.158 0.005 0.020 1.901 0.005 0.010 0.658
0.2 0.005 0.002 0.189 0.005 0.041 2.495 0.005 0.011 0.725

The relative errors for European call is calculated via RE =
|FDM−Appr.|

FDM , where “FDM” denotes

the benchmark is computed via the finite different method and “Appr” calculated via the 6-th

order of the approximation. The values of parameter vector (r, δ, κ, α, σ, ρ, β) for three models

are Heston: (0.04, 0.015, 3, 0.1, 0.25,−0.8, 0.5); GARCH: (0.04, 0.015, 1.6, 0.07, 2.2,−0.75,

1); SVCEV: (0.04, 0.015, 4, 0.05, 0.75,−0.75, 0.8). The strike price is 100 for all options. For

each model, the default initial stock price is S(0) = 100.
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Conclusions

In this work, we contribute to the literature in the following aspects:

I developing the Hermite expansion for transition densities of
irreducible diffusions which admitting explicit formulas

I deriving explicit approximation formulas for European option prices,
which is also an illustration for the advantage of the Hermite
expansion

I showing that the derived Hermite expansion unifies the pathwise
expansion of Li (2013) and the Itô-Taylor (delta) expansion of Yang,
Chen and Wan (2019)
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The Pathwise Expansion of Li (2013)
I Li (2013) develops the pathwise expansion for the transition density

of a time-homogeneous diffusion X satisfying

dX(s) = µX(X(s))ds+ σX(X(s))dW (s), X(t) = x (1)

He provides an explicit algorithm to compute the high order terms.
I To facilitate the comparison, we also contribute to the pathwise

expansion as follows:
I deriving explicit expansion formulas
I express the pathwise expansion in terms of the Hermite polynomials

I A sketch of the derivation

I The quasi-Lamperti transform. Letting Y (s) := (σX(x)
)−1

X(s)
for s ≥ t and X(t) = x, we have

dY (s) = µY (Y (s))ds+ σY (Y (s))dW (s), Y (t) = y,

where σY (y) = νY (y) ≡ Idm.
I Define Y ϵ(s) := Y (ϵ2s+ t) and t′ = ϵ2 + t (i.e. ϵ =

√
∆)

dY ϵ(s) = ϵ2µY (Y ϵ(s))ds+ ϵσY (Y ϵ(s))dW (s), Y ϵ(0) = y
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The Pathwise Expansion of Li (2013) (cont’d)
I Define a random variable Γϵ below. As ϵ → 0, we have

Γϵ :=
Y ϵ(1)− y

ϵ
= ϵ

∫ 1

0

µY (Y ϵ(s))ds+

∫ 1

0

σY (Y ϵ(s))dW (s) → W (1)

I Using Itô’s lemma iteratively leads to the pathwise expansion of Γϵ

Γϵ =
∑L

j=0

(∑
i∈Mj+1

CY
i (y) · Ii(1)

)
· ϵi +O(ϵL+1)

Mj+1 is some index set. CY
i (y) is defined by the derivatives of µY (·) and σY (·) with

i = (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}n. Let W0(t) = t. Ii(t) is the iterated Itô integral,

Ii(t) =
∫ t
0

∫ t1
0 · · ·

∫ tk−1
0 dWik

(tk) · · · dWi2 (t2)dWi1 (t1)

I The transition density is given by the conditional expectation below

pY (t
′, y′|t, y) =E[δ(Y ϵ(1)− y′)|Y ϵ(0) = y]

=∆−m
2 E[δ(Γϵ − γ)|Y (t) = y], γ := (y′ − y)/

√
∆

I The pathwise expansion of pY is given below

pY (t
′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2

∑L

k=1
∆

k
2 Ωk(γ; y)︸ ︷︷ ︸

p
(L,LI)
Y (t′,y′|t,y)

+O(∆
L+1−m

2 )
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The Explicit Formulas for the Expansion of Li (2013)
Proposition B.2, Yang, Chen and Wan (2019) states that the iterated Itô integral can be expressed
as Hermite polynomials, i.e.,

E[Ii(t)|W (t) = y] =

√
t
∥i∥

n!
Hni

(
y
√
t

)
,

where ni = (ni(1), · · · , ni(m)) with ni(α) being the number of α (for α = 0, 1, · · · ,m) in i,
and ∥i∥ = 2ni(0) +

∑m
α=1 ni(α).

Proposition
The L-th order density expansion of Li (2013) for the diffusion Y can be represented as follows:

p
(L,LI)
Y (t

′
, y

′|t, y) =∆
−m

2 ϕ(γ) + ∆
−m

2 ϕ(γ)
∑3L

j=1

∑
|h|=j

Hh (γ) η
(h,LI)

(∆|t, y),

where ∆ = t′ − t, γ = (y′ − y)/
√
∆, and the expansion coefficient η(h,LI)(∆, y) is given by

η
(h,LI)

(∆|t, y) =

L∑
k=1

∆
k
2

∑
(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1
ω=1,··· ,l( l∏

ω=1

C
Y
iω,rω

(y)
)
· w̃a,̈ı ·

1

(ℓ(̈ı) − |a|)!
· 1{a∈Zm}.

Here, r := (r1, . . . , rl), br :=
∑l

ω=1 erω , a := (n(̈ı) + br − h)/2; the index sets Sk and Mj ,

the coefficients CY
iω,rω

(y) and w̃a,̈ı are recursively defined.
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Calculating η(h)(∆|t, y) via the Pathwise Expansion
I Recall the coefficient η(h)(∆|t, y) in the Hermite expansion.

η(h)(∆|t, y) = 1

h!
E
[
Hh

(Y (t+∆)− y√
∆

)
|Y (t) = y

]
=

1

h!

K∑
k=0

∆k

k!

((
LY
s,ζ

)k

Hh

(ζ − y√
∆

))∣∣
s=t,ζ=y︸ ︷︷ ︸

η(h,K)(∆|t,y), the Itô-Taylor expansion

+O(∆K+1− |h|
2 ),

I Rewrite η(h)(∆|t, y) using Γϵ.

η(h)(∆|t, y) = 1

h!
E
[
Hh

(
Γϵ

)
|Y ϵ(0) = y

]∣∣
Γϵ=

Y ϵ(1)−y
ϵ

=
1

h!
E [Hh (W (1))] +

1

h!

L∑
k=1

Ω̃k(y)∆
k
2

︸ ︷︷ ︸
η
(h)
L (∆|t,y), the pathwise expansion

+O(∆
L+1
2 )

I Both η(h,K)(∆|t, y) and η
(h)
L (∆|t, y) are coefficients of the Taylor

expansion of η(h) as a function of ϵ ≡
√
∆, thus they are the same.
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The Hermite Expansion ⇔ the Expansion of Li (2013)

Proposition

For h ∈ Zm
+ and h ̸= 0, the coefficients of the pathwise expansion

η(h,LI)(∆|t, y) and the Hermite expansion η
(h)
L (∆|t, y) satisfies

η
(h)
L (∆|t, y) = η(h,LI)(∆|t, y)
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The Itô-Taylor (Delta) Expansion of Yang, Chen and Wan (2019)

I Recall the multivariate time-inhomogeneous diffusion
dX(s) = µX(s,X(s))dt+ σX(s,X(s))dW (s)

I Select a smooth sequence to approximate the Dirac delta function.
Fix µ0 and ν0. Define

q(t′, x′; s, y) =
exp

(
− (x′−y−µ0(t

′−s))⊤ν0
−1(x′−y−µ0(t

′−s))
2(t′−s)

)
(2π(t′ − s))m/2 det(ν0)1/2

I Formally, pX can be expressed as follows:

pX(t′, x′|t, x) = E[δ(X(t′)− x′)|X(t) = x] = lim
s↑t′

Et,x[q(t′, x′; s,X(s))]

≈ lim
s↑t′

∑J

N=0

(s− t)N

N !

[
(∂s + LX

s,ξ)
Nq(t′, x′; s, ξ)

∣∣
s=t,ξ=x

]
=

∑J

N=0

∆N

N !
(∂s + LX

s,ξ)
Nq(t′, x′; s, ξ)

∣∣
s=t,ξ=x

+RJ

I Choose ν0 = νX(t, x) and keep µ0 free. Then, the first term on
RHS is the Itô-Taylor expansion with error as follows:

pX(t′, x′|t, x) = p
(Ito,J)
X (t′, x′|t, x)︸ ︷︷ ︸
Itô-Taylor expansion

+O
(
∆

⌈(J+1)/2⌉−m
2

)
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The Itô-Taylor (Delta) Expansion of Yang, Chen and Wan (2019)

(cont’d)

I Let z = (x′ − x− µ0∆)/
√
∆. The general term is

(∂s + Ls,ξ)
N
q(t

′
, x

′|s, ξ) =
∑2N

|h|=1
wN,h(s, ξ)∂

h
y q(t

′
, x

′|s, ξ)

=
∑2N

|h|=1

1

(t′ − s)|h|/2 wN,h(s, ξ) × Hh(z; ν0) × q(t
′
, x

′|s, ξ)

I Given ν0 = ν(t, x; θ), we can show that
wN,h(t, x) = wN,h(s, y)|s=t,y=x,ν0=ν(t,x;θ) = 0 for |h| > 3N/2!

I Then we have the Itô-Taylor expansion

p
(Ito,J)
X (t

′
, x

′|t, x) = q(t
′
, x

′|t, x)
(
1 +

∑J

N=1

∑⌊3N/2⌋

|h|=1

wN,h(t, x)Hh(z; ν0)

N !
∆

N− |h|
2

)
I Collecting terms in p

(Ito,J)
X in an ascending order of

√
∆ up to the

order of ∆L/2, we can arrive at the delta expansion, i.e., p
(Ito,L,∆)
X

I Taking µ0 = 0, we can show wN,h(s, ξ)|µ0=0 = wX
N,h(t, ξ), the latter

is defined in the Hermite expansion p
(L,∆)
X . Consequently, we have

p
(Ito,L,∆)
X (t′, x′|t, x)|µ0=0 = p

(L,∆)
X (t′, x′|t, x)
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Yang, Chen and Wan (2019): the Coefficients wN,h(s, ξ)|ν0=ν(t,x;θ)

(i). For any N ≥ 1, define wN,h(s, ξ) ≡ 0 if either min{h1, · · · , hm} < 0,
h = 0, or |h| > 2N .
(ii). When N = 1,

w1,ei(s, ξ) = µi(s, ξ)− µ0i, i = 1, · · · ,m;

w1,2ei(s, ξ) =
1
2
(νii(s, ξ; θ)− νii(t, x)), i = 1, · · · ,m;

w1,ei+ej (s, ξ) = νij(s, ξ)− νij(t, x), i ̸= j, i, j = 1, · · · ,m,

where νij(·, ·; θ) is the (i, j)-element of the diffusion matrix ν.
(iii).When N > 1 and all the components in h are nonnegative, 0 < |h| ≤ 2N ,
define recursively

wN,h(s, ξ) =(∂s + LX
s,ξ)wN−1,h(s, ξ) +

m∑
i=1

AiwN−1,h−ei(s, ξ)

+
1

2

m∑
i,j=1

(νij(s, ξ; θ)− νij(t, x; θ))wN−1,h−ei−ej (s, ξ),

where

(Ai)f(s, ξ) = (µi(s, ξ; θ)− µ0i)f(s, ξ) +

m∑
j=1

νij(s, ξ; θ)∂ejf(s, ξ).
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