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� Key: Simultaneously trade a pair of stocks with opposite directions.
� How: When their prices diverge (e.g., one stock moves up while the other

moves down), the pairs trade would be triggered:
Buy the weaker stock and short the stronger one and bet on the eventual
price convergence.



Why Pairs Trading?

5 / 60

� After all, we are not (neither our smart machines) that great forecasting
market directions ...

� Investment strategies producing higher returns with smooth equity curve
are highly desirable.

� Pairs trading is designed to address these issues and meet the needs.
� Major advantage: ‘market neutral.’

It can be profitable under any market (bull or bear) conditions.



Implementation
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It is important to determine when to initiate a pairs trade (i.e., how much
divergence is sufficient to trigger a trade) and when to close the position
(when to lock in profits).



Brief Background and Literature Review
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Pairs Trading:

� Initially introduced by Bamberger and followed by Tartaglia’s quantitative
group at Morgan Stanley in the 1980s.

� Pairs trading (Gatev, Goetzmann, and Rouwenhorst, 2006)
� Book on pairs trading (Vidyamurthy, 2004)
� Pairs trading under a mean reversion model (Song and Zhang, 2013)
� Mean reversion trading (Zhang and Zhang, 2009 and Tie and Zhang 2016)
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� One key element in traditional pairs trading studies is the mean reversion
assumption (a difference of the prices is mean reversion).

� In order to meet the mean-reversion requirement, tradable pairs are often
limited to the same industrial sector.

� From a practical viewpoint, it is highly desirable to have a broader range
of stock selections for pairs trading.

� It would be interesting to study pairs trading under various other models
to include, for example, geometric Brownian motions. Successful attempts
would also put pairs trading practice on a firmer theoretical ground.

� Question: Would pairs trading work with GBM stocks?
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� One key element in traditional pairs trading studies is the mean reversion
assumption (a difference of the prices is mean reversion).

� In order to meet the mean-reversion requirement, tradable pairs are often
limited to the same industrial sector.

� From a practical viewpoint, it is highly desirable to have a broader range
of stock selections for pairs trading.

� It would be interesting to study pairs trading under various other models
to include, for example, geometric Brownian motions. Successful attempts
would also put pairs trading practice on a firmer theoretical ground.

� Question: Would pairs trading work with GBM stocks?
� Answer: Yes
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� Back in 1986, McDonald and Siegel studied an optimal timing of
investment in an irreversible project.

� Then in 1998, this problem was studies under precise optimality conditions
by Hu and Øksendal. They also provided rigorous mathematical proofs.
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� McDonald and Siegel’s problem can be easily interpreted in terms of pairs
trading.
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� McDonald and Siegel’s problem can be easily interpreted in terms of pairs
trading.

� It is a simple pairs trading selling rule!
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� We extend their results by allowing sequential and simultaneous trading of
these pairs.

� Focus:
(a) simple and easily implementable pairs trading strategy,
(b) closed-form solution, and
(c) its optimality.



Our Focus
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� A pair position: a long position in stock 1 and a short position in stock 2.
� Objective: To open (buy) and close (sell) these pairs positions

sequentially to maximize a discounted payoff.
� A fixed percentage transaction cost will be imposed to each trade.
� Simple strategy: Determined by two threshold lines.
� (Dependence of these threshold levels on various parameters in numerical

examples will be considered.)
� Implementation of the results with a pair of stocks based on their

historical prices will be presented.



By-product
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In control applications, closed-form solutions for an optimal control problem
are rare and very difficult to obtain.

We obtain a closed-form solution for an optimal decision making problem
(nonlinear, two-dimensional, second order HJB equations with variational
inequalities).



The Model

14 / 60

We consider two stocks S1 and S
2. Let {X1

t , t ≥ 0} denote the prices of
stock S

1 and {X2
t , t ≥ 0} that of stock S

2. They satisfy the following
stochastic differential equation:

d

(

X1
t

X2
t

)

=

(

X1
t

X2
t

)[(

µ1

µ2

)

dt+

(

σ11 σ12
σ21 σ22

)

d

(

W 1
t

W 2
t

)]

,

where µi, i = 1, 2, are the return rates, σij , i, j = 1, 2, the volatility
constants, and (W 1

t ,W
2
t ) a 2-dimensional standard Brownian motion.



The Model

15 / 60

� Assume the corresponding pairs position consists of one-share long
position in stock S

1 and one-share short position in stock S
2.

� Let Z denote the corresponding pairs position.
� One share in Z means the combination of one share long position in S

1

and one share short position in S
2.

� The net position at any time can be either long (with one share of Z) or
flat (no stock position of either S1 or S2).



The Model
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� Let i = 0, 1 denote the initial net position and let τ0 ≤ τ1 ≤ τ2 ≤ · · ·
denote a sequence of stopping times.

� If initially the net position is long (i = 1), then one should sell Z before
acquiring any future shares.
The corresponding trading sequence is denoted by Λ1 = (τ0, τ1, τ2, . . .).

� Likewise, if initially the net position is flat (i = 0), then one should start
to buy a share of Z.
The corresponding sequence of stopping times is denoted by
Λ0 = (τ1, τ2, . . .).



The Model
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Let K denote the transaction cost percentage (e.g., slippage and/or
commission) associated with buying or selling of stocks Si, i = 1, 2.
For example, the cost to establish the pairs position Z at t = t1 is

(1 +K)X1
t1
− (1−K)X2

t1

and the proceeds to close it at a later time t = t2 is

(1−K)X1
t2
− (1 +K)X2

t2
.

For ease of notation, let βb = 1 +K and βs = 1−K.



The Model
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Reward functions: J0 = J0(x1, x2,Λ0) and J1 = J1(x1, x2,Λ1)

J0 = E

{

[e−ρτ2(βsX
1

τ2
− βbX

2

τ2
)I{τ2<∞} − e−ρτ1(βbX

1

τ1
− βsX

2

τ1
)I{τ1<∞}]

+[e−ρτ4(βsX
1

τ4
− βbX

2

τ4
)I{τ4<∞} − e−ρτ3(βbX

1

τ3
− βsX

2

τ3
)I{τ3<∞}] + · · ·

}

,

J1 = E

{

e−ρτ0(βsX
1

τ0
− βbX

2

τ0
)I{τ0<∞}

+[e−ρτ2(βsX
1

τ2
− βbX

2

τ2
)I{τ2<∞} − e−ρτ1(βbX

1

τ1
− βsX

2

τ1
)I{τ1<∞}]

+[e−ρτ4(βsX
1

τ4
− βbX

2

τ4
)I{τ4<∞} − e−ρτ3(βbX

1

τ3
− βsX

2

τ3
)I{τ3<∞}] + · · ·

}

.

Assumptions. ρ > µ1 and ρ > µ2.

Value functions: Vi(x1, x2) = supΛi
Ji(x1, x2,Λi), i = 0, 1.



Example.
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We consider stock prices of Target Corp. (TGT) and Wal-Mart Stores Inc.
(WMT).
Daily closing prices of both stocks from 1985 to 2014 are divided into two
sections:
Part 1 (1985-1999) is used to calibrate the model;
Part 2 (2000-2014) to backtest the performance of our results.



Example: TGT and WMT Daily Closing Prices (1985 – 2014)
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Given stopping times τ0 ≤ τ1 ≤ τ2, . . ., let Λ1 = (τ0, τ1, τ2, . . .) and
Λ0 = (τ1, τ2, . . .). Note that

J1(x1, x2,Λ1) = E[e−ρτ0(βsX
1
τ0
− βbX

2
τ0
)I{τ0<∞}] + J0(x1, x2,Λ0).

In particular, if τ0 = 0, a.s., then
J1(x1, x2,Λ1) = βsx1 − βbx2 + J0(x1, x2,Λ0). It follows that

V1(x1, x2) ≥ βsx1 − βbx2 + V0(x1, x2).

Similarly, let Λ0 = (τ1, τ2, . . .) and the subsequent Λ1 = (τ2, . . .). Then,

J0(x1, x2,Λ0) = −E[e−ρτ1(βbX
1
τ1
− βsX

2
τ1
)I{τ1<∞}] + J1(x1, x2,Λ1).

Setting τ1 = 0, a.s., leads to

V0(x1, x2) ≥ −βbx1 + βsx2 + V1(x1, x2).



Lower and Upper Bounds for Vi(x1, x2)

22 / 60

Lemma. For all x1, x2 > 0, we have

0 ≤ V0(x1, x2) ≤ x2,
βsx1 − βbx2 ≤ V1(x1, x2) ≤ βbx1 +Kx2.



HJB Equations
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Let

A =
1

2

{

a11x
2

1

∂2

∂x2
1

+ 2a12x1x2

∂2

∂x1∂x2

+ a22x
2

2

∂2

∂x2
2

}

+ µ1x1

∂

∂x1

+ µ2x2

∂

∂x2

where






a11 = σ2
11

+ σ2
12
,

a12 = σ11σ21 + σ12σ22,
a22 = σ2

21
+ σ2

22
.

HJB equations: For (x1, x2) > 0,







min
{

ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2

}

= 0,

min
{

ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− v0(x1, x2)− βsx1 + βbx2

}

= 0.



Solving (ρ−A)vi(x1, x2) = 0
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To solve (ρ−A)vi(x1, x2) = 0, i = 0, 1, consider

vi(x1, x2) = ci1x
δ1
1 x1−δ1

2 + ci2x
−δ2
1 x1+δ2

2 ,

where δ1 and (−δ2) are roots of the following equation:

1

2
[a11δ(δ − 1) + 2a12δ(1− δ) + a22(1− δ)(−δ)] + µ1δ + µ2(1− δ)− ρ = 0.

Let λ = (a11 − 2a12 + a22)/2. We can write

δ1 =
1

2

(

1 +
µ2 − µ1

λ
+

√

(

1 +
µ2 − µ1

λ

)2

+
4ρ− 4µ2

λ

)

> 1,

δ2 =
1

2

(

−1−
µ2 − µ1

λ
+

√

(

1 +
µ2 − µ1

λ

)2

+
4ρ− 4µ2

λ

)

> 0.



Regions for the Variational Inequalities
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Intuitively, if X1
t is small and X2

t is large, then one should buy S
1 and sell

(short) S2. That is to open a pairs position Z. If, on the other hand, X1
t is

large and X2
t is small, then one should close the position Z by selling S

1 and
buying back S

2.
In view of this, we divide the first quadrant
P = {(x1, x2) : x1 > 0 and x2 > 0} into three regions:

Γ1 = {(x1, x2) ∈ P : x2 ≤ k1x1},
Γ2 = {(x1, x2) ∈ P : k1x1 < x2 < k2x1},
Γ3 = {(x1, x2) ∈ P : x2 ≥ k2x1}.

Here 0 < k1 < k2 are slopes to be determined.



Regions for the Variational Inequalities

26 / 60

x1

x2

O

x2 = k1x1

x2 = k2x1

Γ1

Γ2

Γ3

(ρ − A)v0 = 0
v1 = v0 + βsx1 − βbx2

(ρ−A)v0=0
(ρ−A)v1=0

(ρ − A)v1 = 0
v0 = v1 − βbx1 + βsx2

Buy S
1 and Sell Short S2

(Open Pairs)

Hold

Sell S1 and Buy Back S
2

(Close Pairs)



Putting Together the Pieces
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Recall the boundedness of the value functions and δ1 > 1.
This implies on Γ1, the coefficient of xδ11 x1−δ1

2 should be 0.
Therefore, v0 = C0x

−δ2
1 x1+δ2

2 for some C0.

Likewise, on Γ3, the coefficient of x−δ2
1 x1+δ2

2 must be zero because δ2 > 0.
On this region, v1 = C1x

δ1
1 x1−δ1

2 for some C1.

Finally, these functions are extended to Γ2 and are given by
v0 = C0x

−δ2
1 x1+δ2

2 and v1 = C1x
δ1
1 x1−δ1

2 .



Putting Together the Pieces
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Therefore,

Γ1 : v0 = C0x
−δ2
1 x1+δ2

2 , v1 = C0x
−δ2
1 x1+δ2

2 + βsx1 − βbx2;

Γ2 : v0 = C0x
−δ2
1 x1+δ2

2 , v1 = C1x
δ1
1 x1−δ1

2 ;

Γ3 : v0 = C1x
δ1
1 x1−δ1

2 − βbx1 + βsx2, v1 = C1x
δ1
1 x1−δ1

2 .



Smooth-Fit Conditions (C1 conditions).
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We develop smooth-fit conditions to determine the values for k1, k2, C0, and
C1.
In particular, we are to find C1 solutions on the entire region {(x1, x2) > 0}.
Necessarily, the continuous differentiability of v1 along the line x2 = k1x1
implies

C1x
δ1
1 x1−δ1

2 = C0x
−δ2
1 x1+δ2

2 + βsx1 − βbx2,

∇C1x
δ1
1 x1−δ1

2 = ∇(C0x
−δ2
1 x1+δ2

2 + βsx1 − βbx2).

This leads to three equations in terms of k1, C0, and C1. One of these three
equations is redundant. Only keep the first two and write

(

k1+δ2
1 −k1−δ1

1

−δ2k
1+δ2
1 −δ1k

1−δ1
1

)(

C0

C1

)

=

(

βbk1 − βs
−βs

)

.



Smooth-Fit Conditions
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Similarly, along the line x2 = k2x1 we have

(

k1+δ2
2 −k1−δ1

2

−δ2k
1+δ2
2 −δ1k

1−δ1
2

)(

C0

C1

)

=

(

βsk2 − βb
−βb

)

.

Write C0 and C1 in terms of k1 and k2 to obtain:

(

C0

C1

)

=
1

δ1+δ2

(

βs(1− δ1)k
−δ2−1

1
+ βbδ1k

−δ2
1

βs(1 + δ2)k
δ1−1

1
− βbδ2k

−δ1
1

)

,

(

C0

C1

)

=
1

δ1+δ2

(

βb(1− δ1)k
−δ2−1

2
+ βsδ1k

−δ2
2

βb(1 + δ2)k
δ1−1

2
− βsδ2k

δ1
2

)

.

Eliminating C0 and C1, we obtain two equations for k1 and k2:

(

βs(1− δ1)k
−δ2−1
1 + βbδ1k

−δ2
1

βs(1 + δ2)k
δ1−1
1 − βbδ2k

−δ1
1

)

=

(

βb(1− δ1)k
−δ2−1
2 + βsδ1k

−δ2
2

βb(1 + δ2)k
δ1−1
2 − βsδ2k

δ1
2

)

.
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Let r = k2/k1. Then we can show r is a zero of

f(r) = (δ1−1)δ2(βb−βsr
δ1)(βs−βbr

−δ2−1)−δ1(1+δ2)(βs−βbr
δ1−1)(βb−βsr

−δ2).

We can also show that f(1) > 0 and f(∞) = −∞. There exists r0 > 1 so
that f(r0) = 0. Therefore,



















k1 =
(1 + δ2)(βs − βbr

δ1−1

0
)

δ2(βb − βsr
δ1
0
)

=
(δ1 − 1)(βs − βbr

−δ2−1

0
)

δ1(βb − βsr
−δ2
0

)
,

k2 =
(1 + δ2)(βsr0 − βbr

δ1
0
)

δ2(βb − βsr
δ1
0
)

=
(δ1 − 1)(βsr0 − βbr

−δ2
0

)

δ1(βb − βsr
−δ2
0

)
,















C0 =
(1− δ1)βsk

−δ2−1

1
+ δ1βbk

−δ2
1

δ1 + δ2
=

(1− δ1)βbk
−δ2−1

2
+ δ1βsk

−δ2
2

δ1 + δ2
,

C1 =
(1 + δ2)βsk

δ1−1

1
− δ2βbk

δ1
1

δ1 + δ2
=

(δ2 + 1)βbk
δ1−1

2
− δ2βsk

δ1
2

δ1 + δ2
.



Additional Inequalities
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Lemma. We have

k1 <
βs(ρ− µ1)

βb(ρ− µ2)
, k2 >

βb(ρ− µ1)

βs(ρ− µ2)
.

Also, all inequalities in the HJB equations are satisfied: That is

(ρ−A)v0(x1, x2) ≥ 0,
(ρ−A)v1(x1, x2) ≥ 0,

−βbx1 + βsx2 ≤ v0(x1, x2)− v1(x1, x2) ≤ −βsx1 + βbx2.



Solutions of the HJB Equations
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Theorem. The solutions of the HJB equations are given by

v0(x1,x2) =























(

βs(1− δ1)k
−δ2−1
1 + δ1βbk

−δ2
1

δ1 + δ2

)

x
−δ2
1 x

1+δ2
2 , if (x1, x2) ∈ Γ1 ∪ Γ2,

(

βs(1 + δ2)k
δ1−1
1 − δ2βbk

δ1
1

δ1 + δ2

)

x
δ1
1 x

1−δ1
2 + βsx2 − βbx1, if (x1, x2) ∈ Γ3,

v1(x1,x2) =























(

βs(1− δ1)k
−δ2−1
1 + δ1βbk

−δ2
1

δ1 + δ2

)

x
−δ2
1 x

1+δ2
2 + βsx1 − βbx2, if (x1, x2) ∈ Γ1,

(

βs(1 + δ2)k
δ1−1
1 − δ2βbk

δ1
1

δ1 + δ2

)

x
δ1
1 x

1−δ1
2 , if (x1, x2) ∈ Γ2 ∪ Γ3.



A Verification Theorem
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Theorem. (a) We have vi(x) = Vi(x), i = 0, 1.
(b) Moreover, if initially i = 0, let Λ∗

0 = (τ∗1 , τ
∗
2 , τ

∗
3 , . . .) such that

τ∗1 = inf{t ≥ 0 : (X1
t , X

2
t ) ∈ Γ3}, τ

∗
2 = inf{t ≥ τ∗1 : (X1

t , X
2
t ) ∈ Γ1},

τ∗3 = inf{t ≥ τ∗2 : (X1
t , X

2
t ) ∈ Γ3}, and so on. Similarly, if initially i = 1, let

Λ∗
1 = (τ∗0 , τ

∗
1 , τ

∗
2 , . . .) such that τ∗0 = inf{t ≥ 0 : (X1

t , X
2
t ) ∈ Γ1},

τ∗1 = inf{t ≥ τ∗0 : (X1
t , X

2
t ) ∈ Γ3}, τ

∗
2 = inf{t ≥ τ∗1 : (X1

t , X
2
t ) ∈ Γ1}, and

so on. Then Λ∗
0 and Λ∗

1 are optimal.
Proof. Key steps:
(1) v0(x1, x2) ≥ 0.
(2) v0(x1, x2) and v1(x1, x2) satisfy linear growth conditions.
(3) τ∗n → ∞, a.s.
(4) vi(x1, x2) ≥ Ji(x1, x2,Λi), i = 0, 1.
(5) vi(x1, x2) = Ji(x1, x2,Λ

∗
i ), i = 0, 1.



A Numerical Example
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Use the parameters of the TGT-WMT example:

µ1 = 0.2059, µ2 = 0.2459, σ11 = 0.3112, σ12 = 0.0729, σ21 = 0.0729, σ22 = 0.2943.

Take K = 0.001 and ρ = 0.5. We obtain

k1 = 1.03905, k2 = 1.28219.



Value Functions
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Dependence of (k1, k2) on Parameter µ1
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We vary one of the parameters at a time and examine the dependence of
(k1, k2) on these parameters.
First we consider how (k1, k2) changes with µ1. A larger µ1 implies greater
potential of growth in S

1.
It can be seen in Table 1 that both k1 and k2 decrease in µ1 leading to more
buying opportunities.

µ1 0.1059 0.1559 0.2059 0.2559 0.3059
k1 1.38860 1.21356 1.03905 0.86272 0.68532
k2 1.70104 1.49268 1.28219 1.07150 0.86008

Table 1. (k1, k2) with varying µ1.

ց

ց

Open Pairs

Hold

Close Pairs



Dependence of (k1, k2) on Parameter µ2
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Next, we vary µ2. It is clear in this case that the pair (k1, k2) increase in µ2.
This is because larger µ2 means bigger growth potential in S

2 which
discourages establishing pairs position Z and encourages its early exit.

µ2 0.1459 0.1959 0.2459 0.2959 0.3459
k1 0.75424 0.87372 1.03905 1.28131 1.67831
k2 0.92168 1.07205 1.28219 1.59780 2.11803

Table 2. (k1, k2) with varying µ2.

տ

տ
Open Pairs

Hold

Close Pairs



Dependence of (k1, k2) on Parameters σ11 and σ22
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In Tables 3 and 4, we vary the volatility σ11 and σ22.
Larger volatility leads higher risk, which translates to smaller buying zone Γ3.
On the other hand, larger volatility gives more room for the price to move.
This leads to smaller selling zone Γ1.

σ11 0.2112 0.2612 0.3112 0.3612 0.4112
k1 1.05320 1.04598 1.03905 1.02997 1.02008
k2 1.26384 1.27295 1.28219 1.29364 1.30417

σ22 0.1943 0.2443 0.2943 0.3443 0.3943
k1 1.05147 1.04511 1.03905 1.03224 1.02469
k2 1.26597 1.27399 1.28219 1.29133 1.30136

Tables 3 and 4. (k1, k2) with varying σ11 and σ22.

տ

ց

Open Pairs

Hold

Close Pairs



Dependence of (k1, k2) on Parameter σ12
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Next, we vary σ12 which equals σ21. Note that this parameter dictates the
correlation between X1

t and X2
t . Larger σ12 leads to greater correlation,

which encourages more buying opportunities (larger Γ3) and more selling as
well (larger Γ1).

σ12(= σ21) -0.0271 0.0229 0.0729 0.1229 0.1729
k1 1.00965 1.02318 1.03905 1.05546 1.07276
k2 1.32062 1.30251 1.28219 1.26127 1.23904

Table 5. (k1, k2) with varying σ12(= σ21).

տց
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Dependence of (k1, k2) on Parameter ρ
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Next, we vary the discount rate ρ. Larger ρ encourages quicker profits, which
leads to more buying and shorter holding. This is confirmed in Table 6. It
shows that larger ρ leads to a smaller k2 and smaller (k2 − k1).

ρ 0.40 0.45 0.50 0.55 0.60
k1 1.10935 1.06547 1.03905 1.02291 1.00997
k2 1.41886 1.33396 1.28219 1.24591 1.22105

k2 − k1 0.30951 0.26849 0.24314 0.22300 0.21108

Table 6. (k1, k2) with varying ρ.

ց

ց
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Dependence of (k1, k2) on Parameter K
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Finally, we examine the dependence on the transaction percentage K. Clearly,
a larger K discourages trading transactions. This results smaller buying zone
Γ3 and smaller selling zone Γ1.

K 0.0001 0.0005 0.001 0.002 0.003
k1 1.07951 1.06318 1.03905 1.00787 0.98627
k2 1.23819 1.25562 1.28219 1.31728 1.34231

Table 7. (k1, k2) with varying K.
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Backtesting (TGT–WMT): Daily Closing Price Distribution
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Backtesting (TGT–WMT)
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Using the parameters obtained earlier based on the historical prices from 1985
to 1999, we obtain (k1, k2) = (1.03905, 1.28219).
A pairs trading (long S

1 and short S2) is triggered when (X1
t , X

2
t ) enters Γ3.

The position is closed when (X1
t , X

2
t ) enters Γ1.

Initially, allocate trading capital $100K. When the first long signal is
triggered, buy $50K TGT stocks and short the same amount of WMT.
Such half-and-half capital allocation between long and short applies to all
trades.
Each pairs transaction is charged $5 commission.



Backtesting (TGT–WMT): S1=TGT, S2=WMT
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Backtesting (TGT–WMT): S1=TGT, S2=WMT
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There were three trades with end balance $155.914K.

We can also switch the roles of S1 and S
2, i.e., to long WMT and short TGT

by taking S
1=WMT and S

2=TGT.
In this case, the new (k̃1, k̃2) = (1/k2, 1/k1) = (1/1.28219, 1/1.03905).



Backtesting (TGT–WMT): S1=WMT, S2=TGT
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Backtesting (TGT–WMT): S1=WMT, S2=TGT
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Such trade leads to the end balance $132.340K.
Note that both types of trades have no overlap, i.e., they do not compete for
the same capital. The grand total profit is $88254 which is a 88.25% gain.

The main advantage of pairs trading is its risk neutral nature, i.e., it can be
profitable regardless general market conditions.



Extension: Pairs trading with cutting losses
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To limit downside risk of a pairs position, we impose a hard cut loss level.
Any existing position will be automatically closed upon entering the cut loss
region.
Trading with cutting losses is important in practice to limit risk exposure due
to unexpected events.
A stop-loss limit is often enforced as part of money management.
It can also be associated with a margin call due to substantial losses.
In control theory, this is associated with a hard state constraint which is
difficult to deal with.
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In particular, we impose state constraint and require S2
t /S

1
t ≤ M .

Here M is a given constant representing a stop-loss level to account for
unforeseeable event in the marketplace.
Let τM = {t : S2

t /S
1
t ≥ M}.

Then, τSn ≤ τM and τBn ≤ τM , for all n.
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Let Λ0 = (τB1 , τS1 , τ
B
2 , ...) and Λ1 = (τS0 , τ

B
1 , τS1 , ...).

Goal: To find Λ0 and Λ1 so as to maximize































J0(x1, x2,Λ0) = E
{

[e−ρτS
1 (βsS

1
τS
1

− βbS
2
τS
1

)− e−ρτB
1 (βbS

1
τB
1

− βsS
2
τB
1

)]I{τB
1

<τM}]

+[e−ρτS
2 (βsS

1
τS
2

− βbS
2
τS
2

)− e−ρτB
2 (βbS

1
τB
2

− βsS
2
τB
2

)]I{τB
2

<τM}] + · · ·
}

,

J1(x1, x2,Λ0) = E
{

e−ρτS
0 (βsS

1
τS
0

− βbS
2
τS
0

)

+[e−ρτS

1 (βsS
1
τS
1

− βbS
2
τS
1

)− e−ρτB

1 (βbS
1
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1

− βsS
2
τB
1

)]I{τB
1

<τM}] + · · ·
}

.



F vs GM: Daily closing ratio of F/GM from 1977 to 2009
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The stock prices of Ford (F) and GM (GM) are highly correlated historically.
(good candidates for pairs trading).
The ratio remains ‘normal’ until it is not (when it approaches the past
subprime crisis).
This would trigger a pairs position (long GM and short F).
It spikes prior to GM’s chapter 11 filing on 6/1/2009 causing heavy losses to
any F/GM pair positions. Necessary to set up stop loss limits.
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HJB equations
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For x1 > 0 and 0 < x2 < Mx1,
{

min{ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2) + βbx1 − βsx2} = 0,
min{ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− v0(x1, x2)− βsx1 + βbx2} = 0,

Boundary conditions: v0(x1,Mx1) = 0 and v1(x1,Mx1) = βsx1 − βbMx1.
Let y = x2

x1
and vi(x1, x2) = x1w(

x2
x1
) for some wi(·) for i = 0, 1.

L(wi(y)) = λy2w
′′

i (y) + (µ2 − µ1)yw
′

i(y) + µ1wi(y).







min{ρw0(y)− Lw0(y), w0(y)− w1(y) + βb − βsy} = 0,
min{ρw1(y)− Lw1(y), w1(y)− w0(y)− βs + βby} = 0,
w0(M) = 0, w1(M) = βs − βbM.



Regions Γ1, Γ2, Γ3, and Γ4
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Assumptions
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(A1) ρ > µ1 and ρ > µ2.
(A2) There is k3 in (k2,M) such that h1(k3) = 0,
where

h1(x) =
Mδ1βs(x(1− δ2) + βδ2)

xδ1
+

Mδ2βs(x(δ1 − 1)− βδ1)

xδ2
+βs(1−Mβ)(δ1− δ2),

δ1 = 1
2

(

1 + µ1−µ2

λ
+

√

(

1 + µ1−µ2

λ

)2
+ 4ρ−4µ1

λ

)

,

δ2 = 1
2

(

1 + µ1−µ2

λ
−

√

(

1 + µ1−µ2

λ

)2
+ 4ρ−4µ1

λ

)

.

(Sufficient: h1(k2) > 0).
(A3) h′2(M) < 0 or h′′2(M) < 0,
where

h2(y) = w1 − w0 + βby − βs.

(Sufficient: µ1 ≥ µ2).



Theorem
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Assume (A1), (A2), and (A3). Then the following functions
vi(x1, x2) = x1wi(x2/x1), i = 0, 1, satisfy the HJB equations:

w0(y) =











C0y
δ1 , for 0 < y ≤ k2,

C1y
δ1 + C2y

δ2 + βsy − βb, for k2 < y 6 k3,

C3y
δ1 + C4y

δ2 , for k3 < y ≤ M ;

w1(y) =

{

C0y
δ1 + βs − βby, for 0 < y ≤ k1,

C1y
δ1 + C2y

δ2 , for k1 < y ≤ M,



Theorem
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Assume (A1), (A2), and (A3) and v0(x1, x2) ≥ 0. Then,
vi(x1, x2) = x1wi(x2/x1) = Vi(x1, x2), i = 0, 1.
Moreover, if i = 0, let Λ∗

0 = (τB∗
1 , τS∗1 , τB∗

2 , ...) = (τB,0
1 , τS,01 , τB,0

2 , ...) ∧ τM
where τB,0

1 = inf{t ≥ 0 : (S1
t , S

2
t ) ∈ Γ3},

τS,01 = inf{t ≥ τB,0
1 : (S1

t , S
2
t ) ∈ Γ1},

τB,0
2 = inf{t ≥ τS,01 : (S1

t , S
2
t ) ∈ Γ3}, . . ..

Similarly, if i = 1, let Λ∗
1 = (τS∗0 , τB∗

1 , τS∗1 , ...) = (τS,00 , τB,0
1 , τS,01 , ...) ∧ τM

where τS,00 = inf{t ≥ 0 : (S1
t , S

2
t ) ∈ Γ1},

τB,0
1 = inf{t ≥ τS,00 : (S1

t , S
2
t ) ∈ Γ3}, τ

S,0
1 = inf{t ≥ τB,0

1 : (S1
t , S

2
t ) ∈ Γ1},....

Then Λ∗
0 and Λ∗

1 are optimal.



S
1 =WMT, S2 =TGT: with cutloss M = 2
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Conclusion
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A pairs trading problem was studied under traditional GBMs.

A closed-form solution was obtained.

It would be interesting to study pairs trading under more realistic models,
e.g., GBM with regime switching with possible partial observation [update
(Pairs selling rule under regime switching with full observation: Done; General
trading rules with full observation: in progress).]

It would also be interesting to examine how the method works for a larger
selection of pairs of stocks at possible different time scales.

Some other types of pairs selections: stock + call (put) option, a stock
portfolio + another stock portfolio, a stock portfolio + a stock index future
(or ETF), (e.g., long a portfolio with under valued stocks and short an index
ETF)...
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