
Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Double Machine Learning with Gradient Boosting and Its
Application to the Big N Audit Quality Effect

JUI-CHUNG (RAY) YANG (National Tsing Hua University)
Hui-Ching Chuang (Yuan Ze University)

Chung-Ming Kuan (National Taiwan University)

Workshop on Asset Pricing and Risk Management
National University of Singapore

August 29, 2019

1 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Outline

1 Introduction

2 Double Machine Learning

3 Monte Carlo Experiments

4 Empirical Results

5 Conclusion

2 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Double / Debiased Machine Learning for Treatment and
Structural Parameters

Various machine learning algorithms have been used in estimating the
treatment effects.

CART Su et al. (2009), Athey and Imbens (2016).
RF Lu et al. (2018), Wager and Athey (2018)

SVM Imai and Ratkovic (2013)

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and
Robins (CCDDHNR, 2018, Econometrics Journal)

Object inference on a low-dimensional parameter θ0 in the
presence of high-dimensional nuisance parameters η0.

η0 estimated by some ML algorithms.

Method Double / debiased machine learning (DML):

Neyman-orthogonal scores + cross-fitting.

3 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Big N Audit Quality Effect

Big N effect: Big N audits provide better audit quality than non-Big
N auditors.

Lawrence et al. (2011) used propensity score matching (PSM), and
claimed that Big N effect is mainly due to clients’ characteristics.

DeFond et al. (2016) argued result of Lawrence et al. (2011) was only
one particular PSM design, and examined 3,000 combinations.

With/without replacement, ratios of control firms to treated firm,
caliper widths, inclusion the non-linear covariates terms, etc.

DeFond et al. (2016) concluded that Big N effect existed among
majority of their designs.

4 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Our Contributions

By simulations, we demonstrate that the gradient boosting method is
to be preferred to other learning methods, such as regression trees
and random forests, in estimating the high-dimensional nuisance
parameters η0.

We find that Big N auditors have a positive effect on audit quality
and that this effect is not only statistically significant but also
economically important.

In contrast to the results of propensity score matching, our estimates
of said effect are quite robust to the hyper-parameters in the gradient
boosting algorithm.

5 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Partially Linear Regression (PLR)
Robinson (1988, Econometrica)

Y = θ0D + f0 (X) + U, E (U|X, D) = 0.
D = m0 (X) + V, E (V|X) = 0.

Treatment effect: θ0;

Nuisance parameters: η0 = (f0, m0);

(Y, D, X′)′: iid observations;

D: treatment variable;

X =
(
X1, . . . , Xp

)′
: other controls.

6 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

A Naive Approach

Y = θ0D + f0 (X) + U, E (U|X, D) = 0.
D = m0 (X) + V, E (V|X) = 0.

Consider f̂N, an ML estimator for f0.

In practice, f0 is extremely hard to estimate without any prior
knowledge about θ0.
Let’s assume we can do it (for now).

One naive approach to estimate θ0:

θ̂N =

(
1
N

N

∑
i=1

DiD′i

)−1
1
n ∑

i∈I
Di

(
Yi − f̂N (Xi)

)
.

7 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Regularization Bias

However, in general,
∣∣∣√N

(
θ̂N − θ0

)∣∣∣ p→ ∞.

√
N
(

θ̂N − θ0

)
≈
[
E
(

DiD′i
)]−1 1√

N

N

∑
i=1

DiUi︸ ︷︷ ︸
a

+
[
E
(

DiD′i
)]−1 1√

N

N

∑
i=1

m0 (Xi)
(

f0 (Xi)− f̂N (Xi)
)

︸ ︷︷ ︸
b

+ r.m.

Under mild conditions, a A∼ N
(
0, Σ

)
for some Σ.

However, in general, b, the regularization bias,
p→ 0 only if

f̂N − f0 = op
(

N−1/2).
8 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Bias-Variance Tradeoff and Convergence Rates

In high-dimensional (or otherwise highly complex) settings,
regularized estimators are need for informative learning to be feasible.

E.g., lasso, ridge, boosting or penalized neural nets.

The regularization in these estimators keeps the variance of the
estimator from exploding, but also induces substantive biases in the
estimator.

The rate of convergence of f̂N (x) to f0 (x) is typically N−ϕ f with
ϕ f < 1/2.

Hence, b is of stochastic order n1/2−ϕg → ∞, as m0 (Xi) 6= 0.

9 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Orthogonalization and Sample Splitting

θ̂N is derived from the following moment condition:

E
[
D
(
Y− f0 (X)− D′θ0

)]
= E [DU] = 0.

Instead, CCDDHNR suggest to consider the Neyman orthogonal
moment, which partial out the effect of X from D:

E
[
(D−m0 (X))

(
Y− f0 (X)− D′θ0

)]
= E

[
(D−m0 (X))

(
Y− l0 (X)−V ′θ0

)]
= E [VU] = 0,

l0 (X) = E (Y|X) = f0 (X) + m0 (X)
′ θ0.

CCDDHNR also suggest to split the sample into two:

The main part of size n = N/2, indexed by i ∈ I.
The auxiliary part of size n = N/2, indexed by i ∈ Ic.

10 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Double Machine Learning

Let l̂n and m̂n be ML estimators using Ic, and V̂ = D− m̂n (X),

θ̃n =

(
1
n ∑

i∈I
V̂iV̂ ′i

)−1
1
n ∑

i∈I
V̂i

(
Yi − l̂n (Xi)

)
.

Then
√

n
(
θ̃n − θ0

)
≈ a∗ + b∗ + c∗.

”Double” machine learning : ML for both f0 and m0.

Under mild conditions,

a∗ =
[
E
(
ViV ′i

)]−1 1√
n ∑

i∈I
ViUi

A∼ N (0, Σ) for some Σ.

11 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Orthogonalization and Regularization Bias

Say, the rates of convergence of m̂n (x) to m0 (x) and l̂n (x) to l0 (x)
are respectively n−ϕm and n−ϕl , then

b∗ =
[
E
(
ViV ′i

)]−1 1√
n ∑

i∈I
(m̂n (Xi)−m0 (Xi))

(
l̂n (Xi)− l0 (Xi)

)
is upper-bounded by n1/2−(ϕm+ϕl).

When ϕm + ϕl > 1/2, b∗ vanishes.
When ϕm = ϕl, ϕm + ϕ f > 1/2⇒ ϕl > 1/4.
”Debiased” machine learning : the regularization bias is removed by
orthogonalization.

12 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Sample Splitting and ”Overfitting” Bias

c∗ =
[
E
(
ViV ′i

)]−1 1√
n ∑

i∈I
Vi

(
l̂n (Xi)− l0 (Xi)

)
+ r.m.

When l̂n is obtained using the same sample as θ̃n, Vi and
l̂n (Xi)− l0 (Xi) are generally related.

”Overfitting”: l̂n extracts some of the error variation.
For c∗ to vanish, strong conditions (e.g. Donsker properties) that limit
complexity of the parameter space are usually assumed.

But l̂n is obtained using Ic and {Vi} are the errors from I!

They are independent (under i.i.d. assumption)!
So c∗ vanishes, as long as E (V|X) = 0, and

1
n ∑

i∈I

(
l̂n (Xi)− l0 (Xi)

)2 p→ 0.

13 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Cross-Fitting

Drawback of sample splitting: estimation of θ0 only use the main
sample I.

A substantial loss of efficiency.

”Cross-Fitting”: flip the role of the main and auxiliary samples to
obtain a second version of the estimator.

By averaging the two resulting estimators, we can improve the
efficiency.

14 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Double/Debiased Machine Learning Estimation

DML approach (Chernozhukov et al., 2018) has following steps:
1 Randomly split observations into two disjoint subsets: I and I c.
2 Apply a ML algorithm on I c to estimate `0(X) := E(Y|X) and

m0(X) := E(D|X) functions.
3 Define θ̃n as:

θ̃n =
(
∑i∈I Ṽ2

i
)−1

∑i∈I Ṽi[Yi − ˜̀n(Xi)], i ∈ I ,

where Ṽi = Di − m̃n(Xi). n = N/2, and N is the total observations.
4 Switch I and I c in step (2) and (3) to obtain θ̃c

n.
5 Estimate θ0 as

θ̃∗n = (θ̃n + θ̃c
n)/2.

15 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Double/Debiased Machine Learning Estimation

The asymptotic variance of n1/2(θ̃∗n − θ0) is estimated by three steps:
1 Once θ̃n is obtained, the asymptotic variance of n1/2(θ̃n − θ0) is

estimated by the standard White-type estimator:

σ̃2
n =

(
1
n ∑

i∈I
Ṽ2

i

)−1(
1
n ∑

i∈I
Ṽ2

i Ũ2
i

)(
1
n ∑

i∈I
Ṽ2

i

)−1

,

with Ũi = Yi − ˜̀n(Xi)− Ṽi θ̃n, and i ∈ I .
2 Switch I and I c in step (1) to obtain (σ̃c

n)
2.

3 We can estimate asymptotic variance of n1/2(θ̃∗n − θ0) as:

(σ̃∗n)
2 =

1
2

[
σ̃2

n + (σ̃c
n)

2 +
(
θ̃n − θ̃∗n

)2
+
(
θ̃c

n − θ̃∗n
)2
]

.

Under some conditions, n1/2(θ̃∗n − θ0) is asymptotically normal
distributed.

16 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Double/Debiased Machine Learning Estimation

Chernozhukov et al. (2018) show that to ensure the normality, it is
needed to find a ML with the following convergence rates:

1/4 < ϕ`, ϕm

where

˜̀n(Xi)− `0(Xi) = Op
(
n−ϕ`

)
,

m̃n(Xi)−m0(Xi) = Op
(
n−ϕm

)
,

The question is: Which ML algorithm satisfies this condition?

Limited literatures give us guidance on this aspect.

Simulation studies are conducted in this paper.

17 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Monte Carlo Experiments

Yi: outcome variable. Di: policy/treatment variable.

Yi = θ0Di + f0 (Xi) + Ui,
Di = m0(Xi) + Vi.

θ0 = 1.

Ui
i.i.d.∼ N (0, 1). Xi =

(
X1i, . . . , Xpi

)′
with Xji

i.i.d.∼ U (0, 1).
Vi = 1−m0(Xi) with probability m0(Xi). Vi = −m0(Xi) with
probability 1−m0(Xi).

f0 (Xi) = µ f +
p

∑
j=1

f0,j
(
Xji
)

, m0 (Xi) = µm +
p

∑
j=1

m0,j
(
Xji
)

,

with µ f = 1, and µm = 0.5.
n = 2000, 4000, or 8000. p = 5, 10, or 20.
Number of replications R = 2000.

18 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Simulation Study I: Linear Setting

Bias×100 RMSE×100 Size (%, α = 5%)
N = 2000 4000 8000 2000 4000 8000 2000 4000 8000
Regression Tree
p = 5 64.04 96.24 114.04 68.86 98.10 114.98 79.30 99.95 100.00
p = 10 61.56 96.50 114.45 66.42 98.33 115.39 77.05 99.95 100.00
Random Forest
p = 5 17.85 12.36 8.96 19.40 13.34 9.53 46.80 57.40 70.05
p = 10 38.33 27.02 19.54 39.30 27.53 19.85 97.80 99.45 100.00
GB with d = 1
p = 5 2.18 1.26 0.61 5.62 3.85 2.60 8.15 6.50 6.65
p = 10 3.18 1.54 0.98 6.34 3.95 2.72 9.40 7.70 7.35
GB with d = 2
p = 5 3.44 1.96 1.01 6.57 4.31 2.81 10.10 8.10 8.30
p = 10 4.91 2.48 1.51 7.71 4.60 3.06 16.45 10.45 9.35
LASSO
p = 5 0.10 0.13 -0.03 4.60 3.30 2.35 5.15 5.25 4.75
p = 10 0.29 -0.03 0.11 4.78 3.24 2.33 5.80 4.10 5.10
SVRM
p = 5 -9.80 -9.27 -9.18 10.78 9.79 9.44 60.10 84.15 98.80
p = 10 -9.85 -9.61 -9.17 10.94 10.12 9.44 59.80 86.10 98.50
Neural Net
p = 5 31.68 21.79 7.74 33.46 38.54 13.72 0.05 2.70 0.30
p = 10 36.97 25.31 8.79 39.17 40.49 15.87 0.55 3.35 0.85
Nadaraya-Watson
p = 5 12.93 9.64 7.14 14.97 10.69 7.75 37.90 47.25 59.65
p = 10 46.28 37.41 29.98 48.28 38.41 30.52 93.90 99.55 99.95

19 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Simulation Study II: Smooth nonlinear setting

Bias×100 RMSE×100 Size (%, α = 5%)
N = 2000 4000 8000 2000 4000 8000 2000 4000 8000
Regression Tree
p = 5 -76.32 -109.37 -128.00 81.00 111.30 128.91 84.35 100.00 100.00
p = 10 -75.35 -109.56 -127.56 80.21 111.35 128.52 83.15 100.00 100.00
Random Forest
p = 5 -18.97 -12.55 -8.50 20.66 13.57 9.17 41.05 47.75 54.90
p = 10 -44.37 -31.69 -23.12 45.41 32.23 23.41 97.95 99.80 100.00
GB with d = 1
p = 5 -1.48 -0.72 -0.43 5.64 3.78 2.62 6.75 6.50 5.45
p = 10 -3.11 -1.24 -0.65 6.55 3.98 2.64 10.40 7.35 6.50
GB with d = 2
p = 5 -2.26 -1.04 -0.55 6.29 4.08 2.71 8.05 6.35 5.70
p = 10 -4.72 -1.99 -1.05 7.97 4.51 2.93 13.90 8.25 7.70
LASSO
p = 5 5.54 5.51 5.22 8.89 7.43 6.31 11.45 19.35 31.55
p = 10 4.74 5.28 5.26 8.66 7.30 6.35 10.60 18.30 31.70
SVRM
p = 5 -1.04 -0.94 -1.33 7.20 5.18 3.85 6.65 6.85 7.95
p = 10 -1.60 -1.11 -1.21 7.68 5.26 3.78 8.15 7.55 8.10
Neural Net
p = 5 -34.60 -26.94 -6.78 37.13 46.90 16.29 0.00 3.35 0.45
p = 10 -41.79 -29.74 -6.98 44.30 50.38 19.96 0.55 3.95 1.30
Nadaraya-Watson
p = 5 -14.14 -10.93 -7.99 16.43 12.11 8.67 34.00 47.35 56.90
p = 10 -51.11 -41.13 -33.15 53.72 42.42 33.77 90.65 98.20 99.95

20 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Simulation Study III: Nonsmooth Nonlinear Setting

Bias×100 RMSE×100 Size (%, α = 5%)
N = 2000 4000 8000 2000 4000 8000 2000 4000 8000
Regression Tree
p = 5 -88.98 -127.64 -151.04 94.71 130.02 152.35 85.20 100.00 100.00
p = 10 -87.60 -127.47 -150.57 93.26 129.82 151.82 86.25 100.00 100.00
Random Forest
p = 5 -18.75 -10.98 -7.48 22.34 13.20 8.77 25.65 22.85 28.85
p = 10 -48.65 -32.61 -21.53 50.50 33.70 22.13 92.00 95.95 98.05
GB with d = 1
p = 5 -0.20 -0.30 -0.13 6.39 4.05 2.69 5.95 5.45 5.35
p = 10 -0.83 -0.34 -0.27 6.96 4.22 2.76 6.75 5.25 5.80
GB with d = 2
p = 5 -1.15 -0.56 -0.27 6.79 4.16 2.73 6.55 6.00 5.25
p = 10 -2.12 -0.94 -0.51 7.57 4.54 2.87 8.45 7.20 6.75
LASSO
p = 5 -0.19 0.12 0.09 12.53 8.74 6.31 5.35 4.85 5.25
p = 10 -0.78 -0.35 -0.15 12.85 8.76 6.55 5.40 4.50 5.35
SVRM
p = 5 -7.25 -6.85 -6.73 14.10 10.82 9.01 8.65 11.55 20.15
p = 10 -7.35 -7.03 -6.86 14.47 10.96 9.25 9.80 12.45 21.50
Neural Net
p = 5 -41.42 -33.54 -11.68 45.85 65.04 20.84 0.65 4.25 0.30
p = 10 -50.79 -38.82 -13.69 55.90 70.52 29.96 3.60 5.25 1.70
Nadaraya-Watson
p = 5 -10.95 -6.16 -2.67 18.01 11.57 6.99 14.10 12.65 8.00
p = 10 -62.80 -48.25 -36.80 66.44 50.34 37.92 89.35 95.25 98.90

21 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Simulation Study IV: Nonsmooth Nonlinear Setting with
2-Way Interactions

Bias×100 RMSE×100 Size (%, α = 5%)
N = 2000 4000 8000 2000 4000 8000 2000 4000 8000
Regression Tree
p = 5 -69.21 -92.90 -109.74 75.79 95.59 111.08 63.70 98.85 100.00
p = 10 -69.26 -93.27 -108.93 75.85 96.10 110.28 64.50 98.65 100.00
Random Forest
p = 5 -13.15 -8.13 -4.65 18.42 11.01 6.34 13.15 13.50 14.20
p = 10 -29.69 -19.78 -12.07 32.93 21.27 12.95 43.75 60.30 66.00
GB with d = 1
p = 5 112.73 112.67 113.06 114.84 113.61 113.53 99.95 100.00 100.00
p = 10 108.96 110.49 112.45 111.07 111.41 112.90 99.95 100.00 100.00
GB with d = 2
p = 5 2.77 1.47 0.94 9.35 5.53 3.41 6.55 6.60 5.45
p = 10 6.73 3.50 2.29 11.47 6.42 4.16 10.35 8.80 10.45
LASSO
p = 5 211.64 210.97 211.17 213.17 211.71 211.54 100.00 100.00 100.00
p = 10 208.75 210.03 211.37 210.35 210.76 211.74 100.00 100.00 100.00
SVRM
p = 5 199.29 199.17 199.66 200.86 199.92 200.03 100.00 100.00 100.00
p = 10 196.59 198.38 199.83 198.28 199.12 200.21 100.00 100.00 100.00
Neural Net
p = 5 39.34 22.77 12.37 45.68 28.36 19.40 0.50 0.25 0.80
p = 10 46.24 33.21 22.95 54.88 38.71 27.93 2.80 2.45 3.80
Nadaraya-Watson
p = 5 2.21 2.31 3.03 18.68 12.91 8.73 5.70 5.45 5.95
p = 10 -25.11 -14.83 -8.72 38.60 23.73 15.14 21.45 18.20 15.55

22 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Why Random Forests Don’t Work?

Need a rate of convergence faster than 1/4.

Rates of convergence of trees and random forests are not clear.

The same training data is used for both model selection and model
fitting.

Intuition: Lin and Jeon (2006) showed that random forests can be
viewed as the adaptive version of nearest neighbors.

23 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Rate of Convergence of Random Forests
Biau (2012, JMLR)

Biau (2012, JMLR) studied the simplied version of random forests
(Breiman, 2004), and showed that

E
(
[rn (X)− r (X)]2

)
= O

(
n

−0.75
S log 2+0.75

)
,

where r (X) = E (Y|X) is the unknown function, rn is the simplified
random forest, and S is # of Strong features, i.e., Y only depends on
these S features.

In Biau (2012), # of features is finite.

The rate of convergence is n−0.375/(S log 2+0.75) .

When S = 1, 0.375
/
(S log 2 + 0.75) = 0.2598 > 1/4.

When S = 2, 0.375
/
(S log 2 + 0.75) = 0.1755 < 1/4. . . .

24 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Algorithm Gradient Boosting (Efron and Hastie, 2016)

Randomly split the sample into I and I c. Set the number of trees to be grown as B,
the number of splits (interaction depth) d, and the shrinkage parameter ε.

1 Initialize the fitted model as Ĝ0 = 0 and set the initial residuals r0,i = Yi,
i = 1, . . . , n, where these Yi are from I c.

2 For b = 1, 2, . . . , B,

1 Grow a regression tree g̃b with depth d by minimizing the RSS:

∑n
i=1[rb−1,i − gb(Xi)]

2, based on the sub-sample I c.
2 Compute a shrunken version of g̃b: ĝb = ε · g̃b and update the fitted

model for Yi as

Ĝb(Xi) = Ĝb−1(Xi) + ĝb(Xi), i = 1, 2, . . . , n.

3 Update the residuals as

rb,i = rb−1,i − ĝb(Xi), i = 1, 2, . . . , n.

3 Return the final, fitted function ĜB(Xi), i = 1, 2, . . . , n.

25 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Why Gradient Boosting Works?

The convergence rate of gradient boosting is not clear.

Efron et al. (2004) point out the similarity between gradient boosting
and LASSO.

The L2 boosting (not the same as gradient boosting) has the
convergence rate slower than but close to that of LASSO (Luo and
Spindler, 2016).

Gradient boosting with interaction depth d works best if E(Y|X) is
with up to d-way interactions of covariates.

26 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Empirical setting

AbsPDACit = θ0 BigNit + f (Xit) + Uit,
BigNit = m (Xit) + Vit.

AbsPDAC: absolute value of the performance-matched discretionary
accruals. Proxy for inferior audit quality.

BigN: dummy of the client of a Big N auditor.

X: logarithm of total assets, asset turnover ratios (ATURN, sales
divided by one-year lagged total assets), market values of equity
(MKT), return on assets ratios (ROA), leverages (LEV, debts scaled
by the one-year lagged total assets), current assets (CURR, scaled by
current liabilities), and year and industry categorical variables
(two-digit SIC codes).

27 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Empirical Results

We replicate the data used in Lawrence et al. (2011). There are
69,354 Big-N audited firms and 17,877 non-Big-N audited firms
during 1988 to 2006 in U.S.

DML with gradient boosting results support the existence of the Big
N effect. The Big N auditors are negatively significantly associated to
lower AbsPDAC at 1% level.

Also find the non-linear relations between firm characteristics and
AbsPDAC using Friedman (2001)’s partial dependence as, for a
specific value x∗1 of the covariate X1 is computed as

1
n

n

∑
i=1

ĜB(x∗1 , xi2, . . . , xip),

where ĜB is obtained from Step 3 of the gradient boosting algorithm.

28 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Big N Effect Revisit: PSM

Dependent Variable: AbsPDAC

(1) (2)
Without replacement With replacement

BigN -0.0010 -0.0092***
s.e. (0.0017) (0.0015)

Year Yes Yes
Industry Yes Yes

29 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

The estimation results based on DML-GB

Dependent variable: AbsPDAC
Year No Yes No Yes

Industry No No Yes Yes

Panel A: d = 1

BigN −0.0101∗∗∗ −0.0099∗∗∗ −0.0098∗∗∗ −0.0097∗∗∗

s.e. (0.0014) (0.0014) (0.0014) (0.0014)

t ratio −7.29 −6.96 −7.13 −6.85

Panel B: d = 2

BigN −0.0078∗∗∗ −0.0063∗∗∗ −0.0072∗∗∗ −0.0070∗∗∗

s.e. (0.0014) (0.0015) (0.0014) (0.0015)

t ratio −5.61 −3.30 −5.19 −4.77

30 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Partial dependence on client firm characteristics

0.12

0.14

0.16

2 4 6 8

ln(At)

0.135

0.140

0.145

0.150

0.155

0.5 1.0 1.5 2.0 2.5

ATURNt

0.141

0.143

0.145

0.147

2 4 6 8

ln(MKTt)

0.12

0.15

0.18

0.21

−0.4 −0.3 −0.2 −0.1 0.0 0.1

ROAt−1

0.142

0.143

0.144

0.145

0.146

0.147

0.0 0.2 0.4

LEVt−1

0.1400

0.1425

0.1450

0.1475

1 2 3 4 5

CURRt−1

31 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Sensitivity of Big N effect to GB hyper-parameters

We set the following GB hyper-parameters:

100 sets of randomly generated subs-samples for each shrinkage
parameter.
Four shrinkage parameters, ε: 0.05, 0.1, 0.15, and 0.2.
The bag fraction is 0.5, and the number of trees is determined by
10-fold cross-validation.

Results:
These densities of estimates are quite similar and concentrated between
−0.0090 and −0.0105
DML-GB estimates are quite robust to the shrinkage parameters and
sample splitting schemes.
The corresponding densities of the t ratios from DML-GB estimates are
similar and all below the 1% critical value, −2.33.
This result is in contrast to the density plot of DeFond et al. (2016),
who show that the PSM estimates are more sensitive to design settings.

32 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Figure: Density of the Big N effect: The DML-GB with d = 1

0

500

1000

1500

2000

2500

−0.0110 −0.0105 −0.0100 −0.0095 −0.0090 −0.0085
(a) The estimates of the Big N effect

De
ns

ity

Shrinkage

shrinkage = 0.2

shrinkage = 0.15

shrinkage = 0.1

shrinkage = 0.05

0

1

2

3

−7.2 −6.8 −6.4
(b) The t ratio of the Big N effect

De
ns

ity

Shrinkage

shrinkage = 0.2

shrinkage = 0.15

shrinkage = 0.1

shrinkage = 0.05

33 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Conclusion

We find that Big N auditors have a positive effect on audit quality
and that this effect is not only statistically significant but also
economically important.

We demonstrate by simulations that, for the DML approach, the
gradient boosting method is to be preferred to other learning
methods, such as regression tree and random forest.

In contrast to the results of propensity score matching, our estimates
of said effect are quite robust to the hyper-parameters in the gradient
boosting algorithm.

34 / 35

Introduction Double Machine Learning Monte Carlo Experiments Empirical Results Conclusion References

Key Reference

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey,
W., Robins, J., 2018. Double/debiased machine learning for treatment and
structural parameters. Econometrics Journal 21, 1–68.

DeFond, M., Erkens, D. H., Zhang, J., 2016. Do client characteristics really drive
the Big N audit quality effect? New evidence from propensity score matching.
Management Science 63 (11), 3628–3649.

Efron, B., Hastie, T., 2016. Computer Age Statistical Inference: Algorithms,
Evidence and Data Science. Cambridge Press.

Friedman, J. H., 2001. Greedy function approximation: A gradient boosting
machine. Annals of Statistics 29, 1189–1232.

Lawrence, A., Minutti-Meza, M., Zhang, P., 2011. Can Big 4 versus non-Big 4
differences in audit-quality proxies be attributed to client characteristics? The
Accounting Review 86 (1), 259–286.

35 / 35

	Introduction
	Double Machine Learning
	Monte Carlo Experiments
	Empirical Results
	Conclusion

