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Motivation (1)

I The classical expected utility maximization model (e.g.
CRRA/CARA utility) is a concave optimization problem

I In contrast, many investment objectives are related to
non-concave utility, e.g.

- The goal-reaching problem of Browne (1999, Advances in
Applied Probability): fund managers maximize the probability
of beating some benchmark

- The S-shaped utility: Kahneman and Tversky (1979,
Econometrica), Berkelaar, Kouwenberg and Post (2004, The
Review of Economics and Statistics)

- Convex compensation schemes: Carpenter (2000, JF), Basak,
Pavlova and Shapiro (2007, RFS), He and Kou (2018, MF)

- Aspiration utility: Lee, Zapatero and Giga (2018)
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Motivation (2)

I Previous literature: ignore portfolio constraints (such as
no-short-sale, no borrowing, etc)

I Shortage: Unrealistic high leverage
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(a): Goal-Reaching
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(b): S-Shaped Utility
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(c):Option Compensation
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(d): Convex Flow-Performance Relationship
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(e): Traditional Compensation Scheme
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(f): Aspiration Utility
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Motivation (3)

I Ignore portfolio constraints ⇒ concavification principle ⇒
concave value function

I With and without portfolio constraints: an example with
S-shaped utility
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Our focus

I Non-concave portfolio optimization without the
concavification principle

- general leverage constraints (e.g. no short sale, no borrowing)
- discontinuous utility

I Concavification principle does not apply

- numerical methods: scheme? convergence?

I Joint impact of portfolio constraints and non-concave utility
on optimal policy
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Our findings

I General findings

- The value function is not necessarily globally concave before
maturity

- Investors are not myopic w.r.t. portfolio constraints in the
sense that they may take risker leverage ratios in anticipation
of portfolio constraints

- Investors may short sale stock despite positive risk premium for
higher volatility
The intuition is that in concave utility case, the volatility is a
burden which is need to be offset by the higher return.
However, in convex utility case, the volatility is actually a
resource

I Those model-specific findings in literature remain valid to
some extent.
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Theoretical contribution

I We prove the comparison principle even in the presence of
portfolio constraints and discontinuous utility

- The value function is the unique discontinuous viscosity
solution to the associated HJB equation

- Convergence of the standard monotone finite difference scheme
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The model

I A riskfree bond B with interest rate 0 and a risky stock S

dSt/St = µdt+ σdBt

I W π(t): the self-financing wealth process

dW π(t) = µπ(t)W π(t)dt+ σπ(t)W π(t)dBt,

where π(t) : the proportion of wealth in stock

I

V (t, w) = sup
d≤π≤u, Wπ(T )≥0

E [U(W π(T ))|W (t) = w] ,

where
- d ≤ π ≤ u: portfolio constraints, if d = 0, no short-selling; if
u = 1, no borrowing

- U(·): utility function, not necessarily concave or continuous
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Examples of non-concave utilities: Goal-reaching problem

I A fund manager maximizes the probability of beating some
benchmark:

U(WT ) = 1{WT≥H},

where H is the target level
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Examples of non-concave utilities: S-shaped utility

I Tversky and Kahneman (1979, Econometrica)’s S-Shaped
utility:

U(WT ) =

{
(WT −W0)

p for WT > W0

−λ(W0 −WT )
p for WT ≤W0

- W0: the initial wealth, distinguishing the gain and loss

- 0 < p < 1: the degree of risk aversion, e.g. p = 0.88

- λ > 1: pain from loss > pleasure from gain, e.g. λ = 2.25

- The utility is convex for loss WT < W0 and concave for gain
WT > W0
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Examples of non-concave utilities: Option compensation

I Carpenter (2000, JF): A risk averse manager compensated
with a call option over the fund he controls

U(WT ) = (mmax{WT −K, 0}+ C)p

- 0 < p < 1: the risk aversion degree

- K > 0: the strike price of the option

- m: the number of options

- C > 0: the constant compensation
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Theoretic analysis of constrained non-concave problem

Consider the HJB equation:

∂V

∂t
+ sup
d≤πt≤u

{
1

2
π2
tw

2σ2 ∂
2V

∂w2
+ πtwµ

∂V

∂w

}
= 0, (1)

with the boundary condition

V (t, 0) = U(0) (2)

and an asymptotic condition at maturity:
(i) if [d, u] is unbounded, it degenerates to the standard case

lim
(t,ζ)→(T−,w)

V (t, ζ) = Û(w), (3)

where Û is the concave envelope of U
(ii) if [d, u] is bounded, (discontinuity!)

lim
(t,ζ)→(T−,w)

V (t, ζ) − U(w−) − 2Φ (y) (U(w+) − U(w−)) = 0 (4)

where y = 0∧(ln ζ−lnw)

max{−d,u}σ
√
T−t and Φ is the CDF of a standard normal random

variable

12 / 22



Theoretic analysis of constrained non-concave problem

Theorem (Comparison Principle)

(i) Assume [d, u] is bounded (unbounded). Let v∗ and v∗ be
separately viscosity subsolution and supersolution to (1) with
boundary conditions (2) and (4) (with (2) and (3))

Suppose |v∗|, |v∗| ≤ C1w
p + C2, for some 0 < p < 1, C1, C2 > 0

Then v∗ ≤ v∗ for all w ≥ B and 0 < t < T

I This theorem covers both the continuous and the
discontinuous case

I

Comparison principle⇒
{

uniqueness of viscosity solution

convergence of numerical schemes
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Theoretic analysis of constrained non-concave problem

Theorem
V (t, w) is the unique viscosity solution of the HJB equation to (1)
with boundary conditions (2) and (4) (with (2) and (3)) which
satisfies

|v| ≤ C1w
p + C2, for some 0 < p < 1, C1, C2 > 0 (5)

Theorem (Numerical Scheme Convergence)

The numerical solution of a fully implicit finite difference scheme
with upwind treatment for the HJB equation converges to the
value function as the discretization size tends to zero
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General findings (1)
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Figure: Goal reaching
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Figure: S-shaped utility

In general the value function is not globally concave before
maturity
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General findings (2)
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Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with
positive (negative) risk premium
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General findings (3)
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T = 1/12, B = 0.5)

Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with
positive (negative) risk premium
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Goal-reaching problem
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I The optimal goal-reaching strategy is no longer equivalent to
the replicating strategy of a digital option rather than the
assertion in Browne (1999)
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S-shaped utility(W0 = 1)
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r = 0.03, µ = 0.07, σ = 0.3, p = 0.5, λ = 2.25, W0 = 1,
T = 1/12, B = 0.5

I Reduce more stock near reference point: a more conservative
strategy compared to Berkelaar, Kouwenberg and Post (2004)
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Option compensation
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Figure: r = 0.03, µ = 0.07, σ = 0.3, p = 0.5, K = 1, α = 0.2, C = 0.02,
W0 = 1, T − t = 1/12, B = 0.5

I Convex incentives may reduce stock investment in more
scenarios compared to Carpenter (2000, JF)
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Conclusion(1)

I Non-concave portfolio optimization without the
concavification principle: portfolio constraints, discontinuous
utility

I We prove comparison principle by introducing an asymptotic
condition at maturity. This implies

- the convergence of the standard monotone finite difference
method

- uniqueness of discontinuous viscosity solutions to the associate
HJB equations
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Conclusion (2)

I Three general findings
I The concavification technique no longer applies, and in general

the value function is not globally concave before maturity

I Investors may take action in anticipation of future portfolio
constraints being binding

I Investors may gamble against market trend in the case of
underperformance

I Those model-specific findings hold to some extent
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