Non-Concave Utility Maximization without the Concavification Principle

Shuaijie Qian

Math Department National University of Singapore

Joint work with Min Dai (NUS), Steven Kou (Boston U) and Xiangwei Wan (SJTU)

Motivation (1)

- The classical expected utility maximization model (e.g. CRRA/CARA utility) is a concave optimization problem
- In contrast, many investment objectives are related to non-concave utility, e.g.
 - The goal-reaching problem of Browne (1999, Advances in Applied Probability): fund managers maximize the probability of beating some benchmark
 - The S-shaped utility: Kahneman and Tversky (1979, Econometrica), Berkelaar, Kouwenberg and Post (2004, The Review of Economics and Statistics)
 - Convex compensation schemes: Carpenter (2000, JF), Basak, Pavlova and Shapiro (2007, RFS), He and Kou (2018, MF)
 - Aspiration utility: Lee, Zapatero and Giga (2018)

Motivation (2)

- Previous literature: ignore portfolio constraints (such as no-short-sale, no borrowing, etc)
- Shortage: Unrealistic high leverage

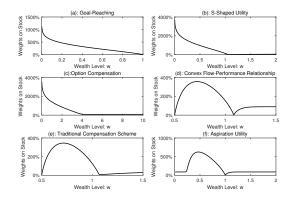


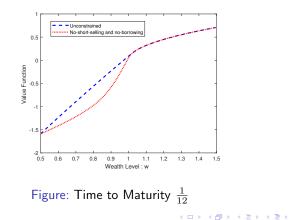
Figure: Time to Maturity $\frac{1}{12}$

3

イロト イポト イヨト イヨト

Motivation (3)

- \blacktriangleright Ignore portfolio constraints \Rightarrow concavification principle \Rightarrow concave value function
- With and without portfolio constraints: an example with S-shaped utility



Our focus

- Non-concave portfolio optimization without the concavification principle
 - general leverage constraints (e.g. no short sale, no borrowing)
 - discontinuous utility
- Concavification principle does not apply
 - numerical methods: scheme? convergence?
- Joint impact of portfolio constraints and non-concave utility on optimal policy

Our findings

General findings

- The value function is not necessarily globally concave before maturity
- Investors are not myopic w.r.t. portfolio constraints in the sense that they may take risker leverage ratios in anticipation of portfolio constraints
- Investors may short sale stock despite positive risk premium for higher volatility
 The intuition is that in concave utility case, the volatility is a burden which is need to be offset by the higher return.
 However, in convex utility case, the volatility is actually a resource
- Those model-specific findings in literature remain valid to some extent.

Theoretical contribution

- We prove the comparison principle even in the presence of portfolio constraints and discontinuous utility
 - The value function is the unique discontinuous viscosity solution to the associated HJB equation
 - Convergence of the standard monotone finite difference scheme

The model

►

• A riskfree bond B with interest rate 0 and a risky stock S

 $dS_t/S_t = \mu dt + \sigma d\mathcal{B}_t$

• $W^{\pi}(t)$: the self-financing wealth process

$$dW^{\pi}(t) = \mu \pi(t) W^{\pi}(t) dt + \sigma \pi(t) W^{\pi}(t) d\mathcal{B}_t,$$

where $\pi(t)$: the proportion of wealth in stock

$$V(t,w) = \sup_{d \le \pi \le u, \ W^{\pi}(T) \ge 0} E\left[U(W^{\pi}(T))|W(t) = w\right],$$

where

- $d \leq \pi \leq u$: portfolio constraints, if d=0, no short-selling; if u=1, no borrowing
- $U(\cdot)$: utility function, not necessarily concave or continuous

8 / 22

Examples of non-concave utilities: Goal-reaching problem

A fund manager maximizes the probability of beating some benchmark:

$$U(W_T) = 1_{\{W_T \ge H\}},$$

where H is the target level

Examples of non-concave utilities: S-shaped utility

 Tversky and Kahneman (1979, Econometrica)'s S-Shaped utility:

$$U(W_T) = \begin{cases} (W_T - W_0)^p & \text{for } W_T > W_0 \\ -\lambda (W_0 - W_T)^p & \text{for } W_T \le W_0 \end{cases}$$

- W_0 : the initial wealth, distinguishing the gain and loss
- 0 : the degree of risk aversion, e.g. <math>p = 0.88
- $\lambda > 1$: pain from loss > pleasure from gain, e.g. $\lambda = 2.25$
- The utility is convex for loss $W_T < W_0$ and concave for gain $W_T > W_0$

Examples of non-concave utilities: Option compensation

 Carpenter (2000, JF): A risk averse manager compensated with a call option over the fund he controls

 $U(W_T) = (m \max\{W_T - K, 0\} + C)^p$

- 0 : the risk aversion degree
- K > 0: the strike price of the option
- m: the number of options
- C > 0: the constant compensation

Theoretic analysis of constrained non-concave problem Consider the HJB equation:

$$\frac{\partial V}{\partial t} + \sup_{d \le \pi_t \le u} \left\{ \frac{1}{2} \pi_t^2 w^2 \sigma^2 \frac{\partial^2 V}{\partial w^2} + \pi_t w \mu \frac{\partial V}{\partial w} \right\} = 0, \tag{1}$$

with the boundary condition

$$V(t,0) = U(0)$$
 (2)

and an asymptotic condition at maturity:

(i) if [d, u] is unbounded, it degenerates to the standard case

$$\lim_{(t,\zeta)\to(T-,w)}V(t,\zeta)=\hat{U}(w),\tag{3}$$

where \hat{U} is the concave envelope of U(ii) if [d, u] is bounded, (discontinuity!)

$$\lim_{(t,\zeta)\to(T-,w)} V(t,\zeta) - U(w-) - 2\Phi(y)(U(w+) - U(w-)) = 0$$
(4)

where $y=\frac{0\wedge(\ln\zeta-\ln w)}{\max\{-d,u\}\sigma\sqrt{T-t}}$ and Φ is the CDF of a standard normal random variable

Theoretic analysis of constrained non-concave problem

Theorem (Comparison Principle)

(i) Assume [d, u] is bounded (unbounded). Let v^* and v_* be separately viscosity subsolution and supersolution to (1) with boundary conditions (2) and (4) (with (2) and (3))

Suppose $|v^*|$, $|v_*| < C_1 w^p + C_2$, for some $0 , <math>C_1, C_2 > 0$

Then $v^* < v_*$ for all w > B and 0 < t < T

This theorem covers both the continuous and the discontinuous case

Comparison principle \Rightarrow { uniqueness of viscosity solution convergence of numerical schemes

Theoretic analysis of constrained non-concave problem

Theorem

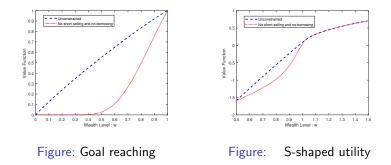
V(t, w) is the unique viscosity solution of the HJB equation to (1) with boundary conditions (2) and (4) (with (2) and (3)) which satisfies

 $|v| \le C_1 w^p + C_2$, for some $0 , <math>C_1, C_2 > 0$ (5)

Theorem (Numerical Scheme Convergence)

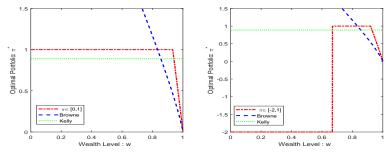
The numerical solution of a fully implicit finite difference scheme with upwind treatment for the HJB equation converges to the value function as the discretization size tends to zero

General findings (1)



In general the value function is not globally concave before maturity

General findings (2)

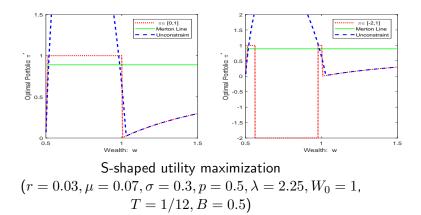


Goal reaching problem ($r = 0.07, \mu = 0.15, \sigma = 0.3, T = 1$)

Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with positive (negative) risk premium

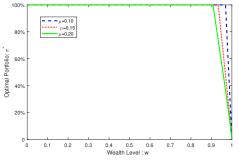
General findings (3)



Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with positive (negative) risk premium

Goal-reaching problem

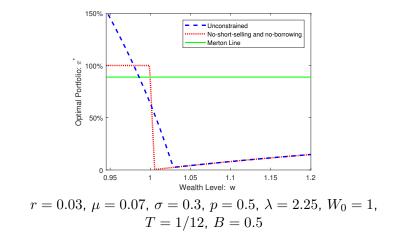


Optimal strategy for different μ , while $r = 0.07, \sigma = 0.3, T = 1, B = 0$

 The optimal goal-reaching strategy is no longer equivalent to the replicating strategy of a digital option rather than the assertion in Browne (1999)

イロト イポト イヨト イヨト

S-shaped utility $(W_0 = 1)$



 Reduce more stock near reference point: a more conservative strategy compared to Berkelaar, Kouwenberg and Post (2004)

Option compensation

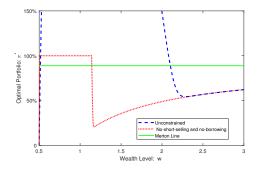


Figure: r = 0.03, $\mu = 0.07$, $\sigma = 0.3$, p = 0.5, K = 1, $\alpha = 0.2$, C = 0.02, $W_0 = 1$, T - t = 1/12, B = 0.5

 Convex incentives may reduce stock investment in more scenarios compared to Carpenter (2000, JF)

20 / 22

3

Conclusion(1)

- Non-concave portfolio optimization without the concavification principle: portfolio constraints, discontinuous utility
- We prove comparison principle by introducing an asymptotic condition at maturity. This implies
 - the convergence of the standard monotone finite difference method
 - uniqueness of discontinuous viscosity solutions to the associate HJB equations

Conclusion (2)

- Three general findings
 - The concavification technique no longer applies, and in general the value function is not globally concave before maturity
 - Investors may take action in anticipation of future portfolio constraints being binding
 - Investors may gamble against market trend in the case of underperformance
- Those model-specific findings hold to some extent