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Motivation (1)

» The classical expected utility maximization model (e.g.
CRRA/CARA utility) is a concave optimization problem
> In contrast, many investment objectives are related to

non-

concave utility, e.g.

The goal-reaching problem of Browne (1999, Advances in
Applied Probability): fund managers maximize the probability
of beating some benchmark

The S-shaped utility: Kahneman and Tversky (1979,
Econometrica), Berkelaar, Kouwenberg and Post (2004, The

Review of Economics and Statistics)

Convex compensation schemes: Carpenter (2000, JF), Basak,
Pavlova and Shapiro (2007, RFS), He and Kou (2018, MF)

Aspiration utility: Lee, Zapatero and Giga (2018)
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Motivation (2)

» Previous literature: ignore portfolio constraints (such as
no-short-sale, no borrowing, etc)
» Shortage: Unrealistic high leverage
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Motivation (3)

» lIgnore portfolio constraints = concavification principle =
concave value function

» With and without portfolio constraints: an example with
S-shaped utility
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Our focus

» Non-concave portfolio optimization without the
concavification principle

- general leverage constraints (e.g. no short sale, no borrowing)
- discontinuous utility

» Concavification principle does not apply
- numerical methods: scheme? convergence?

» Joint impact of portfolio constraints and non-concave utility
on optimal policy
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Our findings

» General findings

- The value function is not necessarily globally concave before
maturity

- Investors are not myopic w.r.t. portfolio constraints in the
sense that they may take risker leverage ratios in anticipation
of portfolio constraints

- Investors may short sale stock despite positive risk premium for
higher volatility
The intuition is that in concave utility case, the volatility is a
burden which is need to be offset by the higher return.
However, in convex utility case, the volatility is actually a
resource

» Those model-specific findings in literature remain valid to
some extent.
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Theoretical contribution

» We prove the comparison principle even in the presence of
portfolio constraints and discontinuous utility

- The value function is the unique discontinuous viscosity
solution to the associated HJB equation

- Convergence of the standard monotone finite difference scheme
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The model

> A riskfree bond B with interest rate 0 and a risky stock .S
dS;/Sy = pdt + odB;
» W7 (t): the self-financing wealth process
dWT(t) = pr(t)WT(t)dt + on(t)W™ (t)dB:,

where 7(t) : the proportion of wealth in stock

V(t,w) = sup E[UWT™T))|W(t) =w],
d<m<u, WT(T)>0
where
- d <7 < u: portfolio constraints, if d = 0, no short-selling; if
u = 1, no borrowing
- U(+): utility function, not necessarily concave or continuous



Examples of non-concave utilities: Goal-reaching problem

» A fund manager maximizes the probability of beating some
benchmark:

UWr) = Lwy>Hys

where H is the target level
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Examples of non-concave utilities: S-shaped utility

» Tversky and Kahneman (1979, Econometrica)’s S-Shaped
utility:

U(W ) _ (WT - W())p for WT > WO
= —)\(Wo — WT)p for WT < Wo

- Wy: the initial wealth, distinguishing the gain and loss
- 0 < p < 1: the degree of risk aversion, e.g. p = 0.88
- A > 1: pain from loss > pleasure from gain, e.g. A =2.25

- The utility is convex for loss W < Wy and concave for gain
Wr > Wy
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Examples of non-concave utilities: Option compensation

» Carpenter (2000, JF): A risk averse manager compensated
with a call option over the fund he controls

U(Wrp) = (mmax{Wr — K,0} + C)P

- 0 < p < 1: the risk aversion degree
- K > 0: the strike price of the option
- m: the number of options

- C > 0: the constant compensation
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Theoretic analysis of constrained non-concave problem
Consider the HJB equation:

ov 1 5 5 20°V ov
ar + s, {grifo? g e} o @

with the boundary condition
V(t,0) = U(0) (2)

and an asymptotic condition at maturity:
(i) if [d,u] is unbounded, it degenerates to the standard case

li Vit ¢) = U(w), 3
wom (t,€) (w) (3)

where U is the concave envelope of U
(i) if [d,u] is bounded, (discontinuity!)

colm  V(t0) - Ulw=) =22 (@y) Uw+) -U(w=-) =0 (4)

OA(In {—1n w)

el —d YoV T—T and ® is the CDF of a standard normal random

where y =
variable
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Theoretic analysis of constrained non-concave problem

Theorem (Comparison Principle)

(i) Assume [d,u| is bounded (unbounded). Let v* and v, be
separately viscosity subsolution and supersolution to (1) with
boundary conditions (2) and (4) (with (2) and (3))

Suppose |v*

ve| < CrwP + Oy, for some 0 < p <1, Cq,Cy >0

’

Then v* <w, forallw> B and 0 <t <T

» This theorem covers both the continuous and the
discontinuous case

. o uniqueness of viscosity solution
Comparison principle =

convergence of numerical schemes
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Theoretic analysis of constrained non-concave problem

Theorem

V (t,w) is the unique viscosity solution of the HJB equation to (1)
with boundary conditions (2) and (4) (with (2) and (3)) which
satisfies

lv| < CrwP + Cq, for some 0 <p <1, C1,Cy >0 (5)

Theorem (Numerical Scheme Convergence)

The numerical solution of a fully implicit finite difference scheme
with upwind treatment for the HJB equation converges to the
value function as the discretization size tends to zero
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General findings (1)
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General findings (2)
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Goal reaching problem (r = 0.07,x = 0.15,0 = 0.3,7 = 1)
Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with
positive (negative) risk premium
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General findings (3)
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S-shaped utility maximization
(r=0.03,u=0.07,0=0.3,p=05\=225W, = 1,
T =1/12, B = 0.5)

Investors are not myopic with respect to portfolio constraints

Investors may gamble by short-selling (borrowing) stock even with
positive (negative) risk premium
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Goal-reaching problem
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Optimal strategy for different p, while
r=0.07,0=03T=1,B=0

» The optimal goal-reaching strategy is no longer equivalent to
the replicating strategy of a digital option rather than the
assertion in Browne (1999)
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S-shaped utility(WW, = 1)
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» Reduce more stock near reference point: a more conservative
strategy compared to Berkelaar, Kouwenberg and Post (2004)
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Option compensation
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» Convex incentives may reduce stock investment in more
scenarios compared to Carpenter (2000, JF)

20 /22



Conclusion(1)

» Non-concave portfolio optimization without the
concavification principle: portfolio constraints, discontinuous
utility

» We prove comparison principle by introducing an asymptotic
condition at maturity. This implies

- the convergence of the standard monotone finite difference
method

- uniqueness of discontinuous viscosity solutions to the associate
HJB equations

21/22



Conclusion (2)

» Three general findings

» The concavification technique no longer applies, and in general
the value function is not globally concave before maturity

» Investors may take action in anticipation of future portfolio
constraints being binding

» Investors may gamble against market trend in the case of
underperformance

» Those model-specific findings hold to some extent
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