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Outline

Outline

We study the estimation of nonlinear models with spatial
(cross-sectional) correlated data.

We estimate the parameters of interest within the Quasi-MLE
framework, with a correct conditional mean assumption.

Based on QMLE ignoring spatial dependence, we study possible
efficiency gain of generalized estimating equations (GEE).

We study the binary response data and count data with spatial
correlation in an error term.

For binary response data, we find no efficiency gain for the Probit
GEE.

For count data, we find Negative Binomial II GEE performs better
than Poisson GEE.
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Introduction

Introduction

In empirical economic, social studies and finance. There are examples
of discrete data which exhibit spatial correlations due to the closeness
of geographical locations of individuals or agents.

Such discrete data includes binary response 0,1 and count data
0,1,2,...,1000,....

Example 1: Firm technology spillover. The number of patents a
firm received shows correlation with that received by other firms near
by. This may be due to a technology spillover effect from other firms.
E.g. Bloom et al (2013).

Example 2: Neighborhood effect. There is a causal effect between
the individual decision whether to own stocks and the average stock
market participation of the individual’s community. E.g. Brown et al
(2008).

The dependent variable has two characteristics: nonlinearity and
spatial correlated (cross-sectionally) correlated.
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Econometric Model

Econometric Model

The estimation of nonlinear models can be formed within
M-estimation framework as a minimization or maximization
problem. In particular, nonlinear least squares (NLS) and maximum
likelihood (MLE) are two examples.
Let {wN} ≡ {(xi , yi ) , i = 1, 2, ...,N} sampled on a lattice DN . wi is
the observed data obtained at location si .
We write the problem as an M-estimation of θ0 given by minimizing
the objective function QN as follows,

θ̂N = arg min
θ∈Θ

QN (wN , DN ; θ) . (1)

In particular, QN (wN , DN ; θ) can be expressed as a sample average:

QN (wN , DN ; θ) =
1

N

N

∑
i=1

qi (wi , DN ; θ) , (2)

where qi (wi , DN ; θ) is some real valued function defined on Θ. For
MLE, qi is the (negative) log likelihood.
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Econometric Model

Maximum likelihood estimation (MLE)

Maximum likelihood estimation (MLE) is a widely used method in
estimating both linear and nonlinear models.
A full MLE needs to specify the joint distributions of spatial random
variables. This includes correctly specifying the marginal and the
conditional distributions.
However, given a spatial data set, the dependence structure is
generally unknown. If the joint distribution of the variables is
misspecified, MLE is generally not consistent.
Partial MLE uses part of the joint distributions but needs to
correctly specify the partial distribution. Wang, Iglesias and
Wooldridge (2013) use a bivariate probit partial MLE to improve the
estimation efficiency with a spatial probit model. Distribution of
multivaraite probit is hard to compute.
There is a quite related terminology, composite likelihood, whose
motivation is to avoid computing or modelling the joint distributions
of high dimensional random processes (Varin, Reid & Firth 2011).
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Econometric Model

QMLE in the LEF

Question: Can we use less distributional assumption but improve
estimation efficiency?

QMLE requires only that we correctly specify the conditional mean
and variance, and the relationship between conditional mean and
variance of the dependent variable.

Gourieroux, Monfort, and Trognon (1984): Using a density that
belongs to a linear exponential family (LEF), QMLE is consistent if
we correctly specify the conditional mean with other features of the
density misspecified.

Normal, Bernoulli, Poisson, exponential log likelihoods are all
members of the linear exponential family.

NLS is a QMLE based on the normal density function.

Generalized linear models (GLM) with a link function to introduce
nonlinearity, see McCullagh and Nelder (1989).
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Econometric Model

QMLE in the LEF

We assume the conditional mean is correctly specified.

E (yi |xi ) = mi (xi , θ0) , i = 1, 2, ...,N (3)

Based on a conditional density f (·|x; θ) in the linear exponential
family, the log likelihood for each individual is

li (θ) ≡ log f (yi |xi ; θ) , i = 1, 2, ...,N. (4)

Ignoring any spatial dependence, the partial (or pooled) QMLE is

θ̂ = argmax
θ∈Θ

N

∑
i=1

log f (yi |xi ; θ) (5)

One characterization of QMLE in LEF is that the individual score
function has the following form:

si (θ) = ∇mi (xi ; θ)′ [yi −mi (xi ; θ)] /vi (mi (xi ; θ)) . (6)

QMLE is consistent. But it is not the most efficient.
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Econometric Model

Generalized estimating equations (GEE)

The GEE approach was first extended to panel data by Zeger and
Liang (1986), and then used in panel data cases. For e.g. Albert and
McShane (1995).

A generalized estimating equation is used to estimate the
parameters of a generalized linear model with a possible unknown
correlation between outcomes (Liang and Zeger 1986). GEE is
characterized by its first order condition

S = ∇m′ (θ)W−1 (γ, θ) [y−m (θ)] , (7)

where ∇θm′ (θ) is the gradient of m (θ) .

W is the working variance-covariance matrix. Other than just account
for the variances, it specifies a working correlation matrix.
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Econometric Model

Implication from estimating linear models

Bester, Conley and Hansen (2011) provide a cluster covariance matrix
estimator using fixed-G asymptotics using a fixed small number of
groups.

Our asymptotic analysis based on large number of groups.

Implication from linear regression model (Lu and Wooldridge 2017).

Groupwise GLS (QGLS) estimation can improve estimation efficiency
compared to OLS.
It is computationally easier but does not loose much efficiency
compared to GLS.
Robust standard errors can be provided.
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Econometric Model

GEE with spatial data

We divide spatial data into G groups according to distance measures.
Suppose each group has L observations. N = G × L. Let {(Xg , yg )}
be the observations for group g , g = 1, 2, ...,G . Xg is an L×K
matrix and yg is an L× 1 vector.

The conditional mean for group g is

E (yg |Xg ; θ) = mg (Xg ; θ0) . (8)

The quasi-score equation, which is also can be called a first order
condition for GEE is defined as follows:

sg (θ, γ̂) = ∇m′g (θ)W−1
g

(
θ̂, γ̂

)
[yg −mg (θ)] . (9)

SG (θ, γ̂) =
1

G

G

∑
g=1

∇m′g (θ)W−1
g

(
θ̂, γ̂

)
[yg −mg (θ)] . (10)
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Econometric Model

GEE with spatial data

First step: use Quasi MLE to get a consistent estimators for the
mean parameters. And use the first step residuals to estimate a
working varaince-covariance matrix.

Second step: Divide individuals into groups. Use the estimated
working covariance matrix to do a feasible multivariate weighted
nonlinear least squares (MWNLS). Use the correlation information
within groups and ignore those between groups.

A common way to model the working variance structure is to let

Ŵ = V̂
1/2

R̂V̂
1/2

.

The working variances is specified by the distribution:

For binary response vi = mi (1−mi )
For Poisson vi = mi

For Negative Binomial II vi = mi + η ·m2
i
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Econometric Model

Working Correlation Matrix

In Stata, the working correlation matrix can have a few forms:
independent, exchangeable, AR(1), unstructured and fixed matrix.
For example, a 4× 4 working correlation matrix can be

Rind =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , REX =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1


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Econometric Model

Working Correlation Matrix

For example, a 4× 4 working correlation matrix can be

RAR1 =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 , Rfixed =


1 ρ/d12 ρ/d13 ρ/d14

ρ/d21 1 ρ/d23 ρ/d24

ρ/d31 ρ/d32 1 ρ/d34

ρ/d41 ρ/d42 ρ/d43 1


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Econometric Model

Asymptotic Theory

NED on mixing random field, more general notion of dependence

Preserving after Lipschitz transformation, infinite input

GEE with orthogonal score by construction.

limG→∞{ 1
MG |DG | ∑g E[∇γsg

(
( ˜̃θ, γ̃, θ0)

)
] = 0
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Econometric Model

Asymptotic Theory

Bolthausen (1982), Conley (1999), Lee (2004), Jenish & Prucha (2009,
2012). We adopt notations and definitions in Jenish and Prucha (2009,
2012).

Theorem

(Consistency) Under A.1)-A.8) the GEE-estimator is consistent, that is,
ν(θ̂, θ0)→p 0 as G → ∞.

Theorem

Under A.1) - A.11), we have AV (θ0)
def
= H>∞AS∞H∞.

√
GAV (θ0)−1/2(θ̂ − θ0)⇒N(0, Ip). (11)
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Econometric Model

Â =
1

|DG |∑g
∇m̂>g Ŵ−1

g ∇m̂g , (12)

B̂ =
1

|DG |∑g ∑
h 6=g

k(dgh)∇m̂>g Ŵ−1
g ûg û>h Ŵ−1

h ∇m̂>h , (13)

where ∇m̂g ≡ ∇m̂g

(
θ̂
)

, Ŵg ≡ Ŵg (γ̂, θ̂).

The estimator of AV
(
θ0
)

which is robust to misspecification of the
variance covariance matrix is

ÂV
(

θ̂
)

= |DG |
(

∑
g

∇m̂>g Ŵ−1
g ∇m̂g

)−1

(
∑
g

∑
h( 6=g )

∇m̂>g Ŵ−1
g k (dgh) ûg û>h Ŵ−1

h ∇m̂h

)
(

∑
g

∇m̂>g Ŵ−1
g ∇m̂g

)−1

, (14)

= Â−1B̂Â−1 (15)

where k (dgh) is the kernel function depending on the distance between
group g and h, i.e. ρ(g , h), and a bandwidth parameter hg .
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Econometric Model

B.1) ûg − ug = Cg ∆g , where Cg is a L× p, and ∆g is a p× 1 dimensional
vector, with the condition that |Cg |2 = Op(1), and
|∆g |2 = Op((pG )−1/2).

B.2) The moment is bounded by a constant maxh:ρ(h,g )≤hg
E |Zh|q

′ ≤ ML2,

q′ ≥ 1, and M is a constant, where Zh
def
= ∇m>h (θ

0)W−1
h (θ0, γ0)uh.

B.3) |k(dgh)− 1| ≤ Ck |dgh/hg |ρK for dgh ≤ 1 for some constant ρk ≥ 1
and 0 < Ck < ∞
M−2

G |DG |−1 ∑g ∑h |ρ(g , h)/hg |ρk‖e>i Z>g ‖‖Zhej‖ = O(1).

B.4) Assume that hd/q′
g |DG |−1Ld/q′L2 = O(1) ,

h2d
g L2d ∑∞

r=1 r
(dτ∗+d)−1α̂δ/(2+δ)(r) = O(G ), and

h2d
g ∑∞

r=1 L
2d rd−1ψ((r − hg )+) = O(G ),

((r − hg )+ = max(r − hg , 0)) where δ is a constant and
δ∗ = δτ/(2 + δ).

Theorem

Under assumption B.1)- B.4) and A.1) - A.8). The variance-covariance

estimator is consistent. ÂV
(

θ̂
)
→p AV

(
θ0
)

.
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Two examples

Spatial Probit Model

The spatial probit model can be formulated as follows:

yi = 1 [y ∗i ≥ 0] , (16)

y ∗i = xi β + ei .

One specification as in Pinkse and Slade (1998) is

e = ρWe + u, (17)

e = (I − ρW )−1 u.

where Wii = 0 and Wij = 1/dij for i 6= j .

For simplicity, we directly model the spatial correlation as a
multivariate normal distribution:

e˜N (0, Ω) , (18)

where Ωii = 1 and Ωij = ρ/dij .
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Two examples

Spatial Probit Model

Bernoulli QMLE is obtained by maximizing the Probit log-likelihood.

β̂PQMLE = arg max
θ∈Θ

N

∑
i=1

yi log Φ (xi β) +
N

∑
i=1

(1− yi ) log [1−Φ (xi β)] .

The two-step GEE estimator for β is

β̂GEE = arg min
β

G

∑
g=1

(yg −Φ (xg β))′ Ŵ−1
g (yg −Φ (xg β)) . (19)

The first order condition is

SG =
G

∑
g=1

φ (xg β)′ Ŵ−1
g (yg −Φ (xg β)) . (20)
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Two examples

Spatial Probit Model

Ŵg = V̂g
1/2R̂g V̂1/2

g .
An estimator for the working variance matrix for each group is

V̂g =



v̌1 0 0 · · · · · · 0
0 v̌2 0 0

0 0
. . .

. . .
...

...
. . . v̌l

. . .
...

...
. . .

. . . 0
0 0 · · · · · · 0 v̌L


, (21)

v̌l = Φ
(
xl β̌
) [

1−Φ
(
xl β̌
)]

, l = 1, ..., L. (22)
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Two examples

Can use an independent, exchangeable, AR(1) working correlation
matrix.

Can estimate a fixed working correlation matrix:

(1) Assume the working correlation matrix for ui = yi −Φ (xi β) is R with
the ijth element Rij = Cij (dij , λ) , where Cij (dij , λ) is a function that
increases in λ and decreases in dij .
(2) Let r̂i = ǔi /

√
v̌i , for i = 1, 2, ...,N, be the standardized residuals. Ĉij

equals the sample correlation of ǔi /
√
v̌i and ǔj /

√
v̌j . Let R̂ ≡ R

(
DG , λ̂

)
and R̂g stand for the correlation matrix Rg

(
Dg , λ̂

)
for the g th group.

For example, use the minimum distance estimator:

min
λ

N

∑
i=1

N

∑
j 6=i

 ǔi ǔj√
Φ
(
xi β̌
) [

1−Φ
(
xi β̌
)]√

Φ
(
xj β̌
) [

1−Φ
(
xj β̌
)] − λ

dij

2

.
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Two examples

Monte Carlo Simulation

(1) Each individual resides on an intersection of the square lattice. Thus
the pairwise distance can be calculated using the coordinates of each
observation.
(2) According to pairwise distances, generate the pairwise correlations. In
the simulation, each observation is correlated with all other observations.
(3) The spatial correlation in the error between observation i and j is

ρ
dij

,
ρ = 0, 0.2, 0.4, 0.6.
(4) We compares QMLE estimator (GEE with independent correlation
matrix), GEE with three correlation matrix: exchangeable, AR(1), and a
specific fixed correlation matrix.
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Two examples

Monte Carlo Simulation-Probit

1. xi1 = 1; xi2 is a multivariate normal with mean 1 and variance 1 and
covariance

ρ
dij

; xi3 = 0.2xi2 − 1.2e1, e1 ∼ N (0, 1) ; β1 = β2 = β3 = 1.

2. y ∗i = xi β + ei , ei is multivariate normal with E(ei |xi ) = 0, Var (ei ) = 1
and Cov (ei , ej ) =

ρ
dij

; ρ = 0, 0.2, 0.4, 0.6.

3. yi = 1 if y ∗i ≥ 2.5, yi = 0 if y ∗i < 2.5.
4. Use Corr (yi , yj |xi , xj , DN) =

λ
dij

as the working correlation between the

dependent variables.
5. Use the minimum distance estimator to estimate spatial parameter.
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Two examples

Table: Means and Standard Deviations for Probit, averaged over 1000 samples

N=400, G=100, L=4 N=1600, G=400, L=4
Probit GEE-probit Probit GEE-probit

ρ = 0 β̂2 1.076 1.033 1.016 1.007
s.d.
(

β̂2

)
0.230 0.142 0.103 0.069

β̂3 1.070 1.031 1.016 1.018
s.d.
(

β̂3

)
0.205 0.127 0.084 0.059

β̂4 1.069 1.021 1.019 1.011
s.d.
(

β̂4

)
0.304 0.200 0.136 0.103

ρ = 0.5 β̂2 1.310 1.252 1.229 1.213
s.d.
(

β̂2

)
0.293 0.169 0.124 0.077

β̂3 1.310 1.256 1.229 1.214
s.d.
(

β̂3

)
0.259 0.156 0.111 0.720

β̂4 1.297 1.243 1.227 1.213
s.d.
(

β̂4

)
0.364 0.238 0.165 0.112

ρ = 1 β̂2 1.254 1.203 1.180 1.167
s.d.
(

β̂2

)
0.280 0.173 0.121 0.081

β̂3 1.236 1.192 1.176 1.164
s.d.
(

β̂3

)
0.236 0.152 0.105 0.072

β̂4 1.238 1.196 1.175 1.165
s.d.
(

β̂4

)
0.356 0.241 0.156 0.109

ρ = 1.5 β̂2 1.022 0.982 0.963 0.949
s.d.
(

β̂2

)
0.230 0.149 0.102 0.070

β̂3 1.013 0.979 0.966 0.953
s.d.
(

β̂3

)
0.196 0.132 0.086 0.063

β̂4 1.003 0.963 0.968 0.953
s.d.
(

β̂4

)
0.309 0.209 0.139 0.101

Note: The estimates with smaller standard deviations are marked with bold.
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Two examples

Count Data

A count variable is a variable that takes on nonnegative integer values.
0, 1, 2, .... For example, the number of patents applied for by a firm
during a year, and the number of children under 18 in a household.
Silva & Tenreyro (2006) model the gravity equation in the form of
(24) and use PPML(Poisson QMLE).
Count data can be characterized by a Poisson density in linear
exponential family (LEF) and an exponential mean.

f (y |x) = exp [− exp (xβ)] [exp (xβ)]y /y !, (23)

where y ! = 1 · 2 · ... · (y − 1) · y and 0! = 1.
Assume that the conditional mean function E(yi |xi ) = exp (xi β) is
correctly specified and model a multiplicative error in the conditional
mean,

E (yi |xi , vi ) = vi exp (xi β0) , (24)

where vi is the multiplicative spatial error term that has unobserved
spatial correlation.
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Two examples

Count Data

A count data model with a multiplicative spatial error is characterized by
the following assumptions:
(1) yi |xi , vi∼Poisson [vi exp (xi β)]
(2) yi , yj are independent conditional on xi , xj , vi , vj , i 6= j
(3) vi is independent of xi , E(vi ) = 1, Var (vi ) = τ2, and
Cov(vi , vj ) = τ2 · c (dij ) , where c (dij ) is the spatial correlation depending
on the distance between observation i and j .
(4) By iterated expectation the conditional mean is assumed to be

E (yi |xi , DN) = exp (xi β0) . (25)

The Poisson QMLE gives a consistent estimator for the mean parameters,
which solves:

β̂PQMLE = arg max
θ∈Θ

N

∑
i=1

li (β) =
N

∑
i=1

yi xi β−
N

∑
i=1

exp (xi β)−
N

∑
i=1

log (yi !) .

(26)
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Two examples

Count Data

The GEE approach is:

β̂ = arg min
β

G

∑
g=1

[yg− exp (Xg β)]′ Ŵ−1
g [yg− exp (Xg β)] . (27)

Working correlation matrix can be independent, exchangeable, or
fixed.
We can calculate the conditional variance and covariance of y on x
and D.

Var (yi |xi , DN) = exp (xi β0) + exp (2xi β0) · τ
2 (28)

Cov (yi , yj |xi , xj , DN) = exp (xi β0) exp (xj β0) · τ
2 · c (dij )(29)

Using the information above, τ2 can be estimated by τ̂2 as the
coefficient by regressing ǔ2

i − exp
(
xi β̌
)

on exp
(
2xi β̌

)
. Obviously τ̂2

does not depend on distances. If we assume c (dij ) =
λ
dij

, λ can be

estimated by regressing
ǔi ǔj

exp(xi β̌) exp(xj β̌)
on τ̂2/dij .
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Two examples

NegBin II model

Var (yi |xi , DN) = exp (xi β0) + exp (2xi β0) · τ
2. (30)

The traditional Poisson variance assumption is
Var (yi |xi ) = exp (xi β0) .
The Poisson GLM variance assumption is Var (yi |xi ) = σ2 exp (xi β0)
with an overdispersion or underdispersion parameter σ2, which is a
constant.
Obviously, there is over-dispersion since exp (2xi β0) · τ2 ≥ 0, and the
over-dispersion parameter is 1 + exp (xi β0) · τ2, which is changing
with xi .
So both the traditional Poisson variance assumption and the GLM
variance assumption fail.
We consider NegBin II model of Cameron and Trivedi (1986) as a
alternative model.
With an exponential mean and yi |xi , vi ∼Poisson[vi exp (xi β0)], yi |xi

is shown to follow a negative binomial II distribution.
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Two examples

Now the log-likelihood function for observation i is

li =
(
τ2
)−2

log

[ (
τ2
)−2

(τ2)−2 + exp (xi β)

]
+ yi log

[
exp (xi β)

(τ2)−2 + exp (xi β)

]
(31)

+ log
[
Γ
(
yi +

(
τ2
)−2
)

/Γ
((

τ2
)−2
)]

,

where Γ (·) is the gamma function defined for r > 0 by

Γ (r) =

∞∫
0

z r−1 exp (−z) dz . For fixed τ2, the log likelihood equation is in

the exponential family; see GMT (1984a). Thus the negative binomial
QMLE is consistent under conditional mean assupmtion only, which is the
same as the Poisson QMLE.
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Two examples

Monte Carlo Simulation-Count

1. vi is simulated as a multivariate lognormal variable, exponentiating an
underlying multivariate normal distribution N

(
− 1

2 , 1
)

using with
correlation matrix W . Wij =

ρ
dij

, ρ = 0, 0.2, 0.4, 0.6, i 6= j ;Wij = 1, i = j .

The underlying normal distribution implies that vi follows a multivariate
lognormal distribution with E(vi ) = 1, τ2 ≡ Var (vi ) = e− 1 ≈ 1.718.(e
is the mathematical constant)
2. α = −1, β2 = 1, β3 = 1, β4 = 1.
3. x2 follows a multivraite normal distribution N(0,W ) ;
x3 ∼ Uniform (0, 1) ; x5 ∼N(0, 1) ; x4 = 1 [x5 > 0].
4. mi = vi exp (α + β2x2 + β3x3 + β4x4) ;
5. yi ∼ Poisson (mi ) .
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Two examples

Table: Means and Standard Deviations for Count, averaged over 1000 samples.

N=400,G=100,L=4 N=1600,G=400,L=4
Poisson GEE-poisson NB II GEE-nb2 Poisson GEE-poisson NB II GEE-nb2

ρ = 0 β̂2 1.000 0.999 1.002 1.002 0.994 0.994 0.997 0.997
s.d.
(

β̂2

)
0.259 0.260 0.227 0.228 0.160 0.160 0.136 0.136

β̂3 1.000 0.999 1.002 1.002 0.999 1.000 0.998 0.998
s.d.
(

β̂3

)
0.259 0.260 0.227 0.228 0.137 0.137 0.121 0.121

β̂4 0.998 0.998 0.996 0.996 1.003 1.003 1.003 1.003
s.d.
(

β̂4

)
0.146 0.147 0.137 0.137 0.071 0.071 0.067 0.067

ρ = 0.5 β̂2 0.985 0.985 0.993 0.994 1.000 1.000 1.000 0.999
s.d.
(

β̂2

)
0.256 0.255 0.216 0.215 0.127 0.127 0.110 0.109

β̂3 1.006 1.006 1.004 1.005 1.005 1.004 1.003 1.003
s.d.
(

β̂3

)
0.211 0.210 0.180 0.179 0.106 0.106 0.092 0.092

β̂4 1.002 1.002 1.003 1.003 1.003 1.003 1.002 1.002
s.d.
(

β̂4

)
0.117 0.117 0.111 0.110 0.058 0.058 0.054 0.054

ρ = 1 β̂2 0.987 0.988 0.991 0.991 0.998 0.997 0.997 0.997
s.d.
(

β̂2

)
0.267 0.259 0.234 0.226 0.130 0.127 0.130 0.128

β̂3 1.003 1.003 1.004 1.004 1.000 0.999 1.000 0.999
s.d.
(

β̂3

)
0.220 0.214 0.195 0.190 0.105 0.102 0.094 0.091

β̂4 0.995 0.996 0.996 0.997 1.000 1.000 1.000 1.000
s.d.
(

β̂4

)
0.120 0.119 0.113 0.111 0.060 0.058 0.056 0.054

ρ = 1.5 β̂2 0.980 0.982 0.995 0.998 0.988 0.988 0.995 0.997
s.d.
(

β̂2

)
0.320 0.302 0.276 0.261 0.183 0.173 0.154 0.145

β̂3 0.997 0.995 0.992 0.992 0.992 0.994 0.997 0.999
s.d.
(

β̂3

)
0.288 0.271 0.250 0.234 0.143 0.136 0.126 0.120

β̂4 0.997 0.999 1.000 0.998 1.002 1.001 1.003 1.003
s.d.
(

β̂4

)
0.146 0.139 0.139 0.131 0.077 0.072 0.073 0.068

Note: The estimates with smaller standard deviations are marked with bold.
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Estimating the FDI equation

We collect the inflow FDI data for 290 cities in 31 provinces in China in
2007
The pairwise distances of cities are calculated use the latitudes and
longitudes of the city.
We use the provinces as natural division of groups.
The estimating equation is based on

E (FDIi |x) = exp[β0 + β1 log(GDP) + β2 log (POPi ) + β3 log(WAGEi )

+β4 log (EDUCEXPi ) + β5 log (SCIEXPi ) + β6SEASIDEi

+β7BORDERi ]. (32)

The log-linearized model is

log (FDIi ) = β0 + β1 log(GDPi ) + β2 log (POPi ) + β3 log(WAGEi )

+β4 log (EDUCEXPi ) + β5 log (SCIEXPi ) + β6SEASIDEi

+β7BORDERi + u. (33)
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Table: Descriptive statistics

Variables
Sample

size
Average

value
Standard
deviation

Min Max

FDI 284 43571.94 99369.96 0 791954
logFDI 275 9.28 1.81 3.14 13.58
logGDP 287 15.58 0.92 13.34 18.60
logPOP 287 5.83 0.48 2.90 8.08
logWAGE 287 9.93 0.25 9.16 10.81
logEDUCEXP 287 11.84 0.72 9.32 14.85
logSCIEXP 287 8.86 1.26 6.15 13.91
BORDER 290 0.07 0.25 0 1
SEASIDE 290 0.18 0.39 0 1

‘

W. Wang GEE Aug. 2019 34 / 41



Estimating the FDI equation

Table: Estimating the FDI equation

OLS Poisson GEE poisson NB GEE nb2
lnGDP 1.099*** 0.705*** 0.746*** 1.071*** 0.982***

(0.188) (0.151) (0.132) (0.205) (0.176)
lnGDPPC 0.570*** 0.747*** 0.687*** 0.610*** 0.533***

(0.219) (0.134) (0.122) (0.157) (0.172)
lnWAGE -0.123 -0.726* -1.013*** -0.146 -0.111

(0.393) (0.384) (0.390) (0.400) (0.331)
lnSCIEXP 0.186 0.289*** 0.311*** 0.094 0.137

(0.142) (0.110) (0.102) (0.111) (0.106)
BORDER -0.192 -0.593*** -0.197* -0.556** -0.037

(0.187) (0.166) (0.128) (0.185) (0.273)
cons -13.894*** -3.884 -1.238 -12.360*** -11.021***

(3.670) (3.094) (3.011) (3.130) (2.863)
Observations 275 284 284 284 284
F(5, 269) 152.03
Wald Chi2(5) 701.24 269.58 602.66 495.67
p value 0.000 0.000 0.000 0.000 0.000

Note: Robust standard errors are in parentheses.
∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% level separately.

W. Wang GEE Aug. 2019 35 / 41



Estimating the FDI equation

Conclusions and future work

QMLE is a good starting point to estimate nonlinear models.

Instead of estimating the complicated spatial correlation , we use
working correlation matrix as an approximation.

We found that Probit GEE do not have efficiency gain compared to
Bernulli QMLE.

For a multiplicative count data model, the negative binomial II
distribution has better performance than Poisson.

This method can be used to estimate other models: the gravity
equation; the patent equation.

The observations in each group is not the same in most applications.
We can refer to the treatment of unbanlanced panel data. See, for
e.g. Wooldridge (2010).
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Appendix

Conditions

A.1) The lattice D ⊆ Rd , d ≥ 1, is infinitely countable. The distance
ρ(i , j) between any two different individual units i and j in D is at
least larger than a positive constant, i.e., ∀i , j ∈ D : ρ(i , j) ≥ ρ0,
w.l.o.g. we assume ρ0 > 1

A.2) {yi} is L4− uniformly NED on the α− mixing random field
ε = {εi , i ∈ Dn}, where εi = (xi , εi )(εi s are some underlying
innovation processes). With the α− mixing coefficient
α(u, v , r) ≤ (u + v)τ α̂(r), and α̂(r)→ 0 as r → ∞. Assume that

∑∞
r=1 r

d−1α̂(r) < ∞. The NED constant is dn,i , (supn,i∈Tn
dn,i < ∞)

and the NED coefficient is ψ(s) with ψ(s)→ 0, where recall that L is
the group size, and ∑∞

r=0 r
d−1ψ(r)→ 0.
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Asymptotic Theory

A.3) The parameter space Θ× Γ is a compact subset on Rp+q with
metric ν(., .).

A.4) qg (θ, γ), (sg (θ, γ)), (hg (θ, γ)) are Rpw ×Θ× Γ→ R1(Rp), (Rp2
)

measurable for each θ ∈ Θ, γ ∈ Γ, and Lipschitz continuous on
Θ× Γ.

A.5) E supθ∈Θ |mg ,i |r ≤ C1, E |wg ,i ,j |r ≤ C2, E |yg ,i |r ≤ C3

E supθ∈Θ |∇θmg ,i |r ≤ C4, where C1,C2,C3,C4 are constants, where
wg ,i ,j , yg ,i ,mg ,i is the elementwise component for W−1

g (θ, γ), yg ,
mg (θ, γ). r > 4p′′ ∨ 4p′. mg ,i ,wg ,i ,j are continuously differentiable
up to the third order derivatives, and its r th moment (the supreme
over the parameter space) is bounded up to the second order
derivatives. Define dg = maxi∈Bg dn,i ,

MG
def
= maxg dg ∨ cg ,q ∨ cg ,s ∨ cg ,h. Also assume that

supG supg (cg ,q ∨ cg ,s ∨ cg ,h)/dg ≤ C5, where C5 is a constant.
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Appendix

Asymptotic Theory

A.6) The α− mixing coefficients of the input field ε̃ satisfy
α̃(u, v , r) ≤ φ(uL, vL)α̂(r), with φ(uL, vL) = (u + v)τLτ and for
some α̂(r), ∑∞

r=1 L
τrd−1α̂(r) < ∞.

A.7) We assume moment conditions on the objects involved to prove the
NED property of HG (θ, γ).

bij
def
= e>i (1>W−1

g (θ, γ)⊗ Ig )|∂Vec(∇mg (θ))/∂θ|aej .

cij = e>i (1> ⊗∇m>g (θ))|∂Vec(∇mg (θ))/∂θ|aej . ‖bij‖ and ‖cij‖ are
finite.

A.8) (Identifiability)Let QG (θ, γ)
def
= 1
|MG ||DG | ∑g E (qg (θ, γ)) . Recall that

Q∞(θ, γ)
def
= limG→∞ Q̄G (θ, γ) . Assume that θ0, γ0 are identified

unique in a sense that
lim infG→∞ infθ∈Θ:ν(θ,θ0)≥εQG (θ, γ) > c0 > 0, for any γ and a
positive constant c0.
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ASG = (34)

1

G ∑
g

E
[
∇m>g

(
θ0
)

W−1
g

(
θ0, γ0

)
ug u>g W−1

g

(
θ0, γ0

)
∇mg

(
θ0
)]

(35)

+
1

G ∑
g

∑
h,h 6=g

E
[
∇m>g

(
θ0
)

W−1
g

(
θ0, γ0

)
ug u>h W−1

h

(
θ0, γ0

)
∇mh

(
θ0
)]

,

and AS∞ = limG→∞ ASG .

A.9) The true point θ0, γ0 lies in the interior point of Θ, Γ. γ̂ is estimated
with |γ̂− γ0|2 = Op(G−1/2).

A.10) c ′ < λmin(M
−2
G E

(
∇m>g (θ

0)W−1
g (θ0, γ0)∇mg (θ

0)
)
)

Define ug = yg −mg (θ
0) and ûg = yg −mg (θ̂)

SG (θ, γ̂) =
1

MG |DG |∑g
∇m>g (θ)W−1

g (θ, γ̂) [yg −mg (θ)] . (36)
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A.11)

SG

(
γ̂, θ̂

)
= Op(1)

. infG |DG |−1M−2
G λmin(AS∞) > 0, where AS∞ is defined in equation

(34). The mixing coefficients satisfy

∑∞
r=1 r

(dτ∗+d)−1Lτ∗ α̂δ/(2+δ)(r) < ∞. (τ∗ = δτ/(4 + 2δ)).
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