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Formulation

Let (Ω,F ,F,P) be a complete filtered probability space on which a standard
one-dimensional Brownian motion W = {W (t); 0 6 t <∞} and a continuous
time, finite-state, Markov chain α = {α(t); 0 6 t <∞} are defined, where
F = {Ft}t>0 is the natural filtration of W and α augmented by all the P-null
sets in F . We identify the state space of the chain α with a finite set
S , {1, 2 . . . , D}, where D ∈ N and suppose that the chain is homogeneous
and irreducible. To specify the statistical or probabilistic properties of the chain
α, we define the generator λ(t) := [λij(t)]i,j=1,2,...,D of the chain under P.
Here, for each i, j = 1, 2, . . . , D, λij(t) is the constant transition intensity of
the chain from state i to state j at time t. Note that λij(t) ≥ 0, for i 6= j and∑D
j=1 λij(t) = 0, so λii(t) ≤ 0. In what follows for each i, j = 1, 2, . . . , D with

i 6= j, we suppose that λij(t) > 0, so λii(t) < 0. For each fixed
j = 1, 2, · · · , D, let Nj(t) be the number of jumps into state j up to time t

and set Ñj(t) := Nj(t)− λj(t) with

λj(t) :=

∫ t

0

λα(s−) jI{α(s−)6=j}ds =
D∑

i=1,i 6=j

∫ t

0

λij(s)I{α(s−)=i}ds.
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Formulation

Let 0 6 t < T and consider the following controlled Markovian regime
switching linear stochastic differential equation (SDE, for short) over a finite
time horizon [t, T ]:

dX(s) =
[
A(s, α(s))X(s) +B(s, α(s))u(s) + b(s, α(s))

]
ds

+
[
C(s, α(s))X(s) +D(s, α(s))u(s) + σ(s, α(s))

]
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i,
(1)

where A,C : [0, T ]× S → Rn×n and B,D : [0, T ]× S → Rn×m are given
deterministic functions, called the coefficients of the state equation (1);
b, σ : [0, T ]× S × Ω→ Rn are F-progressively measurable processes, called the
nonhomogeneous terms; and (t, x, i) ∈ [0, T )× Rn × S is called the initial
pair.
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Formulation

In the above, the process u(·), which belongs to the following space:

U [t, T ] ,

u : [t, T ]× Ω→ Rm
∣∣∣∣∣∣
u(·) is F-progressively measurable

and E
∫ T

t

|u(s)|2ds <∞

 .

is called the control process, and the solution X(·) of (1) is called the state
process corresponding to (t, x, i) and u(·).
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Formulation

To measure the performance of the control u(·), we introduce the following
quadratic cost functional:

J(t, x, i;u(·)) , E

{〈
G(α(T ))X(T ), X(T )

〉
+ 2
〈
g(α(T )), X(T )

〉

+

∫ T

t

[〈(
Q(s, α(s)) S(s, α(s))>

S(s, α(s)) R(s, α(s))

)(
X(s)
u(s)

)
,

(
X(s)
u(s)

)〉

+2

〈(
q(s, α(s))
ρ(s, α(s))

)
,

(
X(s)
u(s)

)〉]
ds

}
,

(2)
where G(i) ∈ Rn×n is a symmetric constant matrix, and g(i) is an
FT -measurable random variable taking values in Rn, with i ∈ S;
Q : [0, T ]× S → Rn×n, S : [0, T ]× S → Rm×n and R : [0, T ]× S → Rm×m
are deterministic functions with both Q and R being symmetric;
q : [0, T ]× S → Rn and ρ : [0, T ]× S → Rm are F-progressively measurable
processes.
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Formulation

Problem (M-SLQ). For any given initial pair (t, x, i) ∈ [0, T )×Rn ×S, find
a control u∗(·) ∈ U [t, T ], such that

J(t, x, i;u∗(·)) = inf
u(·)∈U[t,T ]

J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ]. (3)

The above is called a stochastic linear quadratic optimal control problem of
the Markovian regime switching system. Any u∗(·) ∈ U [t, T ] satisfying (3) is
called an open-loop optimal control of Problem (M-SLQ) for the initial pair
(t, x, i); the corresponding state process X(·) = X(· ; t, x, i, u∗(·)) is called an
optimal state process; and the function V (·, ·, ·) defined by

V (t, x, i) , inf
u(·)∈U[t,T ]

J(t, x, i;u(·)), (t, x, i) ∈ [0, T ]× Rn × S, (4)

is called the value function of Problem (M-SLQ).
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Formulation

Note that in the special case when b(·, ·), σ(·, ·), g(·), q(·, ·), ρ(·, ·) = 0, the
state equation (1) and the cost functional (2), respectively, become

dX(s) =
[
A(s, α(s))X(s) +B(s, α(s))u(s)

]
ds

+
[
C(s, α(s))X(s) +D(s, α(s))u(s)

]
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i,

(5)

and

J0(t, x, i;u(·)) = E

{〈
G(α(T ))X(T ), X(T ))

〉

+

∫ T

t

〈(
Q(s, α(s)) S(s, α(s))>

S(s, α(s)) R(s, α(s))

)(
X(s)
u(s)

)
,

(
X(s)
u(s)

)〉
ds

}
.

(6)
We refer to the problem of minimizing (6) subject to (5) as the homogeneous
LQ problem associated with Problem (M-SLQ), denoted by Problem
(M-SLQ)0. The corresponding value function is denoted by V 0(t, x, i).
Moreover, all the coefficients of (1) and (2) are independent of the regime
switching term α(·).
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The First Example

Consider the following one-dimensional state equation{
dX(s) =

[
− α(s)X(s) + u(s)

]
ds+

√
2α(s)X(s)dW (s), s ∈ [t, 1],

X(t) = x, α(t) = i,

and the nonnegative cost functional

J(t, x, i;u(·)) = E
[
X(1)2].
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The First Example

We construct the control ū(·) as

ū(s) ≡ x

t− 1
· exp

{
−2

∫ s

t

α(r)dr +

∫ s

t

√
2α(r)dW (r)

}
, s ∈ [t, 1].

By the variation of constants formula, the state process X̄(·), corresponding to
(t, x, i), can be presented by

X̄(s) = exp

{
−2

∫ s

t

α(r)dr +

∫ s

t

√
2α(r)dW (r)

}
·
[
x+

s− t
t− 1

x

]
, s ∈ [t, 1],

which satisfies X̄(1) = 0. Hence,

J(t, x, i; ū(·)) = E
[
X̄(1)2] = 0.

Since the cost functional is nonnegative, the control ū(·) is optimal for the
initial pair (t, x, i).
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The First Example

Question

Is the optimal control ū(·) open-loop or
closed-loop?
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Assumptions

The following standard assumptions will be in force throughout this paper.

(H1) For every i ∈ S, the coefficients of the state equation satisfy the
following

A(·, i) ∈ L1(0, T ;Rn×n), B(·, i) ∈ L2(0, T ;Rn×m),

C(·, i) ∈ L2(0, T ;Rn×n), D(·, i) ∈ L∞(0, T ;Rn×m),

b(·, i) ∈ L2
F(Ω;L1(0, T ;Rn)), σ(·, i) ∈ L2

F(0, T ;Rn).

(H2) For every i ∈ S, the weighting coefficients in the cost functional satisfy
the following
Q(·, i) ∈ L1(0, T ; Sn), S(·, i) ∈ L2(0, T ;Rm×n), R(·, i) ∈ L∞(0, T ; Sm),

G(i) ∈ Sn, g(i) ∈ L2
FT

(Ω;Rn),

ρ(·, i) ∈ L2
F(0, T ;Rm), q(·, i) ∈ L2

F(Ω;L1(0, T ;Rn)).
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Definition

Definition 1

(i) An element u∗(·) ∈ U [t, T ] is called an open-loop optimal control of
Problem (M-SLQ) for the initial pair (t, x, i) ∈ [0, T ]× Rn × S if

J(t, x, i;u∗(·)) 6 J(t, x, i;u(·)), ∀u(·) ∈ U [t, T ]. (7)

(ii) A pair (Θ∗(·), v∗(·)) ∈ L2(t, T ;Rm×n)× U [t, T ] is called a closed-loop
optimal strategy of Problem (M-SLQ) on [t, T ] if

J(t, x, i; Θ∗(·)X∗(·)+v∗(·)) 6 J(t, x, i;u(·)), ∀(x, i) ∈ Rn×S, u(·) ∈ U [t, T ],
(8)

where X∗(·) is the strong solution to the following closed-loop system:

dX∗(s) =
{[
A(s, α(s)) +B(s, α(s))Θ∗(s)

]
X∗(s)

+B(s, α(s))v∗(s) + b(s, α(s))
}
ds

+
{[
C(s, α(s)) +D(s, α(s))Θ∗(s)

]
X∗(s)

+D(s, α(s))v∗(s) + σ(s, α(s))
}
dW (s),

X∗(t) = x.

(9)
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FBSDE

To simply notation of our further analysis, we introduce the following
forward-backward stochastic differential equation (FBSDE for short) on a finite
horizon [t, T ]:

dXu(s) =
[
A(s, α(s))Xu(s) +B(s, α(s))u(s) + b(s, α(s))

]
ds

+
[
C(s, α(s))Xu(s) +D(s, α(s))u(s) + σ(s, α(s))

]
dW (s),

dY u(s) =−
[
A(s, α(s))>Y u(s) + C(s, α(s))>Zu(s)

+Q(s, α(s))Xu(s) + S(s, α(s))>u(s) + q(s, α(s))
]
ds

+ Zu(s)dW (s) +
D∑
k=1

Γuk(s)dÑk(s), s ∈ [t, T ],

Xu(t) =x, α(t) = i, Y u(T ) = G(α(T ))Xu(T ) + g(α(T )).
(10)
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FBSDE

The solution of the above FBSDE system is denoted by
(Xu(·), Y u(·), Zu(·),Γu(·)), where Γu(·) := (Γu1 (·), · · · ,ΓuD(·)).

If the control u(·) is chose as Θ(·)X(·) + v(·), we will use the notation

(XΘ,v(·), Y Θ,v(·), ZΘ,v(·),ΓΘ,v(·))

denoting by the solution of the above FBSDE.

If b(·, ·) = σ(·, ·) = q(·, ·) = g(·) = 0, the solution of the above FBSDE is
denoted by

(Xu
0 (·), Y u0 (·), Zu0 (·),Γu0 (·)).
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Open-loop Solvability
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Open-loop Solvability

We first present the equivalence between the open-loop solvability and the
corresponding forward-backward differential equation system.

Theorem 1

Let (H1)–(H2) hold and (t, x, i) ∈ [t, T ]× Rn × S be given. An element
u(·) ∈ U [t, T ] is an open-loop optimal control of Problem (M-SLQ) if and
only if J0(t, 0, i; v(·)) ≥ 0, ∀v(·) ∈ U [t, T ] and the following stationary
condition hold:

B(s, α(s))>Y u(s; t, x, i) +D(s, α(s))>Zu(s; t, x, i)

+ S(s, α(s))Xu(s; t, x, i) +R(s, α(s))u(s) + ρ(s, α(s)) = 0, s ∈ [t, T ],
(11)

where (Xu(· ; t, x, i), Y u(· ; t, x, i), Zu(· ; t, x, i)) is the adapted solution to
the FBSDE (10).
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Open-loop Solvability

The standard conditions:

G(i) > 0, R(s, i) > δI, Q(s, i)− S(s, i)>R(s, i)−1S(s, i) > 0,

i ∈ S, a.e. s ∈ [0, T ]. (12)

Proposition 1

Let (H1)–(H2) and (12) hold. Then for any (t, i) ∈ [0, T )× S, the map
u(·) 7→ J0(t, 0, i;u(·)) is uniformly convex.

Theorem 2

Let (H1)–(H2) hold. Suppose the map u(·) 7→ J0(t, 0, i;u(·)) is uniformly
convex. Then Problem (M-SLQ) is uniquely open-loop solvable, and there
exists a constant γ ∈ R such that

V 0(t, x, i) > γ|x|2, ∀(t, x) ∈ [0, T ]× Rn. (13)

Note that in the above, the constant γ does not have to be nonnegative.
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Closed-loop Solvability

In the following, we first introduce some notation and the Riccati equation.

Let
Ŝ(s, i) := B(s, i)>P (s, i) +D(s, i)>P (s, i)C(s, i) + S(s, i),

R̂(s, i) := R(s, i) +D(s, i)>P (s, i)D(s, i).
(14)

The Riccati equation associated with Problem (M-SLQ) is
Ṗ (s, i) + P (s, i)A(s, i) +A(s, i)>P (s, i) + C(s, i)>P (s, i)C(s, i)

− Ŝ(s, i)>R̂(s, i)†Ŝ(s, i) +Q(s, i) +

D∑
k=1

λik(s)P (s, k) = 0, a.e. s ∈ [0, T ],

P (T, i) = G(i).
(15)
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Closed-loop Solvability

Definition 2

A solution P (·, ·) ∈ C([0, T ]× S; Sn) of (15) is said to be regular if
R
(
Ŝ(s, i)

)
⊆ R

(
R̂(s, i)

)
, a.e. s ∈ [0, T ],

R̂(·, ·)†Ŝ(·, ·) ∈ L2(0, T ;Rm×n),

R̂(s, i) > 0, a.e. s ∈ [0, T ].

(16)

A solution P (·, ·) of (15) is said to be strongly regular if

R̂(s, i) > λI, a.e. s ∈ [0, T ], (17)

for some λ > 0. The Riccati equation (15) is said to be (strongly) regularly
solvable, if it admits a (strongly) regular solution.
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Closed-loop Solvability

Theorem 3

Let (H1)–(H2) hold. Problem (M-SLQ) is closed-loop solvable on [0, T ] if
and only if the Riccati equation (15) admits a regular solution
P (·, ·) ∈ C([0, T ]× S; Sn) and the solution (η(·), ζ(·), ξ1(·), · · · , ξD(·)) of the
following BSDE:

dη(s) = −
{[
A(s, α(s))>− Ŝ(s, α(s))>R̂(s, α(s))†B(s, α(s))>

]
η(s)

+
[
C(s, α(s))>− Ŝ(s, α(s))>R̂(s, α(s))†D(s, α(s))>

]
ζ(s)

+
[
C(s, α(s))>− Ŝ(s, α(s))>R̂(s, α(s))†D(s, α(s))>

]
P (s, α(s))σ(s, α(s))

−Ŝ(s, α(s))>R̂(s, α(s))†ρ(s, α(s)) + P (s, α(s))b(s, α(s)) + q(s, α(s))
}
ds

+ζ(s)dW (s) +

D∑
k=1

ξk(s)dÑk(s), s ∈ [0, T ],

η(T ) = g(i),

(18)
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Closed-loop Solvability

Theorem 3 (Continuous)

satisfies {
ρ̂(s, i) ∈ R(R̂(s, i)), a.e. a.s.

R̂(s, i)†ρ̂(s, i) ∈ L2
F(0, T ;Rm),

(19)

with

ρ̂(s, i) = B(s, i)>η(s) +D(s, i)>ζ(s) +D(s, i)>P (s, i)σ(s, i) + ρ(s, i). (20)

In this case, Problem (M-SLQ) is closed-loop solvable on any [t, T ], and the
closed-loop optimal strategy (Θ∗(·), v∗(·)) admits the following
representation:{

Θ∗(s) = −R̂(s, α(s))†Ŝ(s, α(s)) +
[
I − R̂(s, α(s))†R̂(s, α(s))

]
Π(s),

v∗(s) = −R̂(s, α(s))†ρ̂(s, α(s)) +
[
I − R̂(s, α(s))†R̂(s, α(s))

]
ν(s),

(21)

for some Π(·) ∈ L2(t, T ;Rm×n) and ν(·) ∈ L2
F(t, T ;Rm), and the value

function is given by
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Closed-loop Solvability

Theorem 3 (Continuous)

The value function is given by

V (t, x, i) =E
{
〈P (t, i)x, x〉+ 2〈η(t), x〉

+

∫ T

t

[
P̂ (s, α(s))− 〈R̂(s, α(s))†ρ̂(s, α(s)), ρ̂(s, α(s))〉

]
ds

}
,

(22)

where

P̂ (s, i) := 〈P (s, i)σ(s, i) + 2ζ(s), σ(s, i)〉+ 2〈η(s), b(s, i)〉.
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Closed-loop Solvability

Now we present the equivalence between the uniform convexity of the cost
functional and the strongly regular solution of the Riccati equation.

Theorem 4

Let (H1)–(H2) hold. Then the following statements are equivalent:

(i) The map u(·) 7→ J0(t, 0;u(·)) is uniformly convex, i.e., there exists a
λ > 0 such that

J0(t, 0, i;u(·)) > λE
∫ T

t

|u(s)|2ds, ∀u(·) ∈ U [t, T ].

(ii) The Riccati equation (15) admits a strongly regular solution
P (·, ·) ∈ C([0, T ]× S; Sn).
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The First Example

Since Q(·, i) = 0, R(·, i) = 0, D(·, i) = 0 for every i ∈ S and 0† = 0, we have
the following Riccati equations

Ṗ (s, i) +

D∑
k=1

λik(s)P (s, k) = 0, a.e. s ∈ [t, T ],

P (T, i) = 1.

(23)

Clearly, the unique solution of the above ordinary differential equation system is

P (s, i) ≡ 1, for (s, i) ∈ [t, T ]× S.

Thus, for any (s, i) ∈ [t, T ]× S, we have

R
(
Ŝ(s, i)

)
= R(ei) = R(1) = R,

R
(
R̂(s, i)

)
= R(0) = {0},

=⇒ R
(
Ŝ(s, i)

)
* R

(
R̂(s, i)

)
.

Now from Theorem 3, we can deduce that this problem is not closed-loop
solvable.
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Weak Closed-loop Solvability
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Weak Closed-loop Solvability

Definition 3 (Weak closed-loop)

Let Θ : [t, T )→ Rm×n be a locally square-integrable deterministic function
and v : [t, T )× Ω→ Rm be a locally square-integrable F-progressively
measurable process, i.e., Θ(·) and v(·) are such that for any T ′ ∈ [t, T ),∫ T ′

t

|Θ(s)|2ds <∞, E
∫ T ′

t

|v(s)|2ds <∞.

We call (Θ(·), v(·)) a weak closed-loop strategy on [t, T ) if for any initial
state (x, i) ∈ Rn × S, the outcome u(·) ≡ Θ(·)X(·) + v(·) belongs to
U [t, T ] ≡ L2

F(t, T ;Rm), where X(·) is the solution to the weak closed-loop
system:

dX(s) =
{[
A(s, α(s))+B(s, α(s))Θ(s)

]
X(s)+B(s, α(s))v(s)+b(s, α(s))

}
ds

+
{[
C(s, α(s)) +D(s, α(s))Θ(s)

]
X(s)

+D(s, α(s))v(s) + σ(s, α(s))
}
dW (s), s ∈ [t, T ],

X(t) = x.
(24)

The set of all weak closed-loop strategies is denoted by Cw[t, T ].
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Weak Closed-loop Solvability

Let Θε : [0, T ]→ Rm×n and vε : [0, T ]× Ω→ Rm be

Θε(s) = −[R̂ε(s, α(s)) + εIm]−1Ŝε(s, α(s)), (25)

vε(s) = −[R̂ε(s, α(s)) + εIm]−1ρ̂ε(s, α(s)), (26)

with

ρ̂ε(s, i) = B(s, i)>ηε(s) +D(s, i)>ζε(s) +D(s, i)>Pε(s, i)σ(s, i) + ρ(s, i).

We prove that the family {Θε(·)}ε>0 and {vε(·)}ε>0 defined by (25) (26) are
locally convergent in [0, T ).

X. Li Stochastic LQ Optimal Control of Regime-Switching System



Weak Closed-loop Solvability

Proposition 2

Let (H1) and (H2) hold. Suppose that Problem (M-SLQ)0 is open-loop
solvable. Then the family {Θε(·)}ε>0 defined by (25) converges in
L2(0, T ′;Rm×n) for any 0 < T ′ < T ; that is, there exists a locally
square-integrable deterministic function Θ∗(·) : [0, T )→ Rm×n such that

lim
ε→0

∫ T ′

0

|Θε(s)−Θ∗(s)|2ds = 0, ∀ 0 < T ′ < T.

Proposition 3

Let (H1) and (H2) hold. Suppose that Problem (M-SLQ) is open-loop
solvable. Then the family {vε(·)}ε>0 defined by (26) converges in
L2(0, T ′;Rm) for any 0 < T ′ < T ; that is, there exists a locally
square-integrable deterministic function v∗(·) : [0, T )→ Rm such that

lim
ε→0

E
∫ T ′

0

|vε(s)− v∗(s)|2ds = 0, ∀ 0 < T ′ < T.
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Weak Closed-loop Solvability

Theorem 5

Let (H1) and (H2) hold. If Problem (M-SLQ) is open-loop solvable, then
the limit pair (Θ∗(·), v∗(·)) obtained in Propositions 2 and 3 is a weak
closed-loop optimal strategy of Problem (M-SLQ) on any [t, T ).
Consequently, the open-loop and weak closed-loop solvability of Problem
(M-SLQ) are equivalent.
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The Second Example

Let T = 1 and D = 2, that is, the state space of α(·) is S = {1, 2}. For the
generator λ(s) , [λij(s)]i,j=1,2, note that

∑2
j=1 λij(s) = 0 for i ∈ S, then

λ(s) =

(
λ11(s) λ12(s)
λ21(s) λ22(s)

)
=

(
λ11(s) −λ11(s)
−λ22(s) λ22(s)

)
, s ∈ [0, 1].

Consider the following Problem (M-SLQ) with one-dimensional state equation dX(s) =
[
− α(s)X(s) + u(s) + b(s, α(s))

]
ds+

√
2α(s)X(s)dW (s), s ∈ [t, 1],

X(t) = x, α(t) = i,

(27)
and the cost functional

J(t, x, i;u(·)) = E
[
X(1)2],

where the nonhomogeneous term b(·, ·) is given by

b(s, α(s)) =


1√

1− s
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}
, s ∈ [0, 1);

0, s = 1.
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The Second Example

It is easy to see that b(·, i) ∈ L2
F(Ω;L1(0, 1;R)) for each i ∈ S. In fact,

E
(∫ 1

0

|b(s, α(s))|ds
)2

≤ 4E
(

sup
06s61

exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0

α(r)dr

})2

.

Since the term exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0

α(r)dr

}
is a square-integrable

martingale, note that α(·) belongs to S = {1, 2}, it follows from Doob’s
maximal inequality that

E
(

sup
06s61

exp

{∫ s

0

√
2α(r)dW (r)−

∫ s

0

α(r)dr

})2

≤ 4E exp

{
2

∫ 1

0

√
2α(r)dW (r)− 2

∫ 1

0

α(r)dr

}
≤ 4e4.

Hence,

E
(∫ 1

0

|b(s, α(s))|ds
)2

≤ 16e4,

which implies that b(·, i) ∈ L2
F(Ω;L1(0, 1;R)) for each i ∈ S.
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The Second Example: Not closed-loop solvable

We first claim that this (M-SLQ) problem is not closed-loop solvable on any
[t, 1]. Indeed, the generalized Riccati equation associate with this problem reads{

Ṗ (s, 1) + λ11(s)P (s, 1)− λ11(s)P (s, 2) = 0, a.e. s ∈ [t, 1],

P (1, 1) = 1,
for i = 1,

and{
Ṗ (s, 2)− λ22(s)P (s, 1) + λ22(s)P (s, 2) = 0, a.e. s ∈ [t, 1],

P (1, 2) = 1,
for i = 2,

whose solutions are P (s, 1) = P (s, 2) = 1, or P (s, i) ≡ 1, for (s, i) ∈ [0, 1]×S.
Then for any s ∈ [t, 1] and i ∈ S, we have

R
(
Ŝ(s, i)

)
= R(1) = R,

R
(
R̂(s, i)

)
= R(0) = {0},

=⇒ R
(
Ŝ(s, i)

)
* R

(
R̂(s, i)

)
.

where

Ŝ(s, i) , B(s, i)>P (s, i) +D(s, i)>P (s, i)C(s, i) + S(s, i),

R̂(s, i) , R(s, i) +D(s, i)>P (s, i)D(s, i).
(28)

Therefore, the range inclusion condition is not satisfied, which deduce that our
claim holds.
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The Second Example

Without loss of generality, we consider only the open-loop solvability at t = 0.
To this end, let ε > 0 be arbitrary and consider Riccati equations (15), which,
in our example, read: Ṗε(s, 1)− 1

ε
Pε(s, 1)2 + λ11(s)Pε(s, 1)− λ11(s)Pε(s, 2) = 0, a.e. s ∈ [t, 1],

Pε(1, 1) = 1,

and Ṗε(s, 2)− 1

ε
Pε(s, 2)2 − λ22(s)Pε(s, 1) + λ22(s)Pε(s, 2) = 0, a.e. s ∈ [t, 1],

Pε(1, 2) = 1.

Solving the above equations yields

Pε(s, 1) = Pε(s, 2) =
ε

ε+ 1− s , s ∈ [0, 1].

Or,
Pε(s, i) =

ε

ε+ 1− s , (s, i) ∈ [0, 1]× S.

Note that the state space of α(s) is S = {1, 2}, we let

Θε(s) , −[R̂ε(s, α(s)) + εIm]−1Ŝε(s, α(s))

= −Pε(s, α(s))

ε
= − 1

ε+ 1− s , s ∈ [0, 1].
(29)
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The Second Example

Then the corresponding BSDE (18) reads

dηε(s) = −
{[

Θε(s)− α(s)
]
ηε(s) +

√
2α(s)ζε(s) + Pε(s, α(s))b(s)

}
ds

+ζε(s)dW (s) +

2∑
k=1

ξεk(s)dÑk(s), s ∈ [0, 1],

ηε(1) = 0.

Let f(s) = 1√
1−s . Using the variation of constants formula for BSDEs, and

noting that W (·) and Ñk(·) are (F,P)-martingales, we obtain

ηε(s) =
ε

ε+ 1− s exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}∫ 1

s

f(r)dr, s ∈ [0, 1].
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The Second Example

Now let

vε(s) , −[R̂ε(s, α(s)) + εIm]−1ρ̂ε(s, α(s)) = −ηε(s)
ε

= − 1

ε+ 1− s exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}∫ 1

s

f(r)dr, s ∈ [0, 1].

(30)
Then the corresponding closed-loop system can be written as dXε(s) =

{[
Θε(s)− α(s)

]
Xε(s) + vε(s) + b(s, α(s))

}
ds+

√
2α(s)Xε(s)dW (s), s ∈ [0, 1],

Xε(0) = x.

By the variation of constants formula for SDEs, we get

Xε(s) = (ε+ 1− s) · exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ s

0

[
1

ε+ 1− r
exp

{
−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}(
vε(r) + b(r, α(r))

)]
dr

+ x ·
ε+ 1− s
ε+ 1

· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
, s ∈ [0, 1].
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The Second Example

The family {uε(·)}ε>0 is defined by

uε(s) , Θε(s)Xε(s) + vε(s)

= − exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
·
∫ s

0

[
1

ε+ 1− r
exp

{
−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}(
vε(r) + b(r, α(r))

)]
dr

−
x

ε+ 1
· exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0
α(r)dr

}
+ vε(s), s ∈ [0, 1],

(31)

is bounded in L2
F(0, 1;R).

Simplifying (31) by Fubini’s theorem yields

uε(s) = −
(

x

ε+ 1
+

1

ε+ 1

∫ 1

0

f(r)dr

)
exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}
= −x+ 2

ε+ 1
exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}
.

(32)
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The Second Example: Open-loop solvable

A short calculation gives

E
∫ 1

0

|uε(s)|2ds =

(
x+ 2

ε+ 1

)2

≤ (x+ 2)2, ∀ε > 0.

Therefore {uε(·)}ε>0 is bounded in L2
F(0, 1;R).

Now, let ε→ 0 in (32), we get an open-loop optimal control:

u∗(s) = −(x+ 2) exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}
, s ∈ [0, 1].

From the above discussion, similar to the state process X(·) of (27), the
open-loop optimal control u∗(·) also depends on the regime switching term
α(·). That is to say, as the value of the switching α(·) varies, the open-loop
optimal control u∗(·) will be changed too.
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The Second Example

Finally, we let ε→ 0 in (29) and (30) to get a weak closed-loop optimal
strategy (Θ∗(·), v∗(·)):

Θ∗(s) = lim
ε→0

Θε(s) = − 1

1− s , s ∈ [0, 1),

v∗(s) = lim
ε→0

vε(s) = − 2√
1− s

exp

{∫ s

0

√
2α(r)dW (r)− 2

∫ s

0

α(r)dr

}
, s ∈ [0, 1).

We put out that neither Θ∗(·) and v∗(·) is square-integrable on [0, 1). Indeed,
one has∫ 1

0

|Θ∗(s)|2ds =

∫ 1

0

1

(1− s)2
ds =∞,

E
∫ 1

0

|v∗(s)|2ds = E
∫ 1

0

4

1− s exp

{
2

∫ s

0

√
2α(r)dW (r)− 4

∫ s

0

α(r)dr

}
ds

= E
∫ 1

0

4

1− sds =∞.
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Future Works

Random coefficients

Infinite time horizon

Discrete-time linear-quadratic control
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Stochastic Control in Finance

Thank You
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