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Formulation

Let (92, F,F,P) be a complete filtered probability space on which a standard
one-dimensional Brownian motion W = {W(¢);0 <t < oo} and a continuous
time, finite-state, Markov chain o = {«(t); 0 < ¢t < oo} are defined, where

F = {F:}+>0 is the natural filtration of W and o augmented by all the P-null
sets in F. We identify the state space of the chain a with a finite set

S £ {1,2...,D}, where D € N and suppose that the chain is homogeneous
and irreducible. To specify the statistical or probabilistic properties of the chain
a, we define the generator A(t) := [\i;(t)]s,j=1,2,....,0 of the chain under P.
Here, for each i,5 = 1,2,..., D, A;;(t) is the constant transition intensity of
the chain from state ¢ to state j at time ¢. Note that A\;;(¢) > 0, for ¢ # j and
Zle Aij () = 0, so Aii(t) < 0. In what follows for each 4,j = 1,2,..., D with
1 # j, we suppose that \;;(t) > 0, so A;;(t) < 0. For each fixed

j=1,2,--- D, let N;(t) be the number of jumps into state j up to time ¢
and set N;(t) := N;(t) — \j(t) with

t D t
)\j(t) = /0 )\Q(S,)jj{a(sf)#j}ds = Z /(; )\ij (S)I{a(sf):i}ds.
i=1,i#j
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Formulation

Let 0 < ¢t < T and consider the following controlled Markovian regime
switching linear stochastic differential equation (SDE, for short) over a finite
time horizon [¢, T]:

dX(s) = [A(s7 a(s))X (s) + B(s,a(s))u(s) + b(s, a(s))] ds

+[C(s,0(5)X () + D(s,a()u(s) + a(s,a(s))|[dW(s), s € 1,7,

(1)
where 4,C': [0,T] x § = R"*" and B,D : [0,T] x S — R™*™ are given
deterministic functions, called the coefficients of the state equation (1);
b,o:[0,T] x S x & — R™ are F-progressively measurable processes, called the
nonhomogeneous terms; and (t,z,1) € [0,7) x R" x S is called the initial
pasr.
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Formulation

In the above, the process u(-), which belongs to the following space:

u(-) is F-progressively measurable

a . —R™ ’ 00
Ui, ) & qu: [t T)x Q= R™ | IE/ |u(s)[*ds <
t

is called the control process, and the solution X (-) of (1) is called the state
process corresponding to (¢, x,4) and u(-).
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Formulation

To measure the performance of the control u(-), we introduce the following
quadratic cost functional:

J(tw,isu()) 2 E{<G(a<T)>X(T>7X<T>> +2(g(a(1)), X(T))
o [ W) C8) C))

q(s, a(S))> (X(8)>>
+2 , ds p,
<(p(s,a(5)) u(s)
where G (i) € R™™"™ is a symmetric constant matrix, and g(i) is an
Fr-measurable random variable taking values in R"™, with i € S;
Q:[0,T] xS —>R"™™, §:[0,T]xS —R™™and R:[0,T] x S — R™*™
are deterministic functions with both @) and R being symmetric;

q:10,T] xS - R" and p:[0,7] x S — R™ are F-progressively measurable
processes.
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Formulation

Problem (M-SLQ). For any given initial pair (¢,z,%) € [0,T) x R® x S, find
a control w*(-) € U[t, T, such that

J(t,zyi5u” () = J(t,z, i u(s),  Yu() € U[t,T). (3)

inf
u(-)€U[t,T]
The above is called a stochastic linear quadratic optimal control problem of
the Markovian regime switching system. Any u*(-) € U[t, T] satisfying (3) is
called an open-loop optimal control of Problem (M-SLQ) for the initial pair
(t,z,1); the corresponding state process X (-) = X (- ;¢,z,i,u”(+)) is called an
optimal state process; and the function V (-, -, ) defined by

V(t,z,i) = u(-)lerllxtf[t,T] J(t,z,5;u(r),  (tx,0) €0,T]xR" xS, (4)

is called the value function of Problem (M-SLQ).
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Formulation

Note that in the special case when b(-,),o(-,-),49(:),q(:,+), p(-,+) = 0, the
state equation (1) and the cost functional (2), respectively, become

dX(s) = [A(s,a(s))x(s) + B(s,a(s))u(s)] ds

T [C(s, a(s)) X (s) + D(s, a(s))u(s)] aw(s), seft1], ©®)
Xt)==z, «at) =41,

and

It i5u()) = E{<G(a(T>>X(T>,X<T>>>

e ((Sooeh Stoeln™y (XY (X0,
¢ S(s;a(s))  R(s,a(s)) (s) )" \u(s) '
(©)
We refer to the problem of minimizing (6) subject to (5) as the homogeneous
LQ problem associated with Problem (M-SLQ), denoted by Problem
(M-SLQ)°. The corresponding value function is denoted by V°(t, z, ).

Moreover, all the coefficients of (1) and (2) are independent of the regime
switching term «(+).
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The First Example

Consider the following one-dimensional state equation

{ dX(s) = [ — a(s)X(s) + u(s)]ds + \/2a(s) X (s)dW(s), s€ [t 1],
X@t)==z, at)=1,

and the nonnegative cost functional

J(t, z,i;u(r) = E[X(1)2].
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The First Example

We construct the control @(-) as

u(s) = % - exp {—2 /tS a(r)dr + /ts \/MdW(r)} . set1].

By the variation of constants formula, the state process X (-), corresponding to
(t,z,i), can be presented by

X(s):exp{f2/tsa(r)dr+/ts \/dem}. {x+f__fx} set1],

which satisfies X (1) = 0. Hence,

J(t,z,i;a(-)) = E[X(1)*] = 0.

Since the cost functional is nonnegative, the control @(-) is optimal for the
initial pair (¢,x,1).

Stochastic LQ Optimal Control of Regime-Switching System



The First Example

Is the optimal control u(-) open-loop or
closed-loop?
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The following standard assumptions will be in force throughout this paper.

(H1) For every i € S, the coefficients of the state equation satisfy the
following

A(-,i) € L'(0, T; R™™™), B(-,i) € L*(0, T; R™™),
C(-,4) € L*(0, T; R™*™), D(-,3) € L*(0,T;R™*™),
b(-,7) € LE(; L' (0, T;R™)),  o(-i) € LE(0, T;R™).

(H2) For every i € S, the weighting coefficients in the cost functional satisfy
the following

Q(vz) € Ll(OaT; Sn)v S(al) € LQ(OvT; Rmxn)’ R(vl) € Loo(ovT? Sm)7

G(i) e S, 9(i) € LE, (G R™),
p(-,i) € LE(0,T;R™), q(-,i) € LE(Q; L*(0,T;R™)).
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Definition

Definition 1

(i) An element u*(-) € U[t, T is called an open-loop optimal control of
Problem (M-SLQ) for the initial pair (t,z,7) € [0,T] x R" x § if
Itz 5u"() < Iz, du(),  Vu() €U, T]. (7)
(i) A pair (©*(-),v*(")) € L3(t, T;R™*™) x U[t, T) is called a closed-loop
optimal strategy of Problem (M-SLQ) on [t, T if
J(tv z, 4 9*()X*()+U*()) < J(t7 z, 4 u())a V(J,‘,’L) € RnXS, U() € u[t7 T]7
(8)

where X *(-) is the strong solution to the following closed-loop system:

dX*(s) = {[ (s,a(s)) + B(s, a(s))0" (s)] X*(s)
+B(s,a(s))v"(s) + b(s, a(s)) pds
{[ (s,(s)) + D(s, (s ))@*(s)]X*(s) 9)
D(s, a(s))v*(s) + a(s, a(s)) pdW (s),




FBSDE

To simply notation of our further analysis, we introduce the following
forward-backward stochastic differential equation (FBSDE for short) on a finite

horizon [t, T):
dX"(s) =[A(s,a(s) X" (s) + B(s,a(s))u(s) + b(s, a(s))] ds
+ [C(s7 a(8) X" (s) + D(s, a(s))u(s) + o(s, a(s))]dW(s)
dY“(s) = — [A(s,a(s)) TY™(s) + C(s,a(s))  Z"(s
+ Q(s, () X"“(s) + S(s,a(s)) "u(s) + q(s a(s))]ds
+ Z"(s)dW (s) + »_ T (s)dNk(s) s € [t,T)
k=1
XU(t) =2, alt) =i, Y*(T)=G(a(T)X"(T)+ g(a(T))




FBSDE

The solution of the above FBSDE system is denoted by
(X(), Y (), Z2°(), (), where T(-) := (I'{ (), -~ , B (1)).

If the control u(-) is chose as ©(-) X (-) + v(-), we will use the notation
(XO(), YO (), 297 (), 19" ()

denoting by the solution of the above FBSDE.

Ifo(-,) =0o(-,-) = q(-,-) = g(-) = 0, the solution of the above FBSDE is
denoted by

(X0 (), ¥5"(), Z0 () o (-))-

Stochastic LQ Optimal Control of Regime-Switching System



Open-loop Solvability
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Open-loop Solvability

We first present the equivalence between the open-loop solvability and the
corresponding forward-backward differential equation system.

Theorem 1

Let (H1)—(H2) hold and (t,z,%) € [t,T] X R™ x S be given. An element
u(-) € U[¢t, T] is an open-loop optimal control of Problem (M-SLQ) if and
only if J°(t,0,4;v(+)) > 0,Yo(-) € U[t, T] and the following stationary
condition hold:

B(s,a(s)) Y " (s;t,2,0) + D(s, a(s)) " Z"(s;t, 2, )
+ S(s, () X" (558, , 1) + R(s, a(s))u(s) + p(s,a(s)) =0, s € [t,T],
(11)
where (X“(-;t,2,4),Y*(-; t,x, 1), Z*(-; t,z,1)) is the adapted solution to
the FBSDE (10).
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Open-loop Solvability

The standard conditions:

G(i) >0, R(s,i)>0l, Q(s,i)—S(s,i) R(s,i)""S(s,i) >0,
ieS, ae se€l0,7). (12)

Proposition 1

Let (H1)—(H2) and (12) hold. Then for any (t,i) € [0,T) x S, the map
u(-) — J°(t,0,4;u(-)) is uniformly convex.

Theorem 2

Let (H1)—(H2) hold. Suppose the map u(-) — J°(t,0,4;u(-)) is uniformly
convex. Then Problem (M-SLQ) is uniquely open-loop solvable, and there
exists a constant v € R such that

VO(t,z,5) > qlzl?,  V(tx) € [0,T] x R™. (13)

Note that in the above, the constant v does not have to be nonnegative.
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Closed-loop Solvability
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Closed-loop Solvability

In the following, we first introduce some notation and the Riccati equation.

Let
S(s,i) := B(s, i) P(s,i) + D(s,i)" P(s,4)C(s, i) + S(s,1),

R(s,i) := R(s,i) + D(s,i) P(s,i)D(s,).

(14)

The Riccati equation associated with Problem (M-SLQ) is

P(s,i) + P(s,i)A(s,i) + A(s,i) T P(s,i) + C(s,4) ' P(s,7)C(s,1)

— S(s,4) " R(s,0)75(s,4) + Q(s,1) + Y _ Nir(s)P(s,k) =0, ae. s€[0,T],
P(T,i) = G(i).
(15)
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Closed-loop Solvability

Definition 2
A solution P(-,-) € C([0,T] x S;S™) of (15) is said to be regular if

R(S‘(sn)) C R(IA%(s,i))7 a.e. s € [0,T7,
R(,)T8(.,-) € L*(0,T;R™*™), (16)
R(s,i) >0, a.e. s € [0,T].
A solution P(-,-) of (15) is said to be strongly regular if
R(s,i) > M, a.e. s € (0,71, (17)

for some A > 0. The Riccati equation (15) is said to be (strongly) regularly
solvable, if it admits a (strongly) regular solution.
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Closed-loop Solvability

Theorem 3

Let (H1)—(H2) hold. Problem (M-SLQ) is closed-loop solvable on [0, T] if
and only if the Riccati equation (15) admits a regular solution

P(-,-) € C(]0,T] x S;S™) and the solution (n(-),{(-),&1(-), - ,&p(+)) of the
following BSDE:

dn(s) = f{ (s, a(s)) "= (s, (s ))Tﬁ(s afs ))TB(s a(s)) T ]n(s)
+[C( a(s)) "= S(s, a(s)) T R(s, a(s)) T D(s, (s)) T]¢(5)
+[C(s, () "= S(s,a(s)) T R(s,a(s)) D(s,a(s)) "] P(
—S(s,a(s)) T R(s, a(s)) p(s, a(s)) + P(s, a(s))b(s, a(s)) + q(s, a(s) }ds

(s,a(s))o(s, afs))

H@W@+Z&6MU,%Nﬂ

n(T) = g(2),
(18)
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Closed-loop Solvability

Theorem 3 (Continuous)

satisfies

{ p(s, 1) € R(R(s,1)), a.e. a.s. (19)

R(s,1)"p(s,i) € LF(0, T;R™),
with
p(s,i) = B(s,i) 'n(s) + D(s,i) ¢(s) + D(s,i) P(s,i)o(s, i)+ p(s,i). (20)

In this case, Problem (M-SLQ) is closed-loop solvable on any [t,T], and the
closed-loop optimal strategy (©7(-),v*(:)) admits the following
representation:

for some TI(-) € L*(t, T;R™*™) and v(-) € L2(t, T;R™), and the value
function is given by
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Closed-loop Solvability

Theorem 3 (Continuous)

The value function is given by

V(t,x,1) :E{(P(t, )z, x) + 2(n(t), x)

where

P(s,i) := (P(s,i)0(s, i) + 2¢(s),0(s,3)) + 2(n(s), b(s, i)).
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Closed-loop Solvability

Now we present the equivalence between the uniform convexity of the cost
functional and the strongly regular solution of the Riccati equation.

Theorem 4

Let (H1)—(H2) hold. Then the following statements are equivalent:

(i) The map u(-) = J°(t,0;u(-)) is uniformly convex, i.e., there exists a
A > 0 such that

Jo(t,O,i;u(~))>>\]E/t lu(s)|?ds,  Yu(-) € U[t,T].

(ii) The Riccati equation (15) admits a strongly regular solution
P(-,-) € C([0,T] x S;S™).
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The First Example

Since Q(-,4) = 0, R(-,3) = 0,D(-,3) = 0 for every i € S and 0" = 0, we have
the following Riccati equations

(s,1) + Z/\’k =0, ae. s€ltT], (23)

P(T,i) =
Clearly, the unique solution of the above ordinary differential equation system is
P(s,i) =1, for (s,i) € [t,T] X S.
Thus, for any (s,4) € [t,T] X S, we have
R(S(s,9)) = R(e") = R(1) =R,
R(H(s,i)) = R(0) = {0},

Now from Theorem 3, we can deduce that this problem is not closed-loop
solvable.

R(S(s, z)) ¢ R(R(s, z)) .
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Weak Closed-loop Solvability
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Weak Closed-loop Solvability

Definition 3 (Weak closed-loop)

Let © : [t,T) — R™*™ be a locally square-integrable deterministic function
and v : [t,T) x © — R™ be a locally square-integrable F-progressively
measurable process, i.e., ©(:) and v(-) are such that for any 7" € [t,T),

T’ T’
/ |9(s)|?ds < oo, IE/ lu(s)|*ds < oo.
¢ t

We call (©(-),v(+)) a weak closed-loop strategy on [t,T) if for any initial
state (z,7) € R™ x S, the outcome u(-) = O(-)X(-) + v(-) belongs to

U[t, T) = LE(t, T;R™), where X (-) is the solution to the weak closed-loop
system:

dX (s) = {[A(s, a(s))+ B(s, a(5))0(5)] X () + B(s, a(s))v(s) +b(s, a(s))} s
+{[C(s,a(s)) + D(s, a(5))(5)] X (s)
+D(s,a(s))v(s) + o(s, a(s))}dW(s), s € t,T],

X(t) = x.
(24)

The set of all weak closed-loop strategies is denoted by € [t, T
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Weak Closed-loop Solvability

Let ©. : [0,T] = R™*™ and v : [0,7] X @ — R™ be

O:(s) = —[RE(S, a(s)) + alm]_lgg(s,oz(s)), (25)
v=(8) = —[Re(s,(5)) + €] pe(s, a(s)), (26)

with
pe(s,i) = B(s,i) Tne(s) + D(5,)TC.(5) + D(s,3) " Pe(s, (s, 1) + p(s,1)-

We prove that the family {©.()}e>0 and {v:(:)}e>0 defined by (25) (26) are
locally convergent in [0,T).

Stochastic LQ Optimal Control of Regime-Switching System



Weak Closed-loop Solvability

Proposition 2

Let (H1) and (H2) hold. Suppose that Problem (M-SLQ)° is open-loop

solvable. Then the family {©.(-)}s>0 defined by (25) converges in

L2(0,T";R™*™) for any 0 < T’ < T; that is, there exists a locally

square-integrable deterministic function ©*(-) : [0,T) — R™*™ such that
T

lim |©:(s) —O©*(s)?ds =0, VYO<T <T.

e—=0 Jq

Proposition 3

Let (H1) and (H2) hold. Suppose that Problem (M-SLQ) is open-loop
solvable. Then the family {v.(-)}e>0 defined by (26) converges in
L2(0,T";R™) for any 0 < T' < T’; that is, there exists a locally
square-integrable deterministic function v*(-) : [0,T) — R™ such that

e—0

T/
limE/ lve(s) —v*(s)[?ds =0, VO<T <T.
0
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Weak Closed-loop Solvability

Let (H1) and (H2) hold. If Problem (M-SLQ) is open-loop solvable, then
the limit pair (©*(-),v*(-)) obtained in Propositions 2 and 3 is a weak
closed-loop optimal strategy of Problem (M-SLQ) on any [t,T).

Consequently, the open-loop and weak closed-loop solvability of Problem
(M-SLQ) are equivalent.
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The Second Example

Let T'=1 and D = 2, that is, the state space of a(-) is S = {1,2}. For the
generator A(s) £ [Ay;(s)]ij=1,2, note that 35, Aij(s) =0 for i € S, then

0= () )= (Gt ) seo

Consider the following Problem (M-SLQ) with one-dimensional state equation

dX(s) = [— a(s)X (s) + u(s) + b(s, a(s))]ds +/2a(s)X (s)dW (s), s € [t, 1],

(27)
and the cost functional

J(t7 x, 7:; u()) = ]E[X(l)2]a

where the nonhomogeneous term b(+, ) is given by

~exp{/os VZa () dW (1) —2/03 a(r)dr}, s [0,1);

b(s, a(s)) = l=s
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The Second Example

It is easy to see that b(-,4) € L(Q; L'(0,1;R)) for each i € S. In fact,

E (/01 |b(s,a(s))|ds>2 < 4R (Ozliglexp {/O V2a(r)dW (r) — /0 a(r)dr})2 .

Since the term exp {/ vV 2a(r)dW (r / a(r )dr} is a square-integrable

martingale, note that a(-) belongs to S = {1, 2}, it follows from Doob'’s
maximal inequality that

E (Oigglexp{/ V2a(r)dW (r) /0 afr )dr}>2
< 4E exp {2/0 V2a(r)dW (r) — 2/01 oz(r)dr}

< det.

Hence,

E (/01 |b(s,a(s))ds)2 < 16¢",

which implies that b(-,4) € LE(€; L'(0,1;R)) for each i € S.



The Second Example: Not closed-loop solvable

We first claim that this (M-SLQ) problem is not closed-loop solvable on any
[t,1]. Indeed, the generalized Riccati equation associate with this problem reads

P(s,1) + Mi(s)P(s,1) = Aui(s)P(5,2) =0, ae s€[t,1], fori=1

P(1,1) =1, ’
and

P(5,2) — Aaa(s)P(5,1) + Aa2(s)P(5,2) = 0, a.e. s € [t, 1], for i — 9

P(1,2) = 1, T

whose solutions are P(s,1) = P(s,2) =1, or P(s,i) =1, for (s,i) € [0,1] X S.
Then for any s € [t,1] and ¢ € S, we have

R(S(s,9)) = R(1) =R, . .
. R(S(s,1 R(R(s,1)).
R(R(s,i)) = R(0) = {0}, (S(s0)) € R(R(s.9)

where
5’(3, i) & B(s,i)TP(s7 i)+ D(s,i)TP(s,i)C(s,i) + S(s,1),
R(s,i) £ R(s,i) + D(s,i) " P(s,i)D(s, ).

Therefore, the range inclusion condition is not satisfied, which deduce that our
claim holds.

(28)
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The Second Example

Without loss of generality, we consider only the open-loop solvability at ¢ = 0.
To this end, let € > 0 be arbitrary and consider Riccati equations (15), which,
in our example, read:
. 1
P.(s,1) — gPE(s, D2+ Ai(s)Pe(s,1) — A1 (s)Pe(s,2) =0, ae. s € [t,1],
P.(1,1) =1,

and

P.(s,2) — éPe(s, 2)2 — A22(8)Pe(s,1) + A22(s)P:(s,2) =0, a.e. s €[t 1],
P.(1,2) = 1.

Solving the above equations yields
€

PE(S7]‘):PE(372):m7 36[051]'
Or, R
PE(S7Z):m7 (’577’)6[071]XS'

Note that the state space of a(s) is S = {1, 2}, we let

O:(s) £ —[Re(s,a(s)) + elm] " (s, a(s))
 Po(s,0(5)) 1 (29)

=— 0,1].
5 e+l—s’ s €01
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The Second Example

Then the corresponding BSDE (18) reads

dne(s) = —{[@s(s) (8)]ne(s) + V/2a(s)C (5) + Pe(s, cx ))b(s)}ds

+<E(S)dW(S) + Z€Z(S)dﬁk(s)a s € [07 1]7

k=1

n:(1) = 0.

Let f(s) = \/11? Using the variation of constants formula for BSDEs, and
noting that W (-) and Ni () are (FF,P)-martingales, we obtain

= ew {/O J2Za(r)dW (r) — 2/08 a(r)dr} /51 f(r)dr, s €0,1].

n=(s)
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The Second Example

Now let

v:(8) 2 —[Re(s,(s)) + elm]) " pe(s,a(s)) = _US(S)

:—Ti_sexp{/os\/MdW(r)— / }/f €0,1].

30)

Then the corresponding closed-loop system can be written as
dX.(s) = {[@E(s) — a(s)] Xc(s) + v=(s) + b(s, af }ds + V2a(s) X (s)dW (s
{ X:(0) ==x.
By the variation of constants formula for SDEs, we get
Xo(s)=(e4+1—5) exp{/ V2a(r)dw (r) ar)dr
/0 [Hi { / V2a(m)dW (7) + 2/ a(F)dv"} (ve(r) + b(r, a(r))) | dr
PP ~exp{/0 V2a(r)dW (r) —2/0 a(r)dr}, se0,1].

e+1
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The Second Example

The family {u<(-)}c>0 is defined by

ue(s) £ 0. (5)Xe(s) + ve(s)

= —exp {/05 V2a(r)dW (r) — 2/0S a(r)dr}
. /OS L n 1 —, exP {7/()TMCZW(F) + 2‘/()Ta(77)df} (ve(r) + b(r,a(r)))] dr
- i : .exp{/os V2a(rydW (r) — 2/05 a(r)dr} +ve(s), se€o, 1}(, |
31

is bounded in LZ(0, 1;R).

Simplifying (31) by Fubini's theorem yields

we(s) = — (511 + Eil /Olf(r)dr> exp{/os Za{)dW (r) — 2/05a(r)dr}
Z—Zjifexp{/os \/mdvv(r)—zfosa(r)dr}.

(32)
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The Second Example: Open-loop solvable

A short calculation gives

1 2
+2
E ()|%ds = (£ < 2)2 .

/o e ()l ds (S+1> sle+2y, ve>0

Therefore {uc(+)}e>o is bounded in LZ(0, 1; R).

Now, let ¢ — 0 in (32), we get an open-loop optimal control:

u*(s) = —(z +2) exp {/ vV 2a(r)dW (r) — 2/ a(r)dr} ,  seo0,1].
0 0
From the above discussion, similar to the state process X (-) of (27), the
open-loop optimal control u*(-) also depends on the regime switching term
a(-). That is to say, as the value of the switching a(-) varies, the open-loop
optimal control u*(-) will be changed too.
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The Second Example

Finally, we let € — 0 in (29) and (30) to get a weak closed-loop optimal
strategy (©7(-),v"(")):

0 (s) = limO.(s) =~ =, s€[0,1),
v (s) = lim ve(s) = — 1_Sexp{/\/7dW 72/ ()d}, selo0,1).

We put out that neither ©*(-) and v™(-) is square-integrable on [0, 1). Indeed,
one has

1 . 9 1 1
A |C"‘) (5)‘ dS:‘/0 mdﬁzoo7

JE/O1 U*(s)|2d5:E/01 1f8exp{2/03 \/MdW(r)—4/osa(r)dr}ds
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@ Random coefficients
@ Infinite time horizon

@ Discrete-time linear-quadratic control
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Stochastic Control in Finance

Thank You
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