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1 STOCHASTIC VS. LOCAL VOLATILITY

1. Stochastic vs. Local Volatility

• Discrete-time ARCH, then GARCH: time-varying volatility is an impor-

tant empirical feature in economic and financial data (Engle (1982))

• In continuous-time, models with stochastic volatility became prevalent

– Require the use of an additional state variable Y , often latent, to

drive the volatility of the variable of interest, X

– X on its own is typically no longer Markovian

– Costly implications: higher dimension, plus Y requires filtering or

learning
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1 STOCHASTIC VS. LOCAL VOLATILITY

• Local volatility models

– Make the volatility of X a function of X itself

– Retains the time variation of the volatility of X, and its Markov

character, but without the additional stochasticity of Y

– Such models, although more restrictive, remain very popular in

financial applications
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1 STOCHASTIC VS. LOCAL VOLATILITY

• This paper

– Tests using high frequency observations whether the volatility of

X can be written as a function of X only

– Or whether some additional variable Y is needed

– Can

dXt = btdt+ YtdWt

dYt = mtdt+ vtdW
′
t

be reduced to

dXt = btdt+ a(Xt)dWt ?
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1 STOCHASTIC VS. LOCAL VOLATILITY

• Related question: whether X can be written on its own as a Markov

process

– If X is continuous, then X will be Markovian if its drift and volatil-

ity functions are functions of X (and time) only

– Time-series tests examine the necessary (but not sufficient) condi-

tion that the conditional density of the process satisfies the Chapman-

Kolmogorov condition (see Äıt-Sahalia (1996) and Äıt-Sahalia et al.

(2010)); whether conditional independence between consecutive

durations holds (see de Matos and Fernandes (2007)); and whether

the conditional characteristic function satisfies the requirement im-

posed by the Markov property (see Chen and Hong (2012)).
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1 STOCHASTIC VS. LOCAL VOLATILITY

• This paper tests directly whether the volatility of X is a function of

X only

– At high frequency over a finite time span, the drift is not identified

– So only properties regarding the volatility of X can be tested any-

ways

– If X can jump, additional separate restrictions on the structure of

the jump component of X are imposed by the Markov property.

6



2 THE MODEL

2. The Model

Xt = X0 +
∫ t

0
bs ds+

∫ t
0
c

1/2
s dWs + Jt,

Jt =
∑
n≥1

Υm1{Tm≤t}.

• W is a Brownian motion, Tm jump times, Υm jump sizes

• Can be extended to Itô semimartingale with degree of activity strictly

less than 1

• The local volatility case (H0):

ct= a(Xt)

for some positive C1 function a on R

• Markov adds: bt = µ(Xt) and a special structure on the jumps
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2 THE MODEL

• Observations on a finite [0, T ], sampling interval ∆n → 0 as n→∞

• With a(x) > 0 is assumed, and when the jump process Jt vanishes,

the law of X under (H0) in restriction to any finite time interval [0, t]

is equivalent to the law of the Markov process

X̄t = X0 +
∫ t

0
a(X̄s)

1/2 dWs.

Then, since X is observed on a finite [0, T ] only, it is impossible

to discriminate between X and X̄, hence (H0) is equivalent for the

econometrician to assuming the Markov property, plus the smoothness

of a

• Microstructure noise: white noise plus rounding
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3 TESTING THE NULL HYPOTHESIS

3. Testing the Null Hypothesis

3.1. Without Noise

• We wish to determine whether the spot variance ct can be written in

the form ct = a(Xt) for some smooth function a(·)

• Estimators localized in x

– Choose a nonnegative kernel function f on R with support in

[−1, 1] and with Lebesgue integral equal to 1, bandwidths hn and

thresholds vn > 0 satisfying, for some ε > 0:

h3
n

∆n
→ 0,

∆n

h2
n
→ 0, vn → 0,

∆
1/2−ε
n

vn
→ 0,
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3.1 Without Noise 3 TESTING THE NULL HYPOTHESIS

– Approximation of the Dirac mass at 0

fn(x) =
1

hn
f

(
x

hn

)
.

• Discrete increments (e.g., log-returns)

∆n
iX = Xi∆n −X(i−1)∆n

• Define the statistics for integers p, typically in the set P = {0, 2, 4}

U(x, p)nt = ∆
1−p/2
n

1

mp

[t/∆n]∑
i=1

fn(X(i−1)∆n
− x) |∆n

iX|
p 1{|∆n

i X|≤vn}
.

where mp = the pth absolute moment of N (0, 1)
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3.1 Without Noise 3 TESTING THE NULL HYPOTHESIS

• Truncation at level vn to get rid of the jumps, if any

– If we know that X is continuous, omit the indicator function above

– The truncation can be kept even if we know that X is continuous,

in which case it is asymptotically irrelevant

11



3.1 Without Noise 3 TESTING THE NULL HYPOTHESIS

• Local time

– The limiting behavior of U involves the local times Lx of X at x

Lxt = |Xt − x| − |X0 − x| −
∫ t

0
sign(Xs − x) dX ′s

−
∑
n≥1

(
|XTn − x| − |XTn− − x|

)
1{Tn≤t}.

– X ′ = X − J is the continuous part of X

– Lxt > 0 a.s. if the process X has visited the point x within [0, T ]

– This is the semimartingale version of the local time, which differs

from the Markov local time by the factor a(x)

– Has the advantage of being defined even when (H0) fails
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3.1 Without Noise 3 TESTING THE NULL HYPOTHESIS

• Theorem:

U(x, p)nt
u.c.p.
=⇒

∫ t
0
c
p/2−1
s dLxs .

• With p = 2 : U(x, 2)nt
u.c.p.
=⇒ Lxt
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3.1 Without Noise 3 TESTING THE NULL HYPOTHESIS

• Generic limitations

– As in any other high frequency testing problem:

∗ A single path of X over [0, T ] is observed

∗ Nothing about what happens after t = T can be tested

– Furthermore:

∗ Nothing can be said about what happens to the volatility when

the process is outside the (random) set of points visited by X

on [0, T ]
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3.2 The Idea Behind the Test 3 TESTING THE NULL HYPOTHESIS

3.2. The Idea Behind the Test

• Testing first at a single visited point X = {x}

• Under the null, we have cs = cs′ for all s, s′ ∈ [0, t] with Xs = Xs′ = x

and therefore∫ t
0

∫ t
0

(cs − cs′)
2 (cs)

−1 (cs′)
−1 dLxs dL

x
s′ = 0

• The alternative hypothesis (H1)

– There is at least one pair s, s′ ∈ [0, T ] such that Xs = Xs′ and

cs′ 6= cs.

– This set is random, as often in high frequency

• The same quantity is strictly positive under the alternative

• This does not lend itself directly to a test since we have no good way

of estimating
∫ t
0
∫ t
0(cs − cs′)2 (cs)−1 (cs′)

−1 dLxs dL
x
s′
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3.2 The Idea Behind the Test 3 TESTING THE NULL HYPOTHESIS

• However, under the null we also have(∫ t
0
cs dL

x
s

) (∫ t
0
c−1
s dLxs

)
− (Lxt )2 = 0

• Using the theorem

Ū(x)nt := U(x, 4)nt U(x, 0)nt − (U(x, 2)nt )2

P−→ Ū(x)t :=
(∫ t

0
cs dL

x
s

) (∫ t
0
c−1
s dLxs

)
− (Lxt )2

• So

Ū(x)nt
P−→

{
Ū(x)t = 0 under (H0)

Ū(x)t > 0 under (H1)
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3.2 The Idea Behind the Test 3 TESTING THE NULL HYPOTHESIS

• Testing at an arbitrary finite set of visited points X

– Sum of Ū(x)nt over x ∈ X , possibly weighted

– The weight assigned to any given x should reflect the time spent

by X at or around x, which is roughly proportional to the value of

Lxt , which itself is estimated by U(x, 2)nt

– So we will consider a statistic of the form

U(X , r)nt =
∑
x∈X

Ū(x)nt (U(x, 2)nt )r

for some r

– We have

U(X , r)nt
P−→

{
U = 0 under (H0)

U > 0 under (H1)
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3.3 With Noise 3 TESTING THE NULL HYPOTHESIS

3.3. With Noise

• Plug-in X̃i∆n instead of Xi∆n into the statistic, to form Unoisy(x, p)nt

– However, even in the simplest white noise case we have

∆
p/2
n

v
p+1
n

Unoisy(x, p)nt
u.c.p.
=⇒

{ 2
pmp

∫ t
0 φ(Xs − x) ds if p > 0

2
∫ t
0 φ(Xs − x) ds if p = 0,

– The limit here has no connection with the volatility of X

– Hence these statistics cannot be used for testing (H0)
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3.3 With Noise 3 TESTING THE NULL HYPOTHESIS

• Instead, we need to resort to a preliminary de-noising procedure

– We use pre-averaging and plug-in the pre-averaged values of X̃

– Then the same convergence holds
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3.4 The Central Limit Theorem 3 TESTING THE NULL HYPOTHESIS

3.4. The Central Limit Theorem

• Theorem (√
hn/kn∆n Ū(x)nt

)
x∈X

L-s→ (Z̄(x)t)x∈X ,

where Z̄ is F–conditionally centered Gaussian with convariance

Ẽ(Z̄(x)t Z̄(y)t | F) =
8β

3
1{x=y}a(x) (Lxt )3.

and β =
∫+1
−1 f(x)2dx.

• The variables Z̄(x)t for distinct values of x are F–conditionally inde-

pendent.
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3.4 The Central Limit Theorem 3 TESTING THE NULL HYPOTHESIS

• Optimal Rate

– The (not fully achievable, but almost) optimal rates are 1/∆
1/3
n

without noise and 1/∆
1/6
n with noise, respectively.

– In the no-noise case, this is the typical non-parametric rate

– And, as in other situations, the presence of noise result in replacing

the rate without noise by its square-root
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3.5 Construction of the Test 3 TESTING THE NULL HYPOTHESIS

3.5. Construction of the Test

• From the theorem, under (H0):(
hn

kn∆n

)1/2

U(X , r)n
L-s
=⇒ Z(X , r) := (Lx)r

∑
x∈X

Z̄(x)

• Z(X , r)t is F–conditionally centered Gaussian with conditional vari-

ance:

Σ(X , r)t =
8β

3

∑
x∈X

a(x)(Lxt )3+2r

• Under (H0) an estimator of Σ(X , r)t is

Σ(X , r)nt =
8β

3

∑
x∈X

U(x, 0)nt (U(x, 4)nt )2 (U(x, 2)nt )2r
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3.5 Construction of the Test 3 TESTING THE NULL HYPOTHESIS

• Standardized test statistic

T nt =
(

hn

kn∆n

)1/2 U(X , r)nt(
Σ(X , r)nt

)1/2

• Which is N (0, 1) under the null

• We use the set P = {0, 2, 4} of values of p, other choices are possible.
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3.6 Tuning parameters 3 TESTING THE NULL HYPOTHESIS

3.6. Tuning parameters

• The localization kernel f

– Rather immaterial in practice, we suggest

f (x) =
15

16

(
x2 − 1

)2

– In which case β = 5/7.
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3.6 Tuning parameters 3 TESTING THE NULL HYPOTHESIS

• The bandwidth hn, plus the pre-averaging window kn in the noisy case

– The rate of convergence for U(X , r)nt gets faster when we increase

hn and/or when we decrease kn

– A good choice: hn � ∆
1/3
n / log(1/∆n) in the no-noise case, lead-

ing to the rate (log(1/∆n))1/2 /∆
1/3
n

– In the noisy case we cannot use kn � ∆
1/2
n , which is the optimal

choice in pre-averaging for estimating the volatility for example

– A good choice: take kn � ∆
1/2
n log(1/∆n) and hn � ∆

1/6
n , which

leads to the rate (log(1/∆n))1/2 /∆
1/6
n
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3.6 Tuning parameters 3 TESTING THE NULL HYPOTHESIS

• The jump truncation threshold vn

– Choose vn ≈ γ∆
1/2
n if there is no noise

– And vn ≈ γ (kn∆n)1/2 in the presence of noise, where γ is 3 to 5

times a rough average of the volatility.
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3.6 Tuning parameters 3 TESTING THE NULL HYPOTHESIS

• The weighting power r

– The choice of r is asymptotically irrelevant

– Increasing r puts more weight on values visited often

– Small sample discrepancies affect sites not visited often, so to avoid

this problem r should be taken relatively large

– Increasing r typically decreases the power of the test

– Under the alternative, Ū(x)nt roughly varies as (Lxt )2, so “equal

weights” means taking r = −2, which is good for the power of the

test, but bad for the null

– A good compromise is perhaps simply to take r = 0: then Unt
would be a proxy for

1

h2
n

∫ t
0

∫ t
0

(cs − cs′)
2 1{|Xs−Xs′|≤hn}

ds ds′

which is exactly the type of quantity which we want to test whether

it vanishes or not
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3.6 Tuning parameters 3 TESTING THE NULL HYPOTHESIS

• The set where we test the property

– When the cardinal of X is small, the procedure tests the property

only at a limited number of values of x

– This lowers the power of the test

– So take X relatively large, but the minimal distance between two

points of X should be bigger than 2hn

– In practice, use a grid
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4 MONTE CARLO SIMULATIONS

4. Monte Carlo Simulations

• Null model

dXt = κ (α−Xt) dt+ σX
1/2
t dWt

• Alternative

dXt = κ (α−Xt) dt+ σ (Xt + Yt)
1/2 dWt

dYt = β (ω − Yt) dt+ ηY
1/2
t dW ′t

E
[
dWtdW

′
t

]
= ρdt
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4 MONTE CARLO SIMULATIONS

• Paths simulated at 5 sec increments, data subsampled 1 to 5 mn,

T = 1 year

• α = 10, parameters give a stationary distribution with 99% of the

mass on [0, 30]

• X = uniform grid on [0, 30] in increments of 1

-4 -2 -1 0 1 2 4

0.1

0.2

0.3

0.4
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5 EMPIRICAL RESULTS: INTEREST RATES VS. STOCK PRICES

5. Empirical Results: Interest Rates vs. Stock

Prices

• Data

– ES (S&P500 eMini Futures) 1998-2017 1mn frequency

– ED (Eurodollar CME Futures) 1982-2017 5mn frequency, con-

verted to interest rate equivalent

• Results

– Clear rejection of the null for stocks

– Not so for interest rates

– Variation over time
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6 CONCLUSIONS

6. Conclusions

• Testing whether

dXt = btdt+ YtdWt

dYt = mtdt+ vtdW
′
t

can be reduced to

dXt = btdt+ a(Xt)dWt

• Based on a simple standardized statistic, involving sums of powers of
increments with truncation (for jumps) and localization (at a given x),
summed over x

• Asymptotically N (0, 1) under the null

• Interesting contrast of empirical results: stochastic volatility necessary
to model stock prices, much less so for interest rates
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