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Motivation 1-1

Introduction

� Increasing user-generated reviews and feedback on product
and service on the web.

� It becomes essential for executives and managers to collect
and analyze text information to capture comprehensive
understanding on market demand and expectation.

� Direct analysis of the unstructured text is challenging and
time consuming given the ultra-high dimension and complex
dependence.

� Build an efficient classifier to identify a (small) set of essential
features so as to provide rapid and valuable suggestions for
sentiment analysis and operational improvement.
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Text Mining

Text mining is a process of deriving insights or patterns from
unstructured text information through statistical learning.

� Transform free form text into structured form to facilitate
further analysis, which helps select important word features.

� Bag-of-words (BoW) representation of text assumes the
distribution of words within each document is sufficient, and
linguistic features like order and grammar can be safely
ignored for sentiment analysis.
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Bag of Words

Corpus (a set of documents to be analyzed) is transformed into a
document-term matrix, which contains a column for each word
appearing in the corpus and a row for each document.

� Usually each matrix entry is the count of the number of times
a particular word appears in each document, which is referred
to as frequency statistic.

� Alternatively, the tf-idf statistic, short for term frequency -
inverse document frequency, can also be applied to indicate
the importance of a word in the corpus.
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Tf-idf

Let x = {x1, x2, ..., xpn} be the word features, d = {d1, d2, ...dn}
the set of documents, and nij the tf-idf value of feature xj in di .

The tf-idf is calculated as the product of two statistics, term
frequency (TF) and inverse document frequency (IDF).

tf-idf = TF× IDF

where TF(xj) = (# of xj in doc di) / (# of all features in doc di),
IDF(x) = loge(# of all docs / # of docs with feature xj).

The word importance increases proportionally to the number of
times it appears in the document but is offset by its frequency in
the corpus.
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Sentiment Analysis

� After choosing proper corpus representation and feature
statistic, sentiment analysis often involves sentiment
classification, feature selection, topic modelling, and emotion
detection, etc.

� Various model-based machine learning classifiers (logistic
regression, KNN, SVM) have been applied in predicting review
polarity with good performance, see e.g. Pang (2002).

� A comprehensive survey of different algorithms and
applications of sentiment analysis in text mining field can be
found in Medhat (2014).
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Logistic Regression as Classifier

Objective: accurately classify the polarity of a review as positive or
negative given its textual content.

Logistic regression:
� popular discriminative classifier that models the conditional

probability of the response taking a particular value;
� usually used as a baseline model in sentiment classification

task, see e.g. Francis (2006).
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Challenges

� Curse of dimensionality: Direct application of logistic
regression would be inefficient or even infeasible when the
number of covariates is large and exceeds the number of
observations (large dim with pn >> n).
It suffers from the numeric problems that result in lack of
convergence, overfitting, and poor predictive accuracy see
Greenland (2000), Hadjicostas (2003).

� Besides building a good statistical classifier, another key
challenge is identifying a set of significant and meaningful
features that can be used for further inference.
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Sparsity and regularization
Regularization procedures are used to perform variables selection in
high dimensional regression under sparsity assumption.
� Lasso (Tibshirani, 1996), Adaptive Lasso (Zou, 2006), Elastic

Net (Zou and Hastie, 2005), and Smoothly Clipped Absolute
Deviation (SCAD) (Fan and Li, 2001) for univariate selection;

� Group Lasso and group LAR (Yuan and Lin, 2006), `1/`q
regularization (Zhao et al., 2008; Liu and Zhang, 2008),
group SCAD (Wang et al. 2007; Huang et al. 2012) for group
structures selection.

� Sparse group Lasso (Friedman et al. 2010; Zhou et al., 2010)
for bi-level selection. Multivariate sparse group Lasso (
Obozinski et al., 2011; Li et al., 2015) for multiresponse
regression problems.
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Objective
� Regularized Text Logistic (RTL) regression for ultra-high

dimensional text reviews and derive asymptotic properties
under sparsity.

Qn(βn) = −1
nΣn

i=1{yi logπi + (1− yi )log(1− πi )}+ Σpn
j=1pλ(|βj |)

where πi = eηi

1 + eηi
, ηi = β>xi

� Identify a small set of features amenable for operational
improvement.

� Perform sentiment classification and compare with existing
ML classifiers.
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Outline
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3. Regularized Text Logistic Regression Model
4. Real Data Analysis and Discussion
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Data
We consider two datasets for restaurants and hotels respectively.

� Restaurant: 1899 TripAdvisor (English) reviews on major
restaurants in a Singapore hotel from 1st December, 2015 till
9th September, 2016 via a scraper we developed and collect
attributes such as review title, content, date and rating of
each review on the webpage.

� Hotel: TripAdvisor reviews on hotels in different cities in the
US as used in Wang (2011). We selected the first 30 (.dat)
files from the original dataset, resulting in 2519 reviews from
28th Mar, 2001 to 27th Jan, 2009 with attributes of date,
customer satisfaction rating score (1-5), title and full text.

In both datasets, a review is classified as positive if the rating is
4-5, and negative if rating is 1-2, with the rest discarded.
RTL
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Sample reviews of Restaurant Dataset
+ We sat outside overlooking the promenade, superb food, wines
and service. Try the traditional fish and chips and lamb chops!
Lucky to get a table as we hadn’t made a booking. Lovely
complimentary breads and with my hungry adult males they
brought out more while waiting on our mains! Nice touch! (posted
on 8 Dec 2015)

− Came here on Sunday night with friends with high expectations
because of the famous chef behind the brand, I could not be more
disappointed in terms of food or service, I suppose coming from
Europe I am use to good French bistro with good standard but
here it’s fine dining with Michelin star price ouch! (posted on 21
Mar 2016)
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Sample reviews of Hotel Dataset

+ Quality hotel at great price. Very clean. Free breakfast with
good selections. Staff friendly and most helpful. A great stay!
(posted on 25 Nov 2008)

− Don’t do it!! This place is run down, dirty and loud. The
pictures they provide on the web do not tell the story so don’t be
fooled. (posted on 6 Mar 2008)
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Corpus Pre-processing

� Using BoW representation, the reviews are transformed into a
document-term matrix, where each entry represents the tf-idf
statistic of a word feature in a document.

� Pre-processing is performed to retain meaningful words and
filter out uninformative ones, since direct transformation
usually results in a big matrix that brings challenges in both
memory and computation.

� Pre-processing steps include: (1) transform into lowercase, (2)
remove punctuation, (3) remove stop words (e.g. the, a), (4)
strip while space, and (5) stem words to remove suffixes, i.e.
services, server, and served are all replaced by serv.
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Corpus Pre-processing

Figure 1: Flowchart of Data Collection and Processing
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Statistics

Table 1: Summary statistics of both datasets

Dataset Region Positive Negative Total
Restaurant Singapore 1525 130 1655
Hotel US 1558 593 2151

After processing, there are 5 543 and 11 324 different features for
Restaurant and Hotel datasets respectively.
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Regularized Text Logistic Regression
� The response (review polarity) is a random variable

Yi ∼ B(ni , πi ) with the binomial denominator ni = 1 and
probability π for all i .

� In the resulting document-term matrix, let x = {x1, x2, ..., xpn}
be the word features with tf-idf statistic as the observation,
d = {d1, d2, ...dn} be the set of documents.

� The dependence is represented via logic transformation,

πi = exp{β>xi}
1 + exp{β>xi}

where β = (β>1 , β>2 )> is the coefficient vector and assumed to
be sparse, i.e. only a subset of features β1 ∈ Rkn have
significant impact in determining review polarity and
β2 ∈ Rmn are insignificant, kn + mn = pn.
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Loss function

The estimation is achieved by maximizing the regularized
log-likelihood function

Qn(βn) = −1
nΣn

i=1{yi logπi + (1− yi )log(1− πi )}+ Σpn
j=1pλn (|βj |)

(1)
where pλ(β) is some penalty function, and λ is tuning parameter.

Fan and Li (2001) proposed smoothly clipped absolute deviation
(SCAD) penalty that, through simultaneous variable selection and
coefficient estimation, reaches oracle properties (the estimator is
able to perform as well as if the correct set of significant features
were known in advance).
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Smoothly Clipped Absolute Deviation
The SCAD penalty is defined as follows:

pλ,γ(βj) =


λ|βj | if |βj | ≤ λ;
−( |βj |2−2γλ|βj |+λ2

2(γ−1) ) if λ < |βj | ≤ γλ;
(γ+1)λ2

2 if |βj | > γλ

Figure 2: SCAD penalty function
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SCAD

� SCAD corresponds to a quadratic spline function with knots
at λ and γλ.

� The first derivative for some γ > 2 and β > 0 is
p′λ,γ(β) = λ{I(β ≤ λ) + (γλ−β)+

(γ−1)λ I(β > λ)}
� The SCAD penalty is continuously differentiable on

(−∞, 0) ∪ (0,∞) but singular at 0 with its derivatives being 0
outside the range [−γλ, γλ].

� This leads to small coefficients being set to 0, a few other
coefficients being shrunk towards 0, while retaining large
coefficients as they are, thus producing sparse solution and
approximately unbiased estimates for large coefficients.
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SCAD
The solution to SCAD penalty is

β̂SCAD
j =


(|βj | − λ)+sign(β̂j) if |β̂j | < 2λ;
{(γ − 1)β̂j − sign(β̂j)γλ}/(γ − 2) if 2λ < |β̂j | ≤ γλ;
β̂j if |β̂j | > γλ

Figure 3: SCAD thresholding rule
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Parameter Tuning

� The regularized logistic regression model depends on a few
hyper-parameters, including the number of folds K in cross
validation, the tuning parameter γ and penalty coefficient λ
that jointly control the trade-off between model bias and
variance.

� λ is selected by minimizing the cross-validated prediction error
along the coefficient path.

� The cross-validated prediction error is defined as
CV = 1

N
∑N

i=1 Qn(β̂−k(i)), where β̂−k(x) is the estimated
coefficients with the kth observation removed for
k = 1, 2, ...,K .
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Parameter Tuning

� Having three hyper parameters that jointly control the
trade-off between model bias and variance, including the
number of folds k in cross validation, the tuning parameter γ
and penalty coefficient λ, we apply a data-adaptive approach
to allow k, γ and λ vary jointly along a 3D grid of different
values in search of the minimal cross-validation error, with k
ranging from 5 to 20 and γ from 2.1 to 4 with a step size of
0.1.

� k, γ and λ will vary jointly along a 3D grid of different values
in search of the minimal cross-validation error.
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Asymptotic Properties

We study the sampling properties of the proposed penalized
likelihood estimator with diverging dimensionality and discuss the
regularity required conditions to obtain global minimizer.
� Let β0 = (β>10, β

>
20)> be the true set of coefficients to be

estimated, where β10 is a knx1 vector of nonzero coefficients
and β20 is an mnx1 vector of zero coefficients where
kn + mn = pn, the number of parameters which is allowed to
grow slowly as sample size goes to infinity.

� Similarly, let βn = (β>1n, β
>
2n)> be the observed coefficients for

the above mentioned cost function Qn(βn), with the
corresponding global minimizer β̃n and proposed RTL
estimator β̂n.
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Regularity Conditions

Denote an = max1≤j≤pn{p′λn (|β0j |), β0j 6= 0} and
bn = max1≤j≤pn{p′′λn (|β0j |), β0j 6= 0}.
� (C.1) ‖β̃n − β0‖2 = Op(pn/n).
� (C.2) liminfn→∞liminfβn→0+p′λn (|βn|)/λn > 0.

� (C.3) an = O(n−1/2) as n→∞.
� (C.4) bn → 0 as n→∞.
� (C.5) λn → 0 and

√
pn/n/λn → 0.

� (C.6) There exist constants C3 and C4 such that when
β1, β2 > C3λn, |p′′λn (β1)− p′′λn (β2)| ≤ C2|β1 − β2|.
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Regularity Conditions
� (C.7) For Fisher information matrix

In(βn) = E [{∂Qn(βn)
∂βn

}{∂Qn(βn)
∂βn

}>], there exist constants C1
and C2 satisfying
0 < C1 < λmin{In(βn)} ≤ λmax{In(βn)} < C2 <∞ where
λmin{In(βn)} and λmax{In(βn)} are minimal and maximal
eigenvalues of In(βn) respectively.
And for j , k = 1, 2, ..., pn,

Eβn

{∂Qn(βn)
∂βnj

∂Qn(βn)
∂βnk

}2
< C3 <∞

and
Eβn

{ ∂Q2
n(βn)

∂βnj∂βnk

}2
≤ C4 <∞
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Regularity Conditions
� (C.8) There exists a large enough open subset wn of Ωn ∈ Rpn

which contains the true parameter point βn, such that for
almost all Vni the density admits all third derivatives
∂Qn(Vni , βn)/∂βnj∂βnk∂βnl for all βn ∈ ωn. Furthermore,
there are functions Mnjkl such that

| ∂Qn(Vni , βn)
∂βnj∂βnk∂βnl

| ≤ Mnjkl (Vni )

for all βn ∈ ωn, and
Eβn{M2

njkl (Vni )} < C5 <∞
� (C.9) Let β01, β02, ..., β0kn be nonzero and
β0kn+1 , β0kn+2 , ..., β0pn be zero. Then β01, β02, ..., β0kn satisfy

min
1≤j≤kn

|β0j |/λn →∞ as n→∞
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Regularity Conditions
� Condition (C.1) is imposed in logistic regression setting with

diverging dimensionality as in (He and Shao, 2000).
� Condition (C.2) ensures sparse solution by making pλn (βn)

singular at the origin.
� Condition (C.3) guarantees unbiasedness property of large

parameters, and condition (C.4) ensures pλn (βn) does not
have much more influence than ln(βn) on SCAD estimator.

� Condition (C.5), (C.8) and (C.9) is used in the proof of
Oracle property, and condition (C.6) is a smoothness
condition on pλn (βn).

� Condition (C.7) assumes In(βn) to be positive definite with
uniformly bounded eigenvalues.

RTL
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Consistency

Theorem (Consistency)
Suppose Conditions (C.1), (C.3), (C.4) and (C.7) hold. Then there
exists a local minimizer β̂n = (β̂>1n, β̂

>
2n)> of Qn(βn) such that

‖β̂n − β0‖ = Op(
√
pn/n)

This theorem shows that under some conditions, there exists a
root-(n/pn)-consistent estimator.

RTL
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Sparsity
Lemma (Sparsity)
Suppose (C.1)-(C.7) hold. Then the SCAD estimator β̂n satisfies

Pr(β̂2n = 0)→ 1

In addition, denote

Σλn =diag{p′′λn (|β01|), ..., p′′λn (|β0kn |)}

and

bn = {p′λn (|β01|)sgn(β01), ..., p′λn (|β0kn |)sgn(β0kn )}>

where diag{·} is a diagonal matrix and sng(·) is a sign function.
RTL
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Oracle Property

Theorem (Oracle property)
Suppose p2

n/n→ 0, and the regularity conditions (C.1)-(C.7) are
satisfied, then the local minimizer β̂n = (β̂>1n, β̂

>
2n)> of Qn(βn) in

the theorem on consistency satisfies
(1) Sparsity: Pr(β̂2n = 0)→ 1 as n→∞.
(2) Asymptotic normality:

√
nα>n I

−1/2
n (β10)(In(β10) + Σλn )[(β̂1n − β10) + (In(β10) +

Σλn )−1bn] D−→ N(0, 1)

where αn is an arbitrary knx1 vector such that ‖αn‖ = 1.
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Oracle Property

This theorem ensures model sparsity and asymptotic normality
when the number of parameters diverges. When n is large enough,
it holds that Σλn = 0 and bn = 0 for SCAD penalty, and the
asymptotic normality becomes

√
nα>n I

1/2
n (β10)(β̂1n − β10) D−→ N(0, 1)

which is as efficient as the maximum likelihood estimator of β10 if
β20 were known in advance.
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Global Property

Theorem (Global Property)
Under conditions (C.1), (C.5) and (C.7), with probability tending
to 1, the local minimizer β̂n is the global minimizer of (1), i.e.

Pr(Qn(β̂n) = infβnQn(βn))→ 1

RTL



Real Data Analysis 4-34

Sentiment Classification

We implement RTL regression on the Restaurant and Hotel
datasets.
� Investigate sentiment classification performance of the

proposed RTL approach.
� Compare with alternative sentiment classification approaches.
� Identify a set of meaningful features amenable for operational

improvement.
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Performance Measure

For the binary sentiment classification problem, there are 4
outcomes as displayed in a two-way contingency table,

Table 2: Four performance measures

Actual positive Actual negative
Predicted positive a b
Predicted negative c d

� To measure the performance of sentiment classifier, we
consider 6 commonly used metrics.

RTL
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Performance Measure
Table 3: Six metrics to measure model performance

Metric Definition Interpretation
True pos-
itive rate
(TPR)

a
a+c

Also called recall or sensitiv-
ity, measures the proportion of
positive reviews that are cor-
rectly identified, or the extent
to which true positives are not
missed.

True neg-
ative rate
(TNR)

d
b+d

Also called specificity, measures
the proportion of negatives that
are correctly identified.

Positive pre-
dictive value
(PPV)

a
a+b

Also called precision, measures
the proportion of positive re-
views that are true positive.
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Performance Measure

Table 4: Six metrics to measure model performance

Metric Definition Interpretation
Negative
predictive
value (NPV)

d
c+d

Measures the proportion of neg-
ative reviews that are true neg-
ative.

Accuracy a+d
a+b+c+d

Measures the proportion of re-
views that are correctly classi-
fied.

F1 Score 2∗PPV ∗TPR
PPV +TPR

Combines precision and recall
as an overall metric
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Alternative Models
We consider 4 alternative models: (unregularized) logistic
regression, Naive Bayes, K-Nearest Neighbor and Support Vector
Machine.

� Following the same data-adaptive approach, the hyper
parameters are selected similarly via cross validation from a
grid of values, for example the cost is allowed to vary between
10−1 and 102 and γ among 0.5, 1 and 2 in SVM.

� For unregularized logistic regression, maximum likelihood
estimation would face the problem of singularity when the
feature space gets larger than the number of documents in the
corpus, thus a range of thresholds from 80% to 99% is applied
to control the sparsity of the document-term matrix so as to
downsize the feature space.
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Model Selection
� In SCAD regularized logistic regression, the minimal average

cross validation error is obtained by searching over a 3D grid,
resulting in K = 6, γ = 3.8 and λ = 0.0243 for Restaurant
Dataset, and K = 18, γ = 4 and λ = 0.0146 for Hotel
Dataset.

� The coefficient path obtained from optimal hyper-parameters
suggests that a small value of λ would result in too many
features, including many insignificant ones, while a big value
of λ would pose heavy penalty on the coefficients and end up
with large bias in model selection.

� Through this procedure, 115 out of 5543 (2%) features are
selected for Restaurant Dataset and 357 out of 11324 (3%)
for Hotel Dataset.
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In-sample Performance

Figure 4: In-sample performance for Restaurant Dataset
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In-sample Performance

Figure 5: In-sample performance for Hotel Dataset
RTL
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In-sample Performance

� Overall the SCAD regularized logistic regression model
achieves good in-sample performance.

� In particular, its TNR, PPV and F1 scores all rank the highest
for both datasets and NPV highest for Hotel Dataset
compared with other models.
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Out-of-sample Performance

Figure 6: Out-of-sample performance on different metrics for Restaurant
DatasetRTL
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Out-of-sample Performance

Figure 7: Out-of-sample performance on different metrics for Hotel Dataset
RTL
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Out-of-sample Performance

� Overall the SCAD-regularized logistic regression model gives
good performance on each metric compared with alternative
models.

� In particular, its out-of-sample F1 score is better than all
alternative models, showing the advantage of our
data-adaptive regularization approach in striking a proper
balance between model bias and variance and achieving top
performance in the combined metric of precision and recall.

� The review length, namely number of words in a review added
as an additional feature, has negative coefficients in both
datasets, showing negative reviews tend to be long in length.
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Significant features of Restaurant Dataset

Figure 8: Significant features of Restaurant Dataset using RTL
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Selected Features in Restaurant Dataset
Table 5: Selected Features in Restaurant Dataset

Features Coefficients No. review Avg. rating
snobbish -20.8842 2 1.5
poor -18.6196 19 2.1053
knife -17.7071 3 3
worst -16.9393 13 1.6154

somewher -12.2143 7 2.8571
disappoint -9.3179 115 3.5565

dilut -7.9327 2 2
sorri -6.8963 11 3.5455

tasteless -6.8474 10 1.7
shame -6.14 8 3
stringi -4.7924 4 2
terribl -4.1641 10 2.3
soso -4.0705 3 2
frozen -3.7069 8 2.875
overpr -2.7885 21 3.2857
tourist -2.6612 16 3.125

embarrass -1.4255 4 2.25
caucasian -1.32 4 2.75
averag -1.1767 46 3.6522
inattent -1.0966 3 3.3333
heartburn -1.0508 1 2
shock -0.6174 6 3

stomach -0.5772 11 3.1818
michelin -0.3775 23 3.8696
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Significant features of Hotel Dataset

Figure 9: Significant features of Hotel Dataset using RTL
RTL
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Selected Features in Hotel Dataset
Table 6: Selected Features in Hotel Dataset

Features Coefficients No. review Avg. rating
mcdonald -41.7725 6 3

told -25.9445 204 2.4314
bare -24.9097 25 2
adjac -19.8972 25 3.32

uncomfort -18.8143 24 2
dirti -18.2363 65 1.7077

advertis -16.5059 31 2.3871
final -16.4063 63 2.2381

cigarett -13.6851 18 1.7222
never -12.0323 257 2.8988
knock -11.7202 19 2.3158
loud -11.4796 71 2.3944
toilet -11.1226 44 2.25
refund -9.1969 28 1.5
carpet -8.1589 95 2.5158
check -6.4943 359 3.0864
smell -4.3192 65 2.2308
noisi -3.1037 93 2.8925
elev -3.0784 89 2.8539

modern 0.4574 86 4
airport 0.5277 171 3.9591
free 1.2791 359 3.9554
metro 1.7182 43 4.186
shop 2.7443 196 4.0357
store 3.6455 65 4.1077

spacious 4.8664 161 4.3292
RTL
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Discussion
� From a managerial perspective, such models could help

managers rapidly identify the words that significantly influence
the review polarity and their respective weights in classifying
customer opinions.

� Features selected via RTL are generally more informative and
useful in helping hoteliers quickly drill down specific aspects
for operational improvement.

� For example, features like "stringi" and "dilut" in Restaurant
Dataset or "cigarett" and "circuit" in Hotel Dataset are both
significant in determining the review rating and also
self-explanatory of the key aspects covered in these reviews,
thus effectively highlighting the challenges which require
attention.

RTL
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Managerial Insight

Table 7: Reviews containing the root stringi in Restaurant Dataset

Rating Content
2 The views were wonderful but really not worth the

price...then a steak which was tough, stringy, and
bland...

2 ...Steak had no sear and was very stringy...nothing
more than overpriced pub food

2 The food is overpriced ...beef was stringy...They
screwed up.

2 We went here with high expectations...there was red
stringy veins through it...
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Managerial Insight

Table 8: Reviews containing the root dilut in Restaurant Dataset

Rating Content
2 ...did not have much taste diluted...
2 ...they look beautiful but are generally a little di-

luted...
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Managerial Insight

Table 9: Reviews containing the root cigarett in Hotel Dataset

Rating Content
2 ...Room was clean but was non-smoking and smelled

like cigarettes. Wouldn’t stay there again.
2 ...One nice touch was the fact that the bedroom win-

dow actually opened, which was a Godsend when the
’smoke free’ hotel A/C system was pouring cigarette
smoke into our room (ugh!)

1 ...Cigarette stains in the carpets. Dark and dingy...
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Managerial Insight

Table 10: Reviews containing the root circuit in Hotel Dataset

Rating Content
2 ...it was very noisy and I wouldn’t have been able to

sleep, had to call maintenance to turn off via a circuit
breaker...

2 ...but I didn’t have a noise problem, other than the
deafeningly loud fan that I couldn’t figure out how
to shut off until I called the front desk the next day
(hint: it was the giant switch in the circuit breaker)...
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Working efficiency
� Another aspect we’re interested in is how fast the useful

information on operational improvement can be delivered to
hoteliers, i.e. if the set of features can identify a relatively
small set of reviews that should be paid attention to.

� Two metrics are used to measure the efficiency of getting
useful information from all the reviews - the total number of
reviews which contain the significant features, and the total
length of characters in these reviews at log scale.

� Results show that reviews that require further perusal from
SCAD regularized model are significantly less compared with
those from unregularized models, hoteliers can thus focus on
only a small set of relevant reviews instead of browsing
through a large but not necessarily informative set of reviews.
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Efficiency Comparison
Table 11: Distributional statistics on the number of
reviews required by different model for Restaurant
Dataset

Model Threshold Mean Median Standard deviation
LR 0.8 491 462 111
LR 0.81 491 462 111
LR 0.82 429 415 129
LR 0.83 468 462 144
LR 0.84 386 346 134
LR 0.85 359 300 123
LR 0.86 328 276 117
LR 0.87 328 276 117
LR 0.88 314 270 117
LR 0.89 313 270 118
LR 0.9 301 268 113
LR 0.91 289 265 118
LR 0.92 269 246 120
LR 0.93 253 233 129
LR 0.94 229 187 131
LR 0.95 200 160 128
LR 0.96 157 113 114
LR 0.97 0 0 NA
LR 0.98 0 0 NA
LR 0.99 0 0 NA
RTL NA 6 1 14
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Efficiency Comparison
Table 12: Distributional statistics on the length of
reviews required by different model for Restaurant
Dataset

Model Threshold Mean Median Standard deviation
LR 0.8 46267 44309 10796
LR 0.81 46267 44309 10796
LR 0.82 41625 39370 11031
LR 0.83 45574 44309 11777
LR 0.84 37620 33940 11866
LR 0.85 35120 32553 11096
LR 0.86 33802 31369 9815
LR 0.87 33802 31369 9815
LR 0.88 32757 31073 9649
LR 0.89 32699 31073 9708
LR 0.9 31704 30881 9462
LR 0.91 30618 28492 9918
LR 0.92 29045 25839 9948
LR 0.93 27016 24935 10672
LR 0.94 24518 22727 11285
LR 0.95 22204 19273 11126
LR 0.96 18069 14495 10808
LR 0.97 0 0 NA
LR 0.98 0 0 NA
LR 0.99 0 0 NA
RTL NA 857 238 1954
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Efficiency Comparison
Table 13: Distributional statistics on the number of
reviews required by different model for Hotel Dataset

Model Threshold Mean Median Standard deviation
LR 0.8 674 617 267
LR 0.81 641 584 256
LR 0.82 617 563 253
LR 0.83 605 532 260
LR 0.84 564 493 259
LR 0.85 549 471 262
LR 0.86 507 467 172
LR 0.87 474 407 179
LR 0.88 471 382 254
LR 0.89 438 359 260
LR 0.9 433 359 263
LR 0.91 391 291 256
LR 0.92 374 274 272
LR 0.93 336 240 257
LR 0.94 296 204 224
LR 0.95 239 177 160
LR 0.96 218 156 184
LR 0.97 179 122 170
LR 0.98 141 88 153
LR 0.99 99 54 132
RTL NA 47 4 128
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Efficiency Comparison
Table 14: Distributional statistics on the length of
reviews required by different model for Hotel Dataset

Model Threshold Mean Median Standard deviation
LR 0.8 143739 133666 46834
LR 0.81 139264 131300 45401
LR 0.82 134108 130672 44425
LR 0.83 131625 128287 45947
LR 0.84 125971 117016 47145
LR 0.85 121050 110539 47767
LR 0.86 113321 109030 31174
LR 0.87 106061 100030 33872
LR 0.88 106332 99357 46598
LR 0.89 99196 81197 47268
LR 0.9 97287 79588 48397
LR 0.91 88465 73485 47273
LR 0.92 85223 69890 51287
LR 0.93 77416 60835 50025
LR 0.94 69345 52437 44595
LR 0.95 57415 44325 32188
LR 0.96 53925 40614 38387
LR 0.97 44935 31821 36089
LR 0.98 35722 24336 33288
LR 0.99 25414 14947 29346
RTL NA 11396 1220 26971
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Conclusion

� We proposed regularized text logistic (RTL) regression model
that achieves steadily good performance in various metrics
compared with alternative models.

� The RTL regression model selected a set of key useful features
which could help hoteliers make informed decisions for
operational improvement in an efficient and effective manner.
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Coefficient Path

Figure 10: Coefficient path using optimal parameters for Restaurant
DatasetRTL
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Coefficient Path

Figure 11: Coefficient path using optimal parameters for Hotel Dataset
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Proof of Asymptotic Consistency

The proof essentially follows (Fan and Peng, 2004), although in
this case we prove existence and consistency of the SCAD
estimator via minimization of the objective function. Let
αn =

√
pn/n. It’s enough to show that for any given ε > 0, there

exists a large constant C such that

Pr{ inf
‖u‖=C

Qn(β0 + αnu) > Qn(β0)} ≥ 1− ε

This implies that with probability tending to 1 there is a local
minimum in the ball {β0 + αnu : ‖u‖ ≤ C} such that
‖β̂n − β0‖ = Op(

√
pn/n).
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Proof of Asymptotic Consistency
Denote Dn(u) = Qn(β0 + αnu)− Qn(β0). Since pλn (0) = 0,
Dn(u) = Ln(β0 + αnu)− Ln(β0) + Σpn

j=1[pλn (β0j + αnuj)− pλn (|β0j |)]
≥ Ln(β0 + αnu)− Ln(β0) + Σkn

j=1[pλn (β0j + αnuj)− pλn (|β0j |)]
∆= (C .9) + (II)

Using Taylor’s expansion, we have

(C .9) = αnO
>Ln(β0)u + 1

2u
>O2Ln(β0)uα2

n + 1
6O
>{u>O2Ln(β∗n)u}uα3

n

∆= I1 + I2 + I3
where β∗n lies between β0 and β0 + αnu, and

(II) = Σkn
j=1[αnp′λn (|β0j |)sgn(β0j)uj + α2

np′′λn (|β0j |)u2
j {1 + o(1)}]

∆= I4 + I5
RTL
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Proof of Asymptotic Consistency
According to Condition (C.3) and (C.7),

|I1| = |αnO
>Ln(β0)u| ≤ αn‖O>Ln(β0)‖‖u‖

= Op(αn/
√
n)‖u‖ = Op(α2

n/n)‖u‖
Now we consider I2. Using Chebyshev’s inequality, for any ε, we
have

P(‖1nO
2Ln(β0)− In(β0)‖ ≥ ε

pn
)

≤ p2
n

n2ε2
E

pn∑
i ,j=1
{∂Ln(β0)
∂βiβj

− E ∂Ln(β0)
∂βiβj

}2

= p4
n
n = o(1)

which results in ‖ 1
nO

2Ln(β0)− In(β0)‖ = op( 1
pn

).
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Proof of Asymptotic Consistency
Thus we have

I2 = 1
2u
>[1n{O

2Ln(β0)− EO2Ln(β0)}]unα2
n + 1

2u
>In(β0)unα2

n

= nα2
n

2 u>In(β0)u + op(1)nα2
n‖u2‖

Based on Condition (C.8) and Cauchy-Schwarz inequality, we have

|I3| = |16

pn∑
i ,j,k=1

∂Ln(β∗n)
∂βni∂βnj∂βnk

uiujukα
3
n|

≤ 1
6

n∑
l=1
{

pn∑
i ,j,k=1

M2
nijk(Vnl )}1/2‖u‖3α3

n
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Proof of Asymptotic Consistency
Since p4

n/n→ 0 and p2
nαn → 0 as n→∞, we have

1
6

n∑
l=1
{

pn∑
i ,j,k=1

M2
nijk(Vnl )}1/2‖u‖3α3

n

= Op(p3/2
n αn)nα2

n‖u‖2 = op(nα2
n)‖u‖2

Thus I3 = op(nα2
n)‖u‖2. In addition,

|I4| = Σkn
j=1|αnp′λn (|β0j |)sgn(β0j)uj | ≤

√
knnαnαn‖u‖ ≤ nα2

n‖u‖

and

|I5| = Σkn
j=1α

2
np′′λn (|β0j |)u2

j {1 + o(1)} ≤ 2 max
1≤j≤kn

p′′λn (|β0j |)α2
n‖u‖2

By choosing a sufficiently large C , I1, I3, I4 and I5 are all dominated
by I2, which is positive. This completes the proof of this theorem.
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Proof of Sparsity

It is sufficient to show that with probability tending to 1 as n→ 0,
for any β1n satisfying ‖β1n − β10‖ = Op(

√
pn/n), for some

εn = C
√
pn/n and j = kn + 1, ..., pn,

∂Qn(βn)
∂βnj

> 0 for 0 < βnj < εn,
∂Qn(βn)
∂βnj

< 0 for − εn < βnj < 0
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Proof of Sparsity
By Taylor’s expansion,

∂Qn(βn)
∂βnj

= ∂Ln(βn)
∂βnj

− p′λn(|βnj |)sgn(βnj)

= ∂Ln(β0)
∂βnj

+
pn∑

l=1

∂2Ln(β0)
∂βnj∂βnl

(βnl − β0l )

+
pn∑

l ,k=1

∂3Ln(β∗n)
∂βnj∂βnl∂βnk

(βnl − β0l )(βnk − β0k)

−p′λn(|βnj |)sgn(βnj)
∆= I1 + I2 + I3 + I4

where β∗n lies between βn and β0.
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Proof of Sparsity
For I1, we have

I1 = Op(
√
n) = Op(√npn)

For I2, we have

I2 =
pn∑

l=1
{∂

2Ln(β0)
∂βnj∂βnl

− E ∂
2Ln(β0)
∂βnj∂βnl

}(βnl − β0l )

+
pn∑

l=1

∂2Ln(β0)
∂βnj∂βnl

(βnl − β0l )
∆= K1 + K2

Using Cauchy-Schwarz inequality and ‖β1n − β10‖ = Op(
√
pn/n),

we have

|K2| = |n
pn∑

l=1
In(β0)(j , l)(βnl − β0l )| ≤ nOp(

√pn
n ){

pn∑
l=1

I2n (β0)(j , l)}1/2
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Proof of Sparsity
Since the eigenvalues of the Fisher information matrix are bounded
according to Condition (C.7), we have
pn∑

l=1
I2n (β0)(j , l) = O(1). Thus K2 = Op(√npn)

For K1, by Cauchy-Schwarz inequality we have

|K1| ≤ ‖βnl − β0l‖
[ pn∑

l=1

{∂2Ln(β0)
∂βnj∂βnl

− E ∂
2Ln(β0)
∂βnj∂βnl

}2
]1/2

From Condition (C.7), we have[ pn∑
l=1

{∂2Ln(β0)
∂βnj∂βnl

− E ∂
2Ln(β0)
∂βnj∂βnl

}2
]1/2

= Op(√npn)

Thus K = Op(√npn), and I2 = Op(√npn).
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Proof of Sparsity
For I3, we can write it as:

I3 =
pn∑

l ,k=1

{ ∂3Ln(β∗n)
∂βnj∂βnl∂βnk

− E ∂3Ln(β∗n)
∂βnj∂βnl∂βnk

}
(βnl − β0l )(βnk − β0k)

+
pn∑

l ,k=1
E ∂3Ln(β∗n)
∂βnj∂βnl∂βnk

(βnl − β0l )(βnk − β0k)

∆= K3 + K4

For K3, by Cauchy-Schwarz inequality,

K 2
3 ≤

pn∑
l ,k=1

{ ∂3Ln(β∗n)
∂βnj∂βnl∂βnk

− E ∂3Ln(β∗n)
∂βnj∂βnl∂βnk

}
‖βn − β0‖4
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Proof of Sparsity

Under Condition (C.8) and (C.9), we have

K3 = Op
{(

np2
n
p2

n
n2
)1/2} = op(√npn)

For K4, by Condition (C.8),

|K4| ≤ C1/2
5 npn‖βn − β0‖2 = Op(p2

n) = op(√npn)

From above analysis, we have

I1 + I2 + I3 = Op(√npn)
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Proof of Sparsity

Since
√
pn/n/λn → 0 and liminfn→∞liminfβn→0+p′λn (|βn|)/λn > 0,

from

∂Qn(βn)
∂βnj

= nλn
{
−

p′λn
(|βnj |)
λn

sgn(βnj) + Op
(√pn

n /λn
)}

It is easy to see that the sign of βnj completely determines the sign
of ∂Qn(βn)/∂βnj . This completes the proof.
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Proof of Oracle Property
As shown in the theorem on consistency, there is a
root-(n/pn)-cons>istentlocalminimizern of Qn(βn). By the lemma
on sparsity, part (1) holds. We only need to prove part (2), the
asymptotic normality of the penalized estimator β̂1n. (Fan and
Peng, 2004) showed that

(In(β10) + Σλn )(β̂1n − β10) + bn = 1
nOLn(β10) + op(n−1/2)

Based on this result, we focus on its asymptotic distribution
towards standard normal distribution. It is easy to see that

√
nα>n I−1/2

n (β10)(In(β10) + Σλn )[(β̂1n − β10) + (In(β10) + Σλn )−1bn]

= 1√
nα
>
n I−1/2

n (β10)OLn(β10) + op(α>n I−1/2
n (β10))
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Proof of Oracle Property

Given the conditions in Theorem on Oracle property, the last term
is equivalent to op(1). Let

Yin = 1√
nα
>
n I−1/2

n (β10)OLni (β10), i = 1, 2, ..., n

We consider if Yni meets the conditions of Lindeberg-Feller central
limit theorem. It follows that for any ε,

n∑
i=1

E‖Yin‖21{‖Yin‖ > ε} = nE‖Y1n‖21{‖Yin‖ > ε}

≤ n{E‖Y1n‖4}1/2{P(‖Y1n‖ > ε)}1/2
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Proof of Oracle Property
By Condition (C.7) and since αn is an arbitrary knx1 vector such
that ||αn|| = 1, we have

P(‖Y1n‖ > ε)) ≤ E‖α>n I
−1/2
n (β10)OL1n(β10)‖2

nε = O(n−1)

and

E‖Y1n‖4 = 1
n2E‖α

>
n I−1/2

n (β10)OL1n(β10)‖4

≤ 1
n2λmax (In(β10))E‖O>L1n(β10)OL1n(β10)‖2

= O(p
2
n

n2 )
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Proof of Oracle Property

Thus we have
n∑

i=1
E‖Yin‖21{‖Yin‖ > ε} = O(npn

n
1√
n ) = op(1)

On the other hand, we have
n∑

i=1
cov(Yin) = ncov(Y1n) = cov{α>n I−1/2

n (β10)OL1n(β10)} → 1

Thus 1/
√
nα>n I

−1/2
n (β10)OL1n(β10) has an asymptotic standard

normal distribution. This completes the proof.
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Proof of Global Property
We refer to the proof given by (Wang et. al, 2016), in which
quadratic approximation of the loss function is used, so that

Qn(βn) = 1
2(βn − β̃n)>Ω̂(βn − β̃n) +

pn∑
j=1

pλn (|βnj |)

where Ω̂ is an estimate of Σ−1. The asymptotic covariance matrix
Σ and its inverse matrix Ω are further decomposed into the
following block matrix forms respectively according to the sparsity
property in the lemma on sparsity:[

Σ11 Σ12
Σ21 Σ22

]
,

[
Ω11 Ω12
Ω21 Ω22

]
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Proof of Global Property

It can be verified that

In = Ω =
[

Ω11 Ω12
Ω21 Ω22

]
[

Σ−1
(11) −Σ−1

(11)Σ12Σ−1
22

= −Σ−1
22 Σ21Σ−1

(11)Σ−1
22 Σ−1

22 Σ21Σ−1
(11)Σ12Σ−1

22

]

where Σ−1
(11) = Σ11 − Σ12Σ−1

22 Σ21. Similarly, Ω̂ can also be
partitioned as [

Ω̂11 Ω̂12
Ω̂21 Ω̂22

]
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Proof of Global Property

The existence of global minimum indicates
Pr(Qn(β̂n) ≤infβnQn(βn))→ 1, which is proved in (Wang et. al,
2016) through β̂1n = β̃1n + Ω̂−1

11 Ω̂12β̃2n and we’ll not further
discuss here. It should be noted that a stronger condition for
ensuring global minimum is obtained is discussed in (Breheny and
Huang, 2011), in which the objective function Qn(βn) is convex
with respect to βn despite of the nonconvex penalty component
provided that c∗(βn) > 1/(γ − 1), where c∗(βn) is the minimum
eigenvalue of n−1X>WX , W is a diagonal matrix of weights with
elements wi = πi (1− πi ), π is the predicted probability based on
most recent coordinate update, and γ is a hyperparameter in the
penalty function.
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