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Interacting many-agent systems in socio-economics

Examples: wealth distribution in an economy, opinion
formation, crowd dynamics, ...

Features:

I large number of interacting agents

I model of full system not tractable

I quantities of interest are aggregates

I dynamics!

I emergent behaviour, self-organisation

 mathematical tools from kinetic theory
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Kinetic models for socio-economic systems

Conceptual approach (e.g. [Pareschi&Toscani, 2015], ...):

I describe dynamics of system by microscopic interactions
among agents

I perform many interactions (analytically or numerically)

I observe emergent behaviour, patterns in macroscopic
distribution of agents

I derive partial differential equations (Boltzmann,
Fokker-Planck-type) which (approximatively) govern the
time-evolution of the density

Benefits:

I more (analytically and numerically) tractable model

I understanding role of parameters in the microscopic
interactions for emergent behaviour

I PDE: nonlinear, anisotropic, nonlocal, degenerate
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Elo rating for zero-sum games
I rating system developed by physicist Arpad

Elo to determine relative skill levels of players
in zero-sum games

I originally used for chess

I also for online gaming, table tennis, ...

I multiplayer games: football, basketball, ..

I 2018: FIFA world ranking to use Elo system

I each player assigned rating number which may change as
games played

I difference in rating between two players should predict
outcome of a game

I players with same rating who play each other should have
same probability of winning/loosing

I difference between ratings determines number of points
gained or lost after a game
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Elo rating: Junca & Jabin (2015)

continuous variables: strength ρ (fixed, unobservable)
rating R (variable, observable)

Following each game, ratings are adjusted

R∗i = Ri + γ(Sij − b(Ri −Rj))

R∗j = Rj + γ(−Sij − b(Rj −Ri))

I random variable Sij ∈ {−1, 1}: score result of the game
I function b moderates extreme differences, e.g.
b(z) = tanh(cz) with some c > 0

I assume mean score 〈Sij〉 = b(ρi − ρj)
I speed of adjustment γ > 0

Effect:
I player with high rating wins against player with a low

rating  ratings change little
I player with low rating wins against highly rated player
 ratings are strongly adjusted
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Elo rating: Junca & Jabin (2015)

Question: Is the rating fair, i.e. do ‘Ri → ρi’ over time?

Kinetic equation: distribution of players f = f(r, t) with
respect to ratings satisfies

∂tf(r, t) + ∂r(a(f)f) = 0

with a(f) =

∫
R2

w(r − r′)(b(ρ− ρ′)− b(r − r′))f(t, r′, ρ′)dρ′dr′

and given interaction rate function w(r − r′)
Long time behaviour:

I w = 1 (‘all-play-all’ tournament): ratings converge
exponentially fast to intrinsic strengths

I w with local interactions: ratings may not converge to
intrinsic strengths, rating fails to give a fair representation
of the player’s strength distribution
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Elo rating: learning effects

continuous variables: strength ρ (variable, unobservable)
rating R (variable, observable)

Following each game, ratings are adjusted

R∗i = Ri + γ(Sij − b(Ri −Rj))

R∗j = Rj + γ(−Sij − b(Rj −Ri))

and players learn

ρ∗i = ρi + γh(ρj − ρi) + η

ρ∗j = ρj + γh(ρi − ρj) + η̃

where η, η̃ are random variables with mean zero.
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Choice of learning mechanism h

We consider two main effects:

I learning by interaction: we assume each player learns in a
game, however players with lower strength benefit more.
Possible choice h1(ρj − ρi) = 1 + b(ρj − ρi)

I gain/loss of self-confidence: assume gain/loss of stronger
player is the same as that of the weaker one, e.g.
h2(ρj − ρi) = Sij[1− tanh2(ρj − ρi)]

With parameters α, β we have in summary

h(ρj − ρi) = αh1(ρj − ρi) + βh2(ρj − ρi)
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Some properties of the interaction

Preservation of total value of the rating pointwise and in mean,

〈R∗i +R∗j 〉 = Ri +Rj.

Evolution of total strength depends is not affected by the
function h2, since

〈ρ∗j + ρ∗j〉 − (ρj + ρj) = 2γα.

 constant increase of strength of population
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Boltzmann type equation

Distribution function fγ = fγ(ρ,R, t) satisfies

d

dt

∫
Ω

φ(ρi, Rj)fγ(ρi, Ri, t)dρidRi

=
1

2

〈∫
Ω

∫
Ω

(
φ(ρ∗i , R

∗
j ) + φ(ρ∗j , R

∗
j )− φ(ρi, Ri)− φ(ρj, Rj)

)
× w(Ri −Rj)fγ(ρi, Ri, t)fγ(ρj, Rj, t) dρjdRjdρidRi

〉

where φ(·) is a (smooth) test function



Fokker-Planck limit

Rescaling t′ = γt, in the quasi-invariant limit

γ → 0, ση → 0 such that
σ2
η

γ
=: σ2 is fixed

we obtain the Fokker-Planck equation

∂f(ρ,R, t)

∂t
+

∂

∂R
(a[f ]f(ρ,R, t)) +

∂

∂ρ
(c[f ]f(ρ,R, t))

− σ2

2
d[f ]

∂2

∂ρ2
f(ρ,R, t) = 0

where

a[f ]=

∫
R2

w(R−Rj)(b(ρ− ρj)− b(R−Rj))f(ρj, Rj, t) dρjdRj

c[f ]=

∫
R2

w(R−Rj)
(
αh1(ρj − ρ) + β〈h2(ρj − ρ)〉

)
f(ρj, Rj, t) dρjdRj

d[f ]=

∫
R2

w(R−Rj)f(ρj, Rj, t) dρjdRj
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Shifted Fokker-Planck equation

We want to study steady states of the distribution
 need to compensate for increasing strength

Consider g(ρ,R, t) = f(ρ+H(ρ,R, t), R, t) where H is given
by

∂H(ρ,R, t)

∂t
=

∫
R2

αw(R−Rj)f(ρj, Rj, t) dρjdRj.

 ensures mean value is preserved in time.
The evolution equation for g(ρ,R, t) is

∂g

∂t
+

∂

∂R
(a[g]g) +

∂

∂ρ
(c̃[g]g)− σ2

2
d[g]

∂2

∂ρ2
g = 0,

where

c̃[g] =

∫
R2

(
αb(ρj−ρ)+β〈h2(ρj−ρ)〉

)
w(R−Rj)g(ρj, Rj, t) dρjdRj.
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Shifted Fokker-Planck equation

We consider the following problem on a bounded domain
Ω ⊂ R2, with no-flux boundary condition

∂g

∂t
+

∂

∂R
(a[g]g) +

∂

∂ρ
(c̃[g]g)− σ2

2
d[g]

∂2

∂ρ2
g = 0, in Ω× (0, T ),

∂

∂ν
g = 0 on ∂Ω,

g(ρ,R, 0) = g0(ρ,R) in Ω.



FP equation: existence of weak solutions

Let Ω ⊂ R2 bounded Lipschitz domain.

Theorem

Let g0 ∈ H1(Ω) and 0 ≤ g0 ≤M0 for some M0 > 0 and
assume h1, 〈h2〉, b ∈ L∞(Ω) ∩ C2(Ω). Then there exists a
weak solution g ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)),
satisfying 0 ≤ g ≤M0e

λt for all (ρ,R) ∈ Ω, t > 0, with a
constant λ > 0 depending on the functions h1, 〈h2〉, b and w.



Sketch of the proof

The proof involves several steps:

I Step 0: regularised, truncated problem, adding
µ∆g(ρ,R, t), µ > 0

I Step 1: solution of linearised, regularised problem;
definition of fixed point operator

I Step 2: uniform L∞ bounds and existence of fixed point
(Leray-Schauder)

I Step 3: uniform H1 bound (independent of µ)

I Step 4: limit µ→ 0 (Aubin-Lions lemma)



Long-time behaviour of solutions

Define the energy E2(t) =
∫
R2(ρ−R)2g(ρ,R, t) dρdR.

At least for w = 1 we can compute

d

dt
E2(t)

=−
∫
R4

(R−Rj)b(R−Rj)g(ρ,R, t)g(ρj, Rj, t) dρjdRjdρdR

−
∫
R4

(ρ− ρj)b(ρ− ρj)g(ρ,R, t)g(ρj, Rj, t) dρjdRjdρdR

− α
∫
R4

(ρ− ρj)b(ρ− ρj)g(ρ,R, t)g(ρj, Rj, t) dρjdRjdρdR

− 2β

∫
R4

(ρ− ρj)〈h2(ρ− ρj)〉g(ρ,R, t)g(ρj, Rj, t) dρjdRjdρdR

+ σ2

 indicates concentration in neighbourhood of diagonal
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Numerical results: all-play-all

Direct Monte Carlo simulation method: N = 5000 players

Steady state (top view) –
no diffusion

Steady state (top view) –
diffusion ν = 0.025



Numerical results: all-play-all

Numerical steady states for Fokker-Planck equation

no diffusion with diffusion



Numerical results: all-play-all

Energy decay for Fokker-Planck equation
E2(t) =

∫
R2(ρ−R)2g(ρ,R, t) dρdR
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Numerical results: competition with similar rating

Consider two groups of players:

I first group is underrated, all players have rating R = 0.2,
but ρ ∈ N (0.75, 0.1)

I second group is overrated, with rating R = 0.9 and
uniform distribution in ρ

Choose α = 0.1 and β = 0.

 assigning initial ratings is a delicate issue
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Numerical results: foul play

Assume one player is playing unfair, e.g. through cheating,
doping or bribing of referees.

 outcome of every microscopic game which involves this
player is biased in their favour

Ratings and strength of
all players except the first
one converge around di-
agonal.
The cheating player (indi-
cated by a star) ends up
with a higher rating.
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Summary

I Elo rating system for games
 Boltzmann-type, Fokker-Planck-type limit equations

I well-posedness

I long-time behaviour: convergence to players’ strength

I assigning initial ratings is delicate

B.D., M. Torregrossa and M.-T. Wolfram.
Boltzmann and Fokker-Planck equations modelling the Elo rating
system with learning effects.
J. Nonlinear Sci. 29(3) (2019), 1095-1128. (arXiv:1806.06648)
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Summary

I Elo rating system for games
 Boltzmann-type, Fokker-Planck-type limit equations

I well-posedness

I long-time behaviour: convergence to players’ strength

I assigning initial ratings is delicate

B.D., M. Torregrossa and M.-T. Wolfram.
Boltzmann and Fokker-Planck equations modelling the Elo rating
system with learning effects.
J. Nonlinear Sci. 29(3) (2019), 1095-1128. (arXiv:1806.06648)

THANK YOU!



Summary

I Elo rating system for games
 Boltzmann-type, Fokker-Planck-type limit equations

I well-posedness

I long-time behaviour: convergence to players’ strength

I assigning initial ratings is delicate

B.D., M. Torregrossa and M.-T. Wolfram.
Boltzmann and Fokker-Planck equations modelling the Elo rating
system with learning effects.
J. Nonlinear Sci. 29(3) (2019), 1095-1128. (arXiv:1806.06648)

THANK YOU!


