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The compressible Euler equations

{
∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) + div P = ρF.

ρ : the density of the fluid.

u : the macroscopic velocity (ρu is the momentum).

P : the pressure tensor.

F : the force.
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A multiscale framework

Agent-based model
Microscopic scale

ẋi = vi
v̇i = Fi

Kinetic model
Microscopic scale

∂t f + v · ∇x f + ∇v · [F(f )f ] = 0

N →∞

Fluid model
Macroscopic scale

∂tρ + div (ρu) = 0
∂t(ρu) + div (ρu ⊗ u) + div P = ρF

Hydrodynamics
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Interaction forces

Attraction-repulsion force
through an interaction potential

F = −
∫
∇K (x − y)ρ(y , t)dy .

K

|x |
repulsion attraction

A typical example: when K is Newtonian.

The Euler-Poisson equation −∆K = κδ0.

Alignment force

The Euler-alignment equation
(Cucker-Smale alignment interaction)

F =

∫
ψ(x − y)(u(y , t)− u(x , t))ρ(y , t)dy .
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Global regularity

{
∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) + div P = ρF.

Goal: Understand the global wellposedness (or finite time singularity
formations) of the system.

Global wellposedness is useful in understanding the emergent phenomena.

Smoothness of the macroscopic system is often required to obtain a
rigorous derivation of hydrodynamic limits.

The Euler-alignment systems: strong solutions must flock.
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Pressureless Eulerian dynamics

{
∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u) = ρF.

The dynamics of u (at least when ρ > 0) is the Burgers equation with
force

∂tu + (u · ∇)u = F.

The convection term (u · ∇)u is known to generates shock discontinuities
in finite time.

Key to ensure the smoothness of the solution: boundedness of ∇u.∫ T

0
‖∇u(·, t)‖L∞dt < +∞.
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One-dimensional Burgers equation

∂tu + u∂xu = F .

Let d = ∂xu. Differentiate in x at get

d ′ = −d2 + ∂xF ,

where ′ = ∂t + u∂x denotes the derivative along the characterstic paths.

Inviscid Burgers equation ∂xF ≡ 0 d0 ≥ 0.

Damped Burgers equation ∂xF = −νd d0 ≥ −ν.

Euler-Poisson equation ∂xF = κρ d0 ≥ −
√

2κρ0.
[Engelberg-Liu-Tadmor ’01]

Euler-alignment equation d0 ≥ −ψ ∗ ρ0.
[Carrillo-Choi-Tadmor-T. ’16]
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Multi-dimensional Burgers equations

∂tu + (u · ∇)u = F.

The quantity ∇u is an n-by-n matrix which satisfies

(∇u)′ = −(∇u)2 +∇F.

Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of ∇u. Let {λi}Ni=1 be the eigenvalues of ∇u,

with corresponding left and right eigenvectors as {li , ri}Ni=1. Then,

λ′i = −λ2i + lTi (∇F)ri .

Inviscid Burgers equation lTi (∇F)ri ≡ 0

λi (0) 6∈ {a + bi | a < 0, b = 0}.

Damped Burgers equation lTi (∇F)ri = −νλi
λi (0) 6∈ {a + bi | a < −ν, b = 0}.

In general, ∇F does not share eigenvectors as ∇u.

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 8 / 26



Multi-dimensional Burgers equations

∂tu + (u · ∇)u = F.

The quantity ∇u is an n-by-n matrix which satisfies

(∇u)′ = −(∇u)2 +∇F.

Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of ∇u. Let {λi}Ni=1 be the eigenvalues of ∇u,

with corresponding left and right eigenvectors as {li , ri}Ni=1. Then,

λ′i = −λ2i + lTi (∇F)ri .

Inviscid Burgers equation lTi (∇F)ri ≡ 0

λi (0) 6∈ {a + bi | a < 0, b = 0}.

Damped Burgers equation lTi (∇F)ri = −νλi
λi (0) 6∈ {a + bi | a < −ν, b = 0}.

In general, ∇F does not share eigenvectors as ∇u.

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 8 / 26



Multi-dimensional Burgers equations

∂tu + (u · ∇)u = F.

The quantity ∇u is an n-by-n matrix which satisfies

(∇u)′ = −(∇u)2 +∇F.

Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of ∇u. Let {λi}Ni=1 be the eigenvalues of ∇u,

with corresponding left and right eigenvectors as {li , ri}Ni=1. Then,

λ′i = −λ2i + lTi (∇F)ri .

Inviscid Burgers equation lTi (∇F)ri ≡ 0

λi (0) 6∈ {a + bi | a < 0, b = 0}.

Damped Burgers equation lTi (∇F)ri = −νλi
λi (0) 6∈ {a + bi | a < −ν, b = 0}.

In general, ∇F does not share eigenvectors as ∇u.

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 8 / 26



Multi-dimensional Burgers equations

∂tu + (u · ∇)u = F.

The quantity ∇u is an n-by-n matrix which satisfies

(∇u)′ = −(∇u)2 +∇F.

Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of ∇u. Let {λi}Ni=1 be the eigenvalues of ∇u,

with corresponding left and right eigenvectors as {li , ri}Ni=1. Then,

λ′i = −λ2i + lTi (∇F)ri .

Inviscid Burgers equation lTi (∇F)ri ≡ 0

λi (0) 6∈ {a + bi | a < 0, b = 0}.

Damped Burgers equation lTi (∇F)ri = −νλi
λi (0) 6∈ {a + bi | a < −ν, b = 0}.

In general, ∇F does not share eigenvectors as ∇u.

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 8 / 26



Multi-dimensional Burgers equations

∂tu + (u · ∇)u = F.

The quantity ∇u is an n-by-n matrix which satisfies

(∇u)′ = −(∇u)2 +∇F.

Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of ∇u. Let {λi}Ni=1 be the eigenvalues of ∇u,

with corresponding left and right eigenvectors as {li , ri}Ni=1. Then,

λ′i = −λ2i + lTi (∇F)ri .

Inviscid Burgers equation lTi (∇F)ri ≡ 0

λi (0) 6∈ {a + bi | a < 0, b = 0}.

Damped Burgers equation lTi (∇F)ri = −νλi
λi (0) 6∈ {a + bi | a < −ν, b = 0}.

In general, ∇F does not share eigenvectors as ∇u.

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 8 / 26



The spectral gap

(∇u)′ = −(∇u)2 +∇F.

Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #2: The divergence div u.

(div u)′ = −tr(∇u)2 + div F.

Advantage: easier to handle the force term.

Euler-Poisson equation div F = κρ.

Euler-Alignment equation div F = −(ψ ∗ ρ)′ − (ψ ∗ ρ)div u.

Main difficulty: tr(∇u)2 6= (div u)2. The difference between the two
quantities is related to the spectral gap. A lot of effort has been made in
order to control the spectral gap.

Restricted Euler-Poisson equation [Liu-Tadmor ’02, . . .]

Euler-Alignment equation [Tadmor-T. ’14, He-Tadmor ’17]
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Radially symmetric solution

{
∂tρ+ div (ρu) = 0,

∂tu + (u · ∇)u = F.

To have a better understanding of the spectral gap, we focus on the
solution which is radially symmetric.

ρ(x) = ρ(r), u(x) =
x

r
u(r), r = |x|.

Under this setup, the system is reduced to 1D. But the effect of the
spectral gap persists.

tr(∇u)2 − (div u)2 = −(n − 1)

[
2uur
r
− (n − 2)u2

r2

]
It can not be easily controled by div u.
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A new option

The spectral gap can be controled by ur and
u

r
.

tr(∇u)2 − (div u)2 = −(n − 1)

[
2uur
r
− (n − 2)u2

r2

]
.

The divergence can be represented as

div u = ur + (n − 1)
u

r
.

For the inviscid Burgers equation, the dynamics of (ur ,
u
r ) reads{

u′r = −u2r(
u
r

)′
= −

(
u
r

)2
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #3: The quantities ur and
u

r
.
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The damped Burgers equation
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The damped Burgers equation

ut + (u · ∇)u = −νu.

The dynamics of (ur ,
u
r ) along characterstic paths:{

u′r = −u2r − νur(
u
r

)′
= −

(
u
r

)2 − ν u
r

Solution is globally regular if and only if

ur (0) ≥ −ν and
u(0)

r
≥ −ν.

Remark: The condition div u0 ≥ −ν is neither sufficient nor necessary for
global regularity.
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The Euler-Poisson equation
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The Euler-Poisson equation
∂tρ+ div (ρu) = 0,

∂tu + (u · ∇)u = −κ∇φ,
−∆φ = ρ− c .

κ : strength of the interaction: κ > 0 repulsion, κ < 0 attraction.
c : background charge: typical choices c = 0 or c = ρ̄.

1D dynamics: a closed system of d = ∂xu and ρ along characterstic paths{
d ′ = −d2 + κ(ρ− c),

ρ′ = −ρd ,

Sharp threshold condition: global regularity if and only if

(∂xu0(x), ρ0(x)) ∈ Σ, ∀ x ∈ R.

where Σ is the collection of all (d0, ρ0) such that the dynamics
with the initial data is bounded globally in time.
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Euler-Poisson equation in multi-D with radial symmetry

The dynamics of (p = ur , q = u
r , ρ) versus (d = div u, ρ)

p′ = −p2−κφrr ,
q′ = −q2−κφr

r ,

ρ′ = −ρ(p + (n − 1)q).

{
d ′ = −(p2 + (n − 1)q2) + κ(ρ− c),

ρ′ = −ρd .

Note that ∆φ = φrr + (n − 1)φr

r = −(ρ− c).
p′ = −p2 + κ(ρ− c) + (n − 1)κφr

r ,

q′ = −q2 − κφr

r ,

ρ′ = −ρ(p + (n − 1)q).

The extra term φr

r needs to be controled to close the system.
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Control the term φr
r

To control the term φr

r , we start with the density dynamics

ρt + (ρu)r = −(n − 1)ρ
u

r
.

To absorb the right hand side, we scale ρ as

(rn−1ρ)t + (rn−1ρu)r = 0.

Its premitive e satisfies
et + uer = 0.

Note that ∆φ = r1−n(rn−1φr )r = −(ρ− c).

Let s = −φr

r = er−n, it satisfies

s ′ = e ′r−n − nr−n−1r ′e = −c u
r
− nu

s

r
= −(c + ns)q.
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A sharp threshold condition

A closed ODE system for
(
p = ∂xu, q = u

r , s = −φr

r , ρ
)

p′ = −p2 + κ(ρ− c − (n − 1)s),

q′ = −q2 + κs,

s ′ = −(ns + c)q,

ρ′ = −ρ(p + (n − 1)q).

Theorem (Sharp critical threshold)

Consider the Euler-Poisson equations with radial symmetry. It admits a
global smooth solution if and only if(

∂ru0(r),
u0(r)

r
,−∂rφ0(r)

r
, ρ0(r)

)
∈ Σ, ∀ r ≥ 0.

where Σ ∈ R4 be the set such that: (p0, q0, s0, ρ0) ∈ Σ if and only if the
ODE system with initial data (p0, q0, s0, ρ0) is bounded globally in time.
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ODE system with initial data (p0, q0, s0, ρ0) is bounded globally in time.
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The spectral gap


p′ = −p2 + κ(ρ− c−(n − 1)s),

q′ = −q2 + κs,

s ′ = −(ns + c)q,

ρ′ = −ρ(p+(n − 1)q).

1D dynamics (p, ρ) : [Engelberg-Liu-Tadmor ’01, . . .]

Multi-D dynamics : the spectral gap is characterized by (q, s).
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Control the spectral gap: c = 0{
q′ = −q2 + κs,

s ′ = −nsq,

Recall s = er−n and er = rn−1ρ ≥ 0. This implies s ≥ 0.

For κ > 0, q ≥ 0 is an invariant region. So the spectral gap is well-under
control if q0 ≥ 0.

Sharp threshold given that u0(r) ≥ 0. [Wei-Tadmor-Bae ’12]

What if the initial flow is not pointing out?

Theorem (Control the spectral gap)

For any initial data q0 < 0 and s0 > 0, the solution is globally bounded.
Moreover, (q, s) converges to (0, 0) as time approaches infinity.

Remark: the theorem holds for n ≥ 2, but is false when n < 2.
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Control the spectral gap: c > 0

{
q′ = −q2 + κs,

s ′ = −(ns + c)q,

Theorem (Control the spectral gap)

Let κ > 0. For any initial data (q0, s0) such that s0 > − c
n , solution is

globally bounded.

Remark: unlike the zero-background case, the solution will travel around a
closed orbit, and won’t converge as time becomes infinity.
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The Euler-alignment equation
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The Euler-alignment equation∂tρ+ div (ρu) = 0,

∂tu + (u · ∇)u =

∫
Rn

ψ(|x− y|)(u(y)− u(x))ρ(y)dy..

1D dynamics (auxiliary quantity) d = ux [Carrillo-Choi-Tadmor-T. ’16]

(d + Lρ)′ = −d2 − dLρ = −d(d + Lρ).

Multi-D with radial symmetry: the dynamics of (p = ur , q = u
r ){

(p + Lρ)′ = −p(p + Lρ)−(n − 1)ζ,

q′ = −q(q + Lρ)+ζ.
, where ζ(r)x = L(ρu).

versus d = div u

(d+Lρ)′ = −p(p+Lρ)−(n−1)q(q+Lρ) = −d(d+Lρ) + Spectral gap .

2D: [He-Tadmor ’17], 3+D: ?.
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Critical thresholds

{
(p + Lρ)′ = −p(p + Lρ)−(n − 1)ζ,

q′ = −q(q + Lρ)+ζ.

Idea of getting global wellposedness and finite time blowup :
1 Show that ζ is uniformly bounded.
2 Use comparison principle to get either wellposedness or blowup.

Theorem

There exists a set Σ+ such that solutions are globally regular if the initial
data (

∂ru0(r),
u0(r)

r

)
∈ Σ+, ∀ r ≥ 0.

There exists a set Σ− such that solutions blow up in finite time if the
initial data (

∂ru0(r),
u0(r)

r

)
∈ Σ−, ∀ r ≥ 0.
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Summary

Eulerian dynamics in multi-dimensions{
∂tρ+ div (ρu) = 0,

∂tu + (u · ∇)u = F.

1 {λi}ni=1 eigenvalues of ∇u: not friendly to the force F.

2 div u: not friendly to the convection, spectral gap.

3 (ur ,
u
r ): a better choice in the radially symmetric case.

Ongoing and future work:

Adding pressure (e.g. p-system). [Guo, Yang, ... ...]

Radially symmetric solution with swirl. [Tadmor, Wei, ...]

Euler-alignment system with strongly singular alignment. [Shvedkoy, ...]
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Thanks for your attention!
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