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The compressible Euler equations

Otp + div (pu) = 0,
Ot(pu) + div (pu @ u) + divP = pF.

p . the density of the fluid.
u : the macroscopic velocity (pu is the momentum).
P : the pressure tensor.
F : the force.
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The compressible Euler equations

Otp + div (pu) = 0,
Ot(pu) + div (pu @ u) + divP = pF.

p . the density of the fluid.
u : the macroscopic velocity (pu is the momentum).
P : the pressure tensor.
F : the force. nonlocal interaction forces
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A multiscale framework

Agent-based model Xi = V;
Microscopic scale vi = F;
N — oo
Kinetic model ‘ Ocf + v - Vif + Y, - [F(F)f] = 0 ’

Microscopic scale

Hydrodynamics

Otp + div(pu) = 0 ’

Fluid model
Ot(pu) + div (pu @ u) + divlP = pF

Macroscopic scale
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Interaction forces

: : K
@ Attraction-repulsion force

through an interaction potential

F= _/VK(X —y)p(y, t)dy.

Ix|
repulsion  attraction

=)

@ SOUTH CAROLINA

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 4 /26



Interaction forces

: : K
@ Attraction-repulsion force

through an interaction potential

F= _/VK(X —y)p(y, t)dy.

- , Ix|
repulsmﬁ attraction
A typical example: when K is Newtonian.
The Euler-Poisson equation —AK = kdg.
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Interaction forces

: : K
@ Attraction-repulsion force

through an interaction potential

—/VK(X —y)p(y, t)dy.

- : Ix|
repulsmﬁ attraction

A typical example: when K is Newtonian.

The Euler-Poisson equation —AK = kdg.
@ Alignment force
The Euler-alighment equation
(Cucker-Smale alignment interaction)
/ b(x = y)(uly; t) = u(x, t))p(y, t)dy. B siceons
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Global regularity

Otp + div (pu) = 0,
Ot(pu) + div (pu @ u) + divP = pF.

Goal: Understand the global wellposedness (or finite time singularity
formations) of the system.

3

v
@ SOUTH CAROLINA

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 5/ 26



Global regularity

Otp + div (pu) = 0,
Ot(pu) + div (pu @ u) + divP = pF.

Goal: Understand the global wellposedness (or finite time singularity
formations) of the system.

Global wellposedness is useful in understanding the emergent phenomena.

@ Smoothness of the macroscopic system is often required to obtain a
rigorous derivation of hydrodynamic limits.

@ The Euler-alignment systems: strong solutions must flock.

@){«(
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Pressureless Eulerian dynamics

Otp + div (pu) =0,
Ot(pu) + div (pu @ u) = pF.
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Pressureless Eulerian dynamics

Otp + div (pu) =0,
Ot(pu) + div (pu @ u) = pF.

The dynamics of u (at least when p > 0) is the Burgers equation with
force

Oru+ (u-V)u=F.

The convection term (u - V)u is known to generates shock discontinuities
in finite time.

3
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Pressureless Eulerian dynamics

Otp + div (pu) =0,
Ot(pu) + div (pu @ u) = pF.

The dynamics of u (at least when p > 0) is the Burgers equation with
force

Oru+ (u-V)u=F.

The convection term (u - V)u is known to generates shock discontinuities
in finite time.

Key to ensure the smoothness of the solution: boundedness of Vu.

-
/ |Vu(:, t)|| e dt < +00.
0
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One-dimensional Burgers equation

Oiu + udyu = F.

Let d = Oyu. Differentiate in x at get
d' =—d”+0F,

where ' = 9; + ud, denotes the derivative along the characterstic paths.
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One-dimensional Burgers equation

Oiu + udyu = F.
Let d = Oyu. Differentiate in x at get
d' = —d® + OsF,

where ' = 9; + ud, denotes the derivative along the characterstic paths.

@ Inviscid Burgers equation 0OyF =0 do > 0.
@ Damped Burgers equation OF = —vd dy > —v.

@ Euler-Poisson equation OxF = kp do > —+/2kpp.
[Engelberg-Liu-Tadmor '01]

o Euler-alignment equation do > —1 * pp. ,
[Carrillo-Choi-Tadmor-T. '16] )l SOUTHCAROLINA
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Multi-dimensional Burgers equations

du+ (u-Viju=F.
The quantity Vu is an n-by-n matrix which satisfies

(Vu)' = —(Vu)? + VF.
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Multi-dimensional Burgers equations

du+ (u-Viju=F.
The quantity Vu is an n-by-n matrix which satisfies
(Vu)' = —(Vu)? + VF.

Question: what scaler quantity has the Recatti-type structure like in 1D?
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Multi-dimensional Burgers equations

du+ (u-Viju=F.
The quantity Vu is an n-by-n matrix which satisfies
(Vu)' = —(Vu)? + VF.
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of Vu. Let {)\;},/-V:l be the eigenvalues of Vu,
with corresponding left and right eigenvectors as {l;, r,-}f\’zl. Then,

M= -2\ 1] (VF)r;.
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Multi-dimensional Burgers equations

du+ (u-Viju=F.
The quantity Vu is an n-by-n matrix which satisfies
(Vu)' = —(Vu)? + VF.
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of Vu. Let {)\;},/-V:l be the eigenvalues of Vu,
with corresponding left and right eigenvectors as {l;, r,-}f\’zl. Then,

M= -2\ 1] (VF)r;.

o Inviscid Burgers equation 1T (VF)r, =0
Ai(0) € {a+bi | a<0,b=0}.
o Damped Burgers equation 1] (VF)r; = —v);
Ai(0) € {a+bi|a< —v,b=0}.
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Multi-dimensional Burgers equations

du+ (u-Viju=F.
The quantity Vu is an n-by-n matrix which satisfies
(Vu)' = —(Vu)? + VF.
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #1: eigenvalues of Vu. Let {)\;},/-V:l be the eigenvalues of Vu,
with corresponding left and right eigenvectors as {l;, r,-}f\’zl. Then,

M= -2\ 1] (VF)r;.

o Inviscid Burgers equation 1T (VF)r, =0
Ai(0) € {a+bi | a<0,b=0}.
o Damped Burgers equation 1] (VF)r; = —v);
Ai(0) € {a+bi|a< —v,b=0}.

@ In general, VF does not share eigenvectors as Vu. alfly SOUTHCAROLINA
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The spectral gap

(Vu) = —(Vu)? + VF.
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #2: The divergence div u.

(divu) = —tr(Vu)? + div F.
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The spectral gap

(Vu) = —(Vu)? + VF.
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #2: The divergence div u.

(divu) = —tr(Vu)? + div F.
Advantage: easier to handle the force term.

@ Euler-Poisson equation divF = kp.

o Euler-Alignment equation  divF = —(¢ * p) — (¢ % p)div u.
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The spectral gap

(Vu) = —(Vu)? + VF.
Question: what scaler quantity has the Recatti-type structure like in 1D?

Option #2: The divergence div u.

(divu) = —tr(Vu)? + div F.
Advantage: easier to handle the force term.
@ Euler-Poisson equation divF = kp.

o Euler-Alignment equation  divF = —(¢ * p) — (¢ % p)div u.

Main difficulty: tr(Vu)? # (divu)?. The difference between the two
quantities is related to the spectral gap. A lot of effort has been made in
order to control the spectral gap.

@ Restricted Euler-Poisson equation [Liu-Tadmor '02, .. ]

e Euler-Alignment equation [Tadmor-T. '14, He-Tadmor '17] 4 SoUtiicirouma
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Radially symmetric solution

Otp + div (pu) =0,
Ju+ (u-Vyu=F.

To have a better understanding of the spectral gap, we focus on the
solution which is radially symmetric.

p(x) = p(r), u(x)=>u(r), =1l

Under this setup, the system is reduced to 1D. But the effect of the
spectral gap persists.

tr(Vu)? — (divu)? = —(n— 1) | 244 _ (n—2)u?

r r2

K

It can not be easily controled by div u.

D
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The spectral gap can be controled by u, and %

2uu,  (n—2)u?
r r2 '

tr(Vu)? — (divu)® = —(n— 1) [ —

)
N

e
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The spectral gap can be controled by u, and %

2uu,  (n—2)u?
r r2 '

tr(Vu)? — (divu)® = —(n— 1) [ -
The divergence can be represented as

divu=u,+ (n— 1)E.
r

u
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The spectral gap can be controled by u, and %

2 —2)u?
tr(Vu)? — (divu)® = —(n — 1) [ wur _ (n=2)u } .
The divergence can be represented as
. u
divu=u,+ (n— 1)7.

For the inviscid Burgers equation, the dynamics of (u,, ) reads

{ u(f) - - ()

o
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The spectral gap can be controled by u, and %

2 —2)u?
tr(Vu)? — (divu)® = —(n — 1) [ wur _ (n=2)u } .
The divergence can be represented as
. u
divu=u,+ (n— 1)7

For the inviscid Burgers equation, the dynamics of (u,, ) reads

{ u(f) - - ()

Question: what scaler quantity has the Recatti-type structure like in 1D?

0

Option #3: The quantities u, and —. Mmmomoum
r
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The damped Burgers equation

%

%z" unve
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The damped Burgers equation

u; + (u-V)u = —ru.

The dynamics of (u,, ¢) along characterstic paths:

e

o
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The damped Burgers equation

u; + (u-V)u = —ru.

The dynamics of (u,, ¢) along characterstic paths:

{ U= —u?—vu,
(2 =) - v

Solution is globally regular if and only if

ur(0) > —v and u(rO) > —.
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The damped Burgers equation

u; + (u-V)u = —ru.

The dynamics of (u,, ¢) along characterstic paths:

U= —u?—vu,
(&) == vt
Solution is globally regular if and only if
ur(0) > —v and u(0) > —.

r

Remark: The condition divug > —v is neither sufficient nor necessary for
global regularity.

=
Za UNIVERSITY OF
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The Euler-Poisson equation
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The Euler-Poisson equation

Otp + div (pu) =0,
oru+ (u-V)u=—rVo,
—Ap=p—c.

k : strength of the interaction: k > 0 repulsion, x < 0 attraction.
¢ : background charge: typical choices c =0 or c = p.
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The Euler-Poisson equation

Otp + div (pu) =0,
oru+ (u-V)u=—rVo,
—Ap=p—c.

k : strength of the interaction: k > 0 repulsion, x < 0 attraction.
¢ : background charge: typical choices c =0 or c = p.

1D dynamics: a closed system of d = Oxu and p along characterstic paths
{d’ = —d? + k(p — c),
p=—pd,
Sharp threshold condition: global regularity if and only if
(Oxuo(x), po(x)) € L, VxeR.

where ¥ is the collection of all (dp, po) such that the dynamics £% e

. L. . L of)lfin SOUTH CAROLINA
with the initial data is bounded globally in time.
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Euler-Poisson equation in multi-D with radial symmetry

The dynamics of (p = u,,q = %, p) versus (d = divu, p)

/

2 /
p = =P —KQrr,
q = —q2—f;2’” {dl = (0= e+ (e =),
r? /
Pl =—pd.
p'=—p(p+(n—1)q).

Note that A¢ = ¢ + (n — 1)% =—(p—o).

3
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Euler-Poisson equation in multi-D with radial symmetry

The dynamics of (p = u,,q = %, p) versus (d = divu, p)

/ 2 L
p = =P —KQrr,
7 = —Pr, {dl =—(p*+ (n=1)a*) + K(p - c),
=—q K, /
Pl =—pd.
p'=—p(p+(n—1)q).

Note that A¢ = ¢ + (n — 1)% =—(p—o).

p=—p*+r(p—c)+(n—1)x%,
_ 2 ?r
q =—q° — K%,

P =—p(p+(n—1)q).

The extra term % needs to be controled to close the system.

v
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Control the term

ér

To control the term £-, we start with the density dynamics

pe+ (pu)r = —(n— 1)p%-

To absorb the right hand side, we scale p as

1

(r"p)e + (r"tpu), = 0.

3
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Control the term

To control the term % we start with the density dynamics

u
pe + (pu)r = —(n— 1)P7-
To absorb the right hand side, we scale p as

(r"p)e + (r"tpu), = 0.

Its premitive e satisfies
et + ue, = 0.

Note that A¢ = rt="(r"1¢,), = —(p — ).

3
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Control the term

To control the term % we start with the density dynamics

u
pe + (pu)r = —(n— 1)07
To absorb the right hand side, we scale p as

O (r” 1( )) + 0, ( (p - c)u) = -0, (cr”_lu) .
Its premitive e = —r"~1¢, satisfies

e + ue, = —cr"tu.

Note that A¢ = r1="(r""1¢,), = —(p — c).
Let s = —% = er~ ", it satisfies

_ e u s
sS=er"—nr " YWe=—c-—nu>=—(c+ns)q. ...
r r M%MHCAROLINA
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A sharp threshold condition

p'=—p*+k(p—c—(n-1)s),
q =—q¢° + ks,

s'=—(ns +¢c)q,
p'=—p(p+(n—1)q).
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A sharp threshold condition

A closed ODE system for (p = Oxu,q = 4,s = _%W)

p'=—p*+r(p—c—(n=1)s),
q = —¢° + ks,
"= —(ns+ c)q,

p'=—p(p+(n—1)q).

[}

Theorem (Sharp critical threshold)

Consider the Euler-Poisson equations with radial symmetry. It admits a
global smooth solution if and only if

<8ruo(r), uofr)7_3,¢;)(r)7po(r)> €y, Vr>0.

where ¥ € R* be the set such that: (po, qo, S0, po) € . if and only if the
ODE system with initial data (po, qo, So, Po) is bounded globally in time.

v
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The spectral gap

p'=—p>+r(p—c—(n—1)s),
q =—q*>+ ks,

s’ = —(ns + ¢)q,
p'=—p(p+(n—1)q).

@)«,(
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The spectral gap

/= —p2+K(p— c—(n— 1)s),

p =
q =—q*+rs,
s’ = —(ns + ¢)q,
p'=—p(p+(n—1)q).

1D dynamics (p, p) : [Engelberg-Liu-Tadmor '01, .. .]

3
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The spectral gap

p'=—p>+r(p—c—(n—1)s),
"= —q° + ks,

= —(ns+ c)gq,

p'=—p(p+(n—1)q).

Q
|

U)\

1D dynamics (p, p) : [Engelberg-Liu-Tadmor '01, .. .]

Multi-D dynamics : the spectral gap is characterized by (q, s).

3
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Control the spectral gap: ¢ =0

q =—q*+ks,

s’ = —nsq,

Recall s = er™" and e, = r”_l,o > 0. This implies s > 0.

s SOUTHCAROLINA
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Control the spectral gap: ¢ =0

{q’ = —q* + ks,

s’ = —nsq,

Recall s = er™" and e, = r”_l,o > 0. This implies s > 0.

For k > 0, g > 0 is an invariant region. So the spectral gap is well-under
control if gg > 0.

Sharp threshold given that up(r) > 0. [Wei-Tadmor-Bae '12]
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Control the spectral gap: ¢ =0

{d=¥+m,

s’ = —nsq,

Recall s = er™" and e, = r”_l,o > 0. This implies s > 0.

For k > 0, g > 0 is an invariant region. So the spectral gap is well-under
control if gg > 0.

Sharp threshold given that up(r) > 0. [Wei-Tadmor-Bae '12]

What if the initial flow is not pointing out?

Theorem (Control the spectral gap)

For any initial data qo < 0 and sy > 0, the solution is globally bounded.
Moreover, (q,s) converges to (0,0) as time approaches infinity.

3
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Control the spectral gap: ¢ =0

{d=¥+m,

s’ = —nsq,

Recall s = er™" and e, = r”_l,o > 0. This implies s > 0.

For k > 0, g > 0 is an invariant region. So the spectral gap is well-under
control if gg > 0.

Sharp threshold given that up(r) > 0. [Wei-Tadmor-Bae '12]

What if the initial flow is not pointing out?

Theorem (Control the spectral gap)

For any initial data qo < 0 and sy > 0, the solution is globally bounded.
Moreover, (q,s) converges to (0,0) as time approaches infinity.

Remark: the theorem holds for n > 2, but is false when n < 2.

)y SOUTHTCAROLIN
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Control the spectral gap: ¢ >0

Theorem (Control the spectral gap)

Let k > 0. For any initial data (qo, o) such that so > —, solution is
globally bounded.

Remark: unlike the zero-background case, the solution will travel around a
closed orbit, and won't converge as time becomes infinity.

3
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The Euler-alignment equation
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The Euler-alignment equation

Otp + div (pu) = 0,
Do + (u u—/ Gl — yl)(u(y) — u(x))o(y)dy..

)
%<<’
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The Euler-alignment equation

Otp + div (pu) =0,
Ot (u- V) = L(pou) —utp. £F = | w(lx—yDF(x)ay.

3

v
@ SOUTH CAROLINA

Changhui Tan (U of South Carolina) Eulerian dynamics IMS Workshop 23 /26



The Euler-alignment equation

Otp + div (pu) =0,
Oru+ (u-Viu=L(pu) —uLlp, Lf= [ P(]x—y|)f(y)dy.
Rn

1D dynamics (auxiliary quantity) d = uy [Carrillo-Choi-Tadmor-T. '16]

(d+ Lp) = —d*> —dLp = —d(d + Lp).

v
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The Euler-alignment equation

Otp + div (pu) =0,
Oru+ (u-Viu=L(pu) —uLlp, Lf= [ P(]x—y|)f(y)dy.
Rn

1D dynamics (auxiliary quantity) d = uy [Carrillo-Choi-Tadmor-T. '16]
(d+ Lp) = —d*> —dLp = —d(d + Lp).

Multi-D with radial symmetry: the dynamics of (p = u,,q = %)
(p+Lp) = —p(p+Lp)—(n—1)C,
q =—q(a+ Lp)+C.

versus d = divu

., where ((r)x = L(pu).

(d+Lp) = —p(p+Lp)—(n—1)q(g+Lp) = —d(d+Lp) + Spectral gap .
nﬁv@n%&ﬁﬁ&l{mlm
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The Euler-alignment equation

Otp + div (pu) =0,
Oru+ (u-Viu=L(pu) —uLlp, Lf= [ P(]x—y|)f(y)dy.
Rn

1D dynamics (auxiliary quantity) d = uy [Carrillo-Choi-Tadmor-T. '16]
(d+ Lp) = —d*> —dLp = —d(d + Lp).

Multi-D with radial symmetry: the dynamics of (p = u,,q = %)
(p+Lp) = —p(p+Lp)—(n—1)C,
q =—q(a+ Lp)+C.

versus d = divu

., where ((r)x = L(pu).

(d+Lp) = —p(p+Lp)—(n—1)q(g+Lp) = —d(d+Lp) + Spectral gap .

2D: [He-Tadmor '17], 37D: 2. B o
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Critical thresholds

{(p + Lp) = —p(p+ Lp)—(n—1)¢,
q' = —q(qg+ Lp)+<.
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Critical thresholds

{(p + Lp) = —p(p+ Lp)—(n—1)¢,
q = —q(q+ Lp)+C.

Idea of getting global wellposedness and finite time blowup :
@ Show that ( is uniformly bounded.
@ Use comparison principle to get either wellposedness or blowup.
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Critical thresholds

(p+Lp) = —p(p+ Lp)—(n—1)C,
q = —q(q+ Lp)+C.
Idea of getting global wellposedness and finite time blowup :

@ Show that ( is uniformly bounded.
@ Use comparison principle to get either wellposedness or blowup.

Theorem

There exists a set ¥ such that solutions are globally regular if the initial
data

<8ru0(r), uofr)) €exy, Vr>0.

There exists a set X _ such that solutions blow up in finite time if the

initial data
(a,uo(r), ”Of’)) €Y., Vr>0.
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Eulerian dynamics in multi-dimensions

Orp + div (pu) = 0,
Ju+ (u-Vju=F.

@ {)\i}"_, eigenvalues of Vu: not friendly to the force F.
@ divu: not friendly to the convection, spectral gap.

© (ur,Y): a better choice in the radially symmetric case.
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@ {)\i}"_, eigenvalues of Vu: not friendly to the force F.
@ divu: not friendly to the convection, spectral gap.

© (ur,Y): a better choice in the radially symmetric case.

Ongoing and future work:
e Adding pressure (e.g. p-system). [Guo, Yang, ... ..]
o Radially symmetric solution with swirl. [Tadmor, Wei, ...]
o Euler-alignment system with strongly singular alignment. [Shvedkoy, ...]
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Thanks for your attention!
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