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1. Introduction

� The µ-Camassa-Holm (CH) equation

mt + 2mux + umx = 0, t > 0, x ∈ R, (1)

where m = µ(u) − uxx, µ(u) = ∫
S u(t, x)dx. If µ(u) = 0, which

implies µ(ut) = 0, then this equation reduces to the Hunter-Saxton
(HS) equation, which is a short wave limit of the CH equation.
(Khesin, Lenells, Misiolek, 2008, Math. Ann.)
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• It is a dynamical equation for rotators in liquid crystals with external
magnetic field and self-intersection

• It is an integrable equation and admits peaked solitons

• The µ-CH equation describes the geodesic flow on Ds(S) with the
right-invariant metric given by the inner product

< u, v >= µ(u)µ(v) +
∫
S uxvxdx.
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� The CH equation

mt + 2uxm + umx + γux = 0, m = u− uxx.
(Camassa-Holm, 1993; Fokas-Fuchssteiner 1981)

� The HS equation

mt + 2uxm + umx + γux = 0, m = −uxx.
(Hunter-Saxton, 1996)
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• Integrability, 2× 2 spectral problem
• Existence of peakons
• Water waves
• Wave breaking
• Geometric formulations
• Quadratic nonlinearities
• H1-weak solution
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� The Degasperis-Procesi equation

mt + 3uxm + umx + γux = 0, m = u− uxx.
(Degasperis-Procesi, 1998)

• Intergrability, 3× 3 spectral problem
• Existence of peakons
• Shock peakons
• Water waves
• Wave breaking
• Quadratic nonlinearities
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� The µ-DP equation

mt + 3mux + umx = 0, t > 0, x ∈ R,
(Lenells, Misiolek, Tiğlay, 2010, CMP) where m = µ(u) − uxx. Set-
ting µ(u) = 0, this equation becomes the short wave limit of the DP
equation or the Burgers equation. Geometrically, it describes an affine
surface (Fu, Liu, Qu, J. Funct. Anal., 2012)
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� The modified CH equation (with cubic nonlinear terms)

mt +
(u2 − u2

x)m

x

+ γux = 0, m = u− uxx.

(Olver, Rosenau, 1996; Fuchssteiner, 1996; Qiao, 2006)

� The short pulse equation

−uxt + (u2ux)x + γu = 0.

(Schäfer-Wayne, 2004) The short-pulse equation is the model for the
propagation of ultra-short optical pulse approximation in nonlinear
Maxwell’s equations, where u is the magnitude of the electric field.
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� The modified µ-CH equation

mt + ((2µ(u)u− u2
x)m)x = 0, m = µ(u)− uxx.

(Qu, Fu, Liu, J. Func. Anal., 2014; Liu, Qu, Zhang, Phys. D, 2013)

Remark 1.1 Applying the tri-Hamiltonian duality approach (Olver, Rose-
nau, Fuchssteiner, 1995,1996) to the KdV and the mKdV equation
yields the CH equation and the modified CH equation, respectively.
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� A generalized Camassa-Holm equation with cubic and quadratic non-
linearities

mt + k1

(u2 − u2
x)m


x

+ k2 (2mux + umx) + γux = 0, m = u− uxx.

(Fokas, 1995; Fuchssteiner 1996; Qiao, Xia, Li, 2012; Liu, Liu, Olver,
Qu, 2014)

� The generalzied µ-CH equation with cubic and quadratic nonlinearities

mt + k1((2µ(u)u− u2
x)m)x + k2(2uxm + umx) + γux = 0, (2)

where m = µ(u)− uxx. (Qu, Fu, Liu, Comm. Math. Phys. 2014; Qu,
Liu, Liu, Zhang, Arch. Rat. Mech. Anal., 2014)



Dec. 26, 2019 NUS, Singapore

� The two-component Camassa-Holm system

mt + umx + 2mux ± ρρx = 0,

ρt + (ρu)x = 0, x ∈ R,
where m = u− uxx.
(Olver, Rosenau, 1996 Chen, Liu, Zhang, 2006; Constatin, Ivanov,
2012)

Remark 1.1. The above system does not admit the peaked solitions.
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� A two-component Camassa-Holm system

mt + 2mux + mxu + (mv)x + nvx = 0,

nt + 2nvx + nxv + (nu)x + mux = 0,

where m = u− uxx, n = v − vxx.
(Qu, Fu, 2009)
This system is equivalent to the following two-component CH system

ξt + σξx + 2ξσx + ηη̄x = 0, ξ = (1− ∂2
x)σ,

ηt + (ησ)x = 0, η = (1− ∂2
x)η̄, x ∈ R,

via the linear change of variables ξ = m+ n, η = m− n, which was
derived by (Holm et al, 1996) from the Euler-Poincare equation.

Question: Are there two-component µ-CH systems which admit peaked
solutions and H1-conservation law?
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� A two-component µ-CH system

mt + 2mux + mxu + (mv)x + nvx = 0,

nt + 2nvx + nxv + (nu)x + mux = 0, (3)

where m = µ(u)− uxx, n = µ(v)− vxx.
(Li, Fu, Qu, 2019)
This system is equivalent to the following two-component µ-CH system

ξt + σξx + 2ξσx + ηη̄x = 0, ξ = (µ− ∂2
x)σ,

ηt + (ησ)x = 0, η = (µ− ∂2
x)η̄, x ∈ R,

via the linear change of variables ξ = m + n, η = m− n.
This system can also be obtained from the Euler-Poincare equation with
the Lagragian

L =
1

2
(µ2(σ) + µ2(η̄) + ‖σx‖2L2 + ‖η̄x‖2L2).
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� The general two-component µ-CH system

mk,t =
2∑

i,j=1
aki,jmiuj,x +

2∑
i,j=1

bki,jmi,xuj, k = 1, 2, (4)

where uk(t, x) is a function of time t and a single spatial variable x,
and

mk = µ(uk)− uk,xx, µ(uk) =
∫
S uk(t, x)dx,

with S = R/Z which denotes the unit circle on the plane.
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� A two-component modified CH system

mi,t =
1

2

n∑
j=1

(u2
j − u2

j,x)mi


x
− n∑
j=1

(uiuj,x − ujui,x)mj,

where mi = ui − ui,xx, 1 ≤ i ≤ n. (Qu, Song, Yao, 2013, SIGMA)

� A two-component modified µ-CH system

mi,t =
1

2

n∑
j=1

(2µ(uj)uj − u2
j,x)mi


x
− n∑
j=1

(uiuj,x − ujui,x)mj,

where mi = µ(ui)−ui,xx, 1 ≤ i ≤ n. (Qu, Song, Yao, 2013, SIGMA)
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2. Integrability

� Bi-Hamiltonian structure
The generalized µ-CH equation (2) admits the bi-Hamiltonian structure

∂m

∂t
= J

δH1

δm
= K

δH2

δm
,

where

J = −k1∂xm∂
−1
x m∂x − k2(m∂x + ∂xm)− 1

2
γux, K = −∂A = ∂3

x

are compatible Hamiltonian operators, while

H1 =
1

2

∫
R umdx,

and
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H2 = k1
∫
R(µ2(u)u2 + µ(u)uu2

x −
1

12
u4
x + 2γu2

x)dx

+k2
∫
R(µ(u)u +

1

2
uu2

x)dx

are the corresponding Hamiltonian functionals.

� The Lax-pair
Equation (2) has the following Lax-pair


ψ1
ψ2


x

= U(m,λ)


ψ1
ψ2

 ,

ψ1
ψ2


t

= V (m,u, λ)


ψ1
ψ2

 ,
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where U and V are given by, for γ = 0

U(m,λ) =


0 λm

−k1λm− k2λ 0

 ,

and

V (m,u, λ) =
−1

2k2ux −µ(u)
2λ − k1λ(2µ(u)u− u2

x)m− k2λum

G 1
2k2ux

 ,

with

G = k2(
1

2λ
+ λk2u) +

1

2λ
k1µ(u) + k2

1λ(2µ(u)u− u2
x)m

+k1k2λ(2µ(u)u− u2
x − um)

and for γ 6= 0
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U(m,λ) =


−λ

√
−γ2 λm

−k1λm− k2λ λ
√
−γ2

 , V (m,u, λ) =


A B
G −A

 ,

with

A =
1

4

√
−2γ

λ−1 + 2k1λ(2uµ(u)− u2
x) + 2λk2u

− 1

2
k2ux,

B = − µ

2λ
+

1

2

√
−2γux − k1λ(2uµ(u)− u2

x)m− λk2um.
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� Conservation laws (γ = 0)

H0 =
∫
S udx,

H1 =
1

2

∫
S(µ2(u) + u2

x)dx,

H2 = k1
∫
S

µ2(u)u2 + µ(u)uu2
x −

1

12
u4
x

 dx + k2
∫
S(µ(u)u +

1

2
uu2

x)dx,

· · · .
� Short capillary-gravity wave equation

Applying the scaling transformation

x→ εx, t→ ε−1t, u→ ε2u

to (2) produces
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(ε2µ(u)− uxx)t + k1((2ε2uµ(u)− u2
x)(ε2µ(u)− uxx))x

+k2(2ux(ε2µ(u)− uxx) + u(ε2µ(u)− uxx)x) + γux = 0.

Expanding

u(t, x) = u0(t, x) + ε u1(t, x) + ε2 u2(t, x) + · · ·
in the small parameter ε, the leading order term u0(t, x) satisfies

−u0,xxt + k1(u2
0,xu0,xx)x − k2(u0,xu0,xx + u0u0,xxx) + γu0,x = 0.

Then v = u0,x satisfies the integrable equation

vxt − k1v
2
xvxx + k2(vvxx +

1

2
v2
x)− γv = 0,

which describes asymptotic dynamics of a short capillary-gravity wave,
where v(t, x) denotes the fluid velocity on the surface (Faquir, Manna,
Neveu, 2007).
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3. Preliminaries

Consider the Cauchy problem

mt + k1(2µ(u)u− u2
x)m)x + k2(2mux + umx) = 0, t > 0, x ∈ R,

u(0, x) = u0(x), m = µ(u)− uxx, x ∈ R, (5)

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R.
In the following, all space of functions are defined over S = R/Z.

Definition 3.1 If u ∈ C([0, T ];Hs)∩C1([0, T ];Hs−1) with s > 5
2 and

some T > 0 satisfies (5), then u is called a strong solution on [0, T ].
If u is a strong solution on [0, T ] for every T > 0, then it is called a
global strong solution.
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Applying the inverse operator of A = µ− ∂2
x to equation (2) results in

the equation

ut + k1

(2uµ(u)− 1

3
u2
x)ux + ∂xA

−1(2µ2(u)u + µ(u)u2
x) +

1

3
µ(u3

x)



+k2

uux + A−1∂x(2uµ(u) +
1

2
u2
x)

 = 0.

The Green function of the operator A is (Lenells, Misiolek, Tiğlay, 2010)

g(x) =
1

2
(x− 1

2
)2 +

23

24
.

Its derivative can be assigned to zero at x = 0, so one has

gx(x) =


0, x = 0,

x− 1
2, 0 < x < 1.

The above formulation allows us to define a weak solution as follows.
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Definition 3.2 Given initial data u0 ∈ W 1,3, the function u ∈
L∞([0, T ),W 1,3) is said to be a weak solution to the initial-value prob-
lem (5) if it satisfies the following identity:

∫T
0

∫
S [uϕt + k1(µ(u)u2ϕx + 1

3u
3
xϕ− gx ∗

(
2µ2(u)u + µ(u)u2

x

)
ϕ

−1
3µ(u3

x)ϕ) + k2(1
2u

2ϕx − gx ∗ (2uµ(u) + 1
2u

2
x)ϕ)] dx dt

+ ∫
S u0(x)ϕ(0, x) dx = 0,

for any smooth test function ϕ(t, x) ∈ C∞c ([0, T ) × S). If u is a
weak solution on [0, T ) for every T > 0, then it is called a global weak
solution.
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A local well-posedess result is the following.

Theorem 3.1 (Qu, Fu, Liu, 2014) Suppose that u0 ∈ Hs(S) for
s > 5/2. Then there exists T > 0, which depends only on ‖u0‖Hs,
such that problem (5) has a unique solution u(t, x) in the space
C([0, T );Hs(S)) ⋂C1([0, T );Hs−1(S)). Moreover, the solution u de-
pends continuously on the initial data u0 in the sense that the mapping
of the initial data to the solution is continuous from the Sobolev space
Hs to the space C([0, T );Hs(S)) ⋂C1([0, T );Hs−1(S)).
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4. Stability of solitons of the g-KdV equation

Consider the generalized KdV equation

ut + uxxx + (up)x = 0, (6)

for p > 1 an integer, which, in the cases p = 2 and p = 3, are the
KdV equation and mKdV equation, respectively. The case p = 5 is
interesting due to the mass-critical property. For p > 1, it has the
soliton

u(t, x) = c1/(p−1)Q(c1/2(x− x0 − ct)) (7)

where

Q(x) := (
p + 1

2 cosh2(p−1
2 x)

)1/(p−1)
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is a positive, smooth, rapidly decreasing solution to the ODE

Qxx + Qp = Q.

Define the ground state curve
∑

= {Q(· − x0) : x0 ∈ R} ⊂ H1(R)

consisting of all translates of the ground state Q, then we see that u(t)
stays close to ∑ all t.
Theorem 4.1 (Benjamin, 1972; Bona, 1975; Weinstein, 1986) Let
1 < p < 5. If u0 ∈ H1(R) is such that distH1(u0,

∑) is sufficiently
small (say less than σ for some small constant σ > 0), and u is the
solution to (6) with initial data u0, then we have

distH1(u(t),
∑

) . distH1(u0,
∑

)
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for all t. Here we use X . Y or X = O(Y ) to denote the estimate
|X| ≤ CY for some C that depends only on p, and X ∼ as shorthand
for X . Y . X .

Proof. Find a functional u → L(u) on H1 with the following prop-
erties:
1. If u is an H1 solution to (6), then L(u(t)) is non-increasing in t.
2. Q is a local minimizer of L, thus L(u) − L(Q) ≥ 0 for all u suffi-
ciently close to Q in H1.
3. Furthermore, the minimum is non-degenerate in the sense that
L(u)− L(Q) ≥ ‖u−Q‖2H1, for all u sufficiently close to Q in H1.
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5. Peaked solutions of (2)

Recall that the single peakon and multi-peakons for µ-CH equation and
modified µ-CH equation. Their single peakons are given respectively by

u(t, x) =
12

13
cg(x− ct),

(Khesin, Lenells, Tiglay, 2010, CMP) and

u(t, x) =
2
√

3c

5
g(x− ct),

(Qu, Fu, Liu, 2014, JFA) where
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g(x) =
1

2
(x− [x]− 1

2
)2 +

23

24
with [x] denoting the largest integer part of x. Their multi-peakons are
given by

u(t, x) =
N∑
i=1

pi(t)g(x− qi(t)), (8)

where pi(t) and qi(t) satisfy the following ODE system respectively for
the µ-CH equation (Khesin, Lenells, Tiglay, 2010, CMP)

ṗi(t) = − N∑
j=1

pipjgx(qi − qj),

q̇i(t) =
N∑
j=1

pjg(qi(t)− qj(t)), i = 1, 2, · · · , N,
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and for the modified µ-CH equation (Qu, Fu, Liu, 2014, JFA)

ṗi(t) = 0,

q̇i(t) =
1

12
[
N∑

j,k 6=i
(pj + pk)2 + 25p2

i ] + pi[
N∑
j 6=i

pj((q
i − qj +

1

2
λij)

2 +
49

12
)]

+
N∑

j<k,j,k 6=i
pjpk(qj − qk + εjk)2,

where

λij =


1, i < j
−1, i > j,

εjk =


1, k − j ≥ 2
0, k − j ≤ 1,

(9)

The existence of the single peakons of Eq.(2) is governed by the follow-
ing result.
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Theorem 5.1. For any c ≥ − 169k2
2

1200k1
, equation (2) with γ = 0 admits

the peaked periodic-one traveling wave solution uc = φc(ξ), ξ = x−ct,
where φc(ξ) is given by

φc(ξ) = a1,2[
1

2
(ξ − 1

2
)2 +

23

24
] (10)

with

a1,2 =
−13k2 ±

√
169k2

2 + 1200ck1

50k1
, k1 6= 0, (11)

for ξ ∈ [−1/2, 1/2] and φ(ξ) is extended periodically to the real line.

Remark 4.1 Note that the equation is invariant under u → −u, k2 →
−k2. So it suffices to consider the peakon with amplitude a1 .
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Furthermore, Eq.(2) admits the multi-peakons of the form (8), where
pi(t) and qi(t), i = 1, 2, . . . , N , satisfy the following ODE system

ṗi + k2
N∑
j=1

pipj(q
i − qj − 1

2
) = 0,

q̇i − k1[
1

12
(23

∑
j,k 6=i

(pj + pk)2 + 25p2
i )

−pi(
∑
j 6=i

pj(q
i − qj)2 +

1

2
λij)

2 +
49

12
) (12)

− ∑
j<k,j,k 6=i

pjpk(qj − qk + εjk)2]

−k2
N∑
j=1

pj(
1

2
(qi − qj)2 − 1

2
|qi − qj| + 13

12
) = 0.

where λij and εjk are given by (9).
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In particular, when N = 2, system (12) can be solved explicitly, which
yields

p1 =
aeb(t−t0)

1 + eb(t−t0)
, p2 =

a

1 + eb(t−t0)
,

q1 = −k1a
2

b


1

12
+ (

1

2
− a1)2


1

1 + eb(t−t0)

+
a

12
(23k1a + 6a1(a1 − 1)k2 + 13k2)(t− t0)

+
a

6b
(k1a− 3a1(a1 − 1)k2) ln(1 + eb(t−t0)) + c1,

q2 = q1 + a,

where a, a1, b > 0 and t0 are some constants.
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6. Stability of peakons

� Case 6.1. k1 > 0, k2 > 0
Theorem 6.1 (Qu, Zhang, Liu, Liu, 2014, ARMA)
Let c > 0 and assume that γ = 0, k1 > 0, k2 > 0. For every ε > 0,
there is a δ > 0 such that if u ∈ C([0, T );H1(S)) is a solution to (2)
with

‖u(·, 0)− ϕc‖H1(S) < δ,

then

‖u(·, t)− ϕc(· − ξ(t))‖H1(S) < ε for t ∈ [0, T ),

where ξ(t) ∈ R is a point where u(· + 1
2, t) attains its maximum.
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Lemma 6.1 The peakon ϕc(x) is continuous on S with peak at x =
±1

2. The extrema of ϕc are

Mϕc = max
x∈S
{ϕc(x)} = ϕc


1

2

 =
13

12
H0[ϕc],

mϕc = min
x∈S
{ϕc(x)} = ϕc(0) =

23

24
H0[ϕc].

Moreover, we have

lim
x↑1

2

ϕc,x(x) =
1

2
H0[ϕc], lim

x↑−1
2

ϕc,x(x) = −1

2
H0[ϕc],

with

H0[ϕc] = a1, H1[ϕc] =
13

12
a2

1, H2[ϕc] =
1043

960
k1a

4
1 +

47

45
k2a

3
1.
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Lemma 6.2 For every u ∈ H1(S) and ξ ∈ R,

H1[u]−H1[ϕc] = ‖u− ϕc(· − ξ)‖2µ + a1(u(ξ +
1

2
)−Mϕc).

Lemma 6.3 For any function u ∈ H1(S) with µ(u) > 0, define the
function

Fu : {(M,m) ∈ R2 : M ≥ m} → R

by

Fu(M,m)

=
4

3
k1(2M + m)H0[u]H1[u]− 64

45
k1(M −m)(2H0[u](M −m))

3
2

+
4

3
k1(2M + m)H3

0 [u]− 4

3
k1m(4M −m)H2

0 [u] + 2k2(2m + M)H2
0 [u]

+2k2MH1[u]− 4k2MmH0[u]− 32

15
k2(M −m)

5
2
√
2H0[u]− 4H2[u].
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Then it satisfies

Fu(Mu,mu) ≥ 0,

where Mu = max
x∈S
{u(x)} and mu = min

x∈S
{u(x)}.

Proof. Introduce two functions

g(x) =


ux +

√
2µ(u)(u−m), ξ < x ≤ η,

ux −
√
2µ(u)(u−m), η ≤ x < ξ + 1.

(13)

and

h(x) =


k1(µ(u)u + 1

3

√
2µ(u)(u−m) ux − 1

3u
2
x) + k2u, ξ < x ≤ η,

k1(µ(u)u− 1
3

√
2µ(u)(u−m) ux − 1

3u
2
x) + k2u, η ≤ x < ξ + 1.
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Lemma 6.4 For the peakon ϕc, it holds that

Fϕc(Mϕc,mϕc) = 0,
∂Fϕc
∂M (Mϕc,mϕc) = 0,

∂Fϕc
∂m (Mϕc,mϕc) = 0,

∂2Fϕc
∂M∂m(Mϕc,mϕc) = 0,

∂2Fϕc
∂M2 (Mϕc,mϕc) = −16

3 k1H
2
0 [ϕc]− 4k2H0[ϕc],

∂2Fϕc
∂m2 (Mϕc,mϕc) = −8

3k1H
2
0 [ϕc]− 4k2H0[ϕc].

Moreover, (Mϕc,mϕc) is the unique maximum of Fϕc.
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Lemma 6.5 Let u ∈ C([0, T );H1(S)) be a solution of (2). Given a
small neighborhood U of (Mϕc,mϕc) in R2, there exists a δ > 0 such
that

(Mu(t),mu(t)) ∈ U for t ∈ [0, T ) (14)

if ‖u(·, 0)− ϕc‖H1(S) < δ.

Proof of Theorem 6.1: Let u ∈ C([0, T );H1(S)) be a solution of (2)
and suppose ε > 0 be given. Pick a neighborhood U of (Mϕc,mϕc)

small enough such that |M − Mϕc| <
25k1ε

2

−78k2+6
√

169k2
2+1200ck1

if

(M,m) ∈ U . Choose a δ > 0 as in Lemma 5.5 so that (14) hold-
s. Taking a smaller δ if necessary, we may assume that µ(u) > 0
and
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|H1[u]−H1[ϕc]| <
ε2

6
if ‖u(·, 0)− ϕc‖H1(S) < δ.

Then, by Lemma 6.2, we get

‖u(·, t)− ϕc(· − ξ(t))‖2H1(S)

≤ 3‖u(·, t)− ϕc(· − ξ(t))‖2µ
= 3(H1[u]−H1[ϕc]) + 3a1(Mϕc −Mu(t)) < ε2, t ∈ [0, T ),

where ξ(t) ∈ R is any point where u(ξ(t) + 1
2, t) = Mu(t). Thus The-

orem 5.1 is then proved. 2
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� Case 6.2. k1 > 0, k2 < 0

Theorem 6.2 Let k1 > 0, k2 < 0, and assume that c > 23k2
2/(64k1).

For every ε > 0, there is a δ > 0 such that if u ∈ C([0, T );H1(S)) is
a solution to (2) with

‖u(·, 0)− ϕc‖H1(S) < δ,

then

‖u(·, t)− ϕc(· − ξ(t))‖H1(S) < ε for t ∈ [0, T ),

where ξ(t) ∈ R is a point where u(· + 1
2, t) attains its maximum.
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Lemma 6.6. For any function u ∈ H1(S) with µ(u) > 0, k1 > 0,
k2 ≤ 0, and 4k1µ(u) + 3k2 > 0, define the function

Fu : {(M,m) ∈ R2 : M ≥ m} → R

by

Fu(M,m) =
1

3
k1(2M + m)H0[u]H1[u]− 16

45
k1(M −m)

5
2(2H0[u])

3
2

+
1

3
k1(2M + m)H3

0 [u]− 1

3
k1m(4M −m)H2

0 [u] (15)

+
1

2
k2(2m + M)H2

0 [u] +
1

2
k2MH1[u]− k2MmH0[u]

− 8

15
k2(M −m)52

√
2H0[u]−H2[u].

Then it satisfies

Fu(Mu,mu) ≥ 0,
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where Mu = max
x∈S
{u(x)} and mu = min

x∈S
{u(x)}.

Proof. Let u ∈ H1(S) ⊂ C(S) with µ(u) > 0. Denote M = Mu =
max
x∈S
{u(x)}, m = mu = min

x∈S
{u(x)}. Let ξ and η be such that u(ξ) =

M and u(η) = m. Define

H̃2[u] = k1
∫
S

µ2(u)(u−m)2 + µ(u)(u−m)u2
x −

1

12
u4
x

 dx

+k2
∫
S

µ(u)(u−m)2 +
1

2
(u−m)u2

x

 dx

≡ k1J̃1[u] + k2J̃2[u],

with

J̃1[u] =
∫
S

µ2(u)(u−m)2 + µ(u)(u−m)u2
x −

1

12
u4
x

 dx,

J̃2[u] =
∫
S

µ(u)(u−m)2 +
1

2
(u−m)u2

x

 dx.
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By the Cauchy inequality, we have the estimate

J̃1[u] ≤ 4

3
µ(u)J̃2[u]. (16)

The equality holds if and only if u is the peakon of Eq. (2). On the
other hand, a straightforward computation leads to

J̃1[u] = J1[u]−mH3
0 [u] + m2H0[u]2 −mH0[u]H1[u], and

H̃2[u] = H2[u]− k1m(H3
0 [u]−mH2

0 [u] + H0[u]H1[u])

−k2m


3

2
H2

0 [u]−mH0[u] +
1

2
H1[u]

 ,

where

J1[u] =
∫
S

µ2(u)u2 + µ(u)uu2
x −

1

12
u4
x

 dx.
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By virtue of the result in (Liu, Qu, Zhang, Phys. D, 2013), we have
∫
h̃(x)g2(x)dx = 4J1[u]− 2mH3

0 [u]− 2mH0[u]H1[u]

− 8

15
(m + 4M)(2H0[u](M −m))

3
2,

where

h̃(x) =


2µ(u)u + 2

3

√
2µ(u)(u−m) ux − 1

3u
2
x, ξ < x ≤ η,

2µ(u)u− 2
3

√
2µ(u)(u−m) ux − 1

3u
2
x, η ≤ x < ξ + 1,

and g(x) is given by (13). Notice that

h̃(x) ≤ 2MH0[u] +
2

3
(M −m)H0[u] =

2

3
(4M −m)H0[u].
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It then follows that

4J1[u] −2mH3
0 [u]− 2mH0[u]H1[u]− 8

15
(m + 4M)(2H0[u](M −m))32

≤ 2

3
(4M −m)H0[u](H1[u] + H2

0 [u]− 2mH0[u]

− 4

3H0[u]
(2H0[u](M −m))

3
2).

Using this inequality and combining expressions, we can get (15). This
completes the proof of the lemma.



Dec. 26, 2019 NUS, Singapore

7. Classification of the 2-µ-CH system

In this section, we classify the system (4), specifically, we consider the
following system:

mt = m(ux + a1vx) + mx(b1u + c1v)

+n(d1ux + f1vx) + nx(g1u + h1v),

nt = n(vx + a2ux) + nx(b2v + c2u) (17)

+m(d2vx + f2ux) + mx(g2v + h2u),

where m = µ(u) − uxx, n = µ(v) − vxx, ai, bi, ci, di, fi, gi, and
hi, i = 1, 2 are some constants.
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• Step 1. Assume that system (4) possesses the weak solution
∫
S(µ(ut)φ− utφxx)dx = ∫

S(F1φ + F2φx + F3φxx)dx,
∫
S(µ(vt)φ− vtφxx)dx = ∫

S(G1φ + G2φx + G3φxx)dx,

for some functions Fi(u, v, ux, vx), Gi(u, v, ux, vx), i = 1, 2, 3 and
φ(t, x)∈C∞0 ([0,+∞)×S).

Then we find the constants satisfy

a1 − c1 = d1 − g1, a2 − c2 = d2 − g2.

In this case, µ(u) and µ(v) are conserved.
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• Step 2. Assume that system (4) admits two-peaked solutions of the
form

u = p1(t)g(x− q1(t)) + p2(t)g(x− q2(t)),

v = r1(t)g(x− q1(t)) + r2(t)g(x− q2(t)), (18)

where g(x) = 1
2(x− [x]− 1

2)2 + 23
24, and [x] denotes the largest integer

part of x, are the usual weak solutions in the sense of distribution, then
the constants must satisfy

g1 = h1 = g2 = h2 = 0, b1 = c2, b2 = c1,

a1 − c1 = d1, a2 − c2 = d2.
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• Step 3. Assume that system (4) enjoys the H1-conservation law

h1[u] =
∫
S(u2

x + v2
x)dx.

then the constants satisfy

a1 = a2 = b1 = b2 = c1 = c2 = f1 = f2 = 1
2,

d1 = d2 = g1 = g2 = h1 = h2 = 0.

Hence system (4) reduces to (3).
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We have shown that system (3) has the two-peaked solutions (18) with
satisfying

p′1 = ((1− b1)p1p2 + (a1 − c1)(p1r2 + p2r1)

+f1r1r2)sgn(q2 − q1)(−|q1 − q2| + 1
2),

p′2 = ((b1 − 1)p1p2 + (c1 − a1)(p1r2 + p2r1)

−f1r1r2)sgn(q2 − q1)(−|q1 − q2| + 1
2),

r′1 = ((1− b2)r1r2 + (a2 − c2)(p1r2 + p2r1)

+f2p1p2)sgn(q2 − q1)(−|q1 − q2| + 1
2),

r′2 = ((b2 − 1)r1r2 + (c2 − a2)(p1r2 + p2r1)

−f2p1p2)sgn(q2 − q1)(−|q1 − q2| + 1
2),
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q′1 = −1
2(b1p2 + c1r2)(−|q1 − q2| + 1

2)2

−13
12(b1p1 + c1r1)− 23

24(b1p2 + c1r2),

q′2 = −1
2(b1p1 + c1r1)(−|q1 − q2| + 1

2)2

−13
12(b1p2 + c1r2)− 23

24(b1p1 + c1r1).
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8. Stability of peakons for the cubic systems

Consider the following integrable two-component Novikov system

mt + uvmx + (2vux + uvx)m = 0, m = u− uxx,
nt + uvnx + (2uvx + vux)n = 0, n = v − vxx. (19)

It has the peaked solitions

u(t, x) = ϕc(x− ct) = ae−|x−ct|,
v(t, x) = ψc(x− ct) = be−|x−ct|, (20)

where c = ab 6= 0, and the following conserved densities



Dec. 26, 2019 NUS, Singapore

E0[u, v] =
∫
R(mn)

1
3 dx,

Eu[u] = ∫
R

(
u2 + u2

x

)
dx, Ev[v] = ∫

R

(
v2 + v2

x

)
dx,

H [u, v] = ∫
R (uv + uxvx) dx

and

F [u, v] =
∫
R

u2v2 +
1

3
u2v2

x +
1

3
v2u2

x +
4

3
uvuxvx −

1

3
u2
xv

2
x

 dx,

while the corresponding three conserved quantities of Novikov equation
are

H0[u] = ∫
Rm

2
3 dx, E[u] = ∫

R (u2 + u2
x) dx,

F [u] = ∫
R

u4 + 2u2u2
x − 1

3u
4
x

 dx.
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Theorem 8.1. (He, Liu, Qu, 2019) Let ϕc and ψc be the peaked
solitons traveling with speed c = ab > 0. Then ϕc and ψc are orbitally
stable in the following sense. Assume that u0, v0 ∈ Hs(R) for some
s ≥ 3, 0 6≡ (1− ∂2

x)u0(x) and 0 6≡ (1− ∂2
x)v0(x) are nonnegative, and

there is a δ > 0 such that

‖(u0, v0)− (ϕc, ψc)‖H1(R)×H1(R) < δ.

Then the corresponding solution (u(t, x), v(t, x)) of the Cauchy prob-
lem for the two-component Novikov equations (19) with the initial data
u(0, x) = u0(x) and v(0, x) = v0(x) satisfies

supt∈[0,T ) ‖(u(t, ·), v(t, ·))− (ϕc(· − ξ(t)), ψc(· − ξ(t)))‖H1(R)×H1(R)

< Aδ
1
4,
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where T > 0 is the maximal existence time, ξ(t) ∈ R is the maximum
point of the function u(t, x)v(t, x), the constant A depends only on a,
b as well as the norms ‖u0‖Hs(R) and ‖v0‖Hs(R).
On stability of the train of peakons, we have the following result.

Theorem 8.2. (He, Liu, Qu, 2019) Let be given N velocities
c1, c2, · · · , cN such that 0 < a1 < a2 < ... < aN , 0 < b1 < b2 < ... <
bN and ci = aibi for any i ∈ {1, ..., N}. There exist A > 0, L0 > 0
and ε0 > 0 such that if the initial data (u0, v0) ∈ Hs(R) × Hs(R)
for some s ≥ 3 with 0 6≡ (1− ∂2

x)u0(x) and 0 6≡ (1− ∂2
x)v0(x) being

nonnegative, satisfy
∥∥∥∥∥∥∥∥u0 −

N∑
i=1

ϕc(· − z0
i )

∥∥∥∥∥∥∥∥H1
+

∥∥∥∥∥∥∥∥v0 −
N∑
i=1

ψc(· − z0
i )

∥∥∥∥∥∥∥∥H1
≤ ε
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for some 0 < ε < ε0 and z0
i − z0

i ≥ L with L > L0, then
there exist x1(t), ..., xN (t) such that the corresponding strong solution
(u(t, x), v(t, x)) satisfies

∥∥∥∥∥∥u(t, ·)− ∑N
i=1ϕc(· − xi(t))

∥∥∥∥∥∥H1 +
∥∥∥∥∥∥v(t, ·)− ∑N

i=1ψc(· − xi(t))
∥∥∥∥∥∥H1

≤ A
ε1

4 + L−
1
8

 ,
for all t ∈ [0, T ), where xj(t)− xj−1(t) > L/2.
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Conclusions and remarks

• Orbitally stable of peaked solutions to (3) in the energy space H1?
• The classifications of the nonlocal equations with cubic nonlinear
terms?

ml,t +
2∑

i,j,k=1
ali,j,kuiujmk,x +

2∑
i,j,k=1

bli,j,kuiuj,xmk = 0,

l = 1, 2, ml = µ(ul)− ul,xx or ml = ul − ul,xx. (Zhao, Qu, 2019)
• Geometric formulations to the cubic-type equations?
• Inverse scattering method for the µ-type equations?
• Nonlocal equations for the classical integrable systems?
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Thank you!!!


