NUS, SINGAPORE

On Stability of Peakons to Nonlocal Integrable Equations

Changzheng Qu

Ningbo University, Ningo, China

(Joint work with C. He, Y.Y. Li, M. Zhao, X.C. Liu, Y. Fu, Y. Liu et al)

Nonlinear PDEs and Related Topics, Dec. 26-30, 2019, NUS, Singapore

Outline

- Introduction
- Integrability
- Analytic preliminaries
- Peaked solitons
- Stability of peakons
- \bullet Two-component quadratic $\mu\text{-CH}$ system
- Two-component cubic CH system
- Conclusions and remarks

1. Introduction

 \diamond The μ -Camassa-Holm (CH) equation

$$m_t + 2mu_x + um_x = 0, \quad t > 0, \quad x \in R,$$
 (1)

where $m = \mu(u) - u_{xx}$, $\mu(u) = \int_S u(t, x) dx$. If $\mu(u) = 0$, which implies $\mu(u_t) = 0$, then this equation reduces to the Hunter-Saxton (HS) equation, which is a short wave limit of the CH equation. (Khesin, Lenells, Misiolek, 2008, Math. Ann.) • It is a dynamical equation for rotators in liquid crystals with external magnetic field and self-intersection

- It is an integrable equation and admits peaked solitons
- \bullet The $\mu\text{-CH}$ equation describes the geodesic flow on $\mathcal{D}^s(S)$ with the right-invariant metric given by the inner product

$$\langle u, v \rangle = \mu(u)\mu(v) + \int_S u_x v_x dx.$$

- \bullet Integrability, 2×2 spectral problem
- Existence of peakons
- Water waves
- Wave breaking
- Geometric formulations
- Quadratic nonlinearities
- H^1 -weak solution

♦ The Degasperis-Procesi equation

$$m_t + 3u_x m + um_x + \gamma u_x = 0, \ m = u - u_{xx}.$$

(Degasperis-Procesi, 1998)

- Intergrability, 3×3 spectral problem
- Existence of peakons
- Shock peakons
- Water waves
- Wave breaking
- Quadratic nonlinearities

\diamond The $\mu\text{-}\mathsf{DP}$ equation

$$m_t + 3mu_x + um_x = 0, \quad t > 0, \quad x \in R,$$

(Lenells, Misiolek, Tiğlay, 2010, CMP) where $m = \mu(u) - u_{xx}$. Setting $\mu(u) = 0$, this equation becomes the short wave limit of the DP equation or the Burgers equation. Geometrically, it describes an affine surface (Fu, Liu, Qu, J. Funct. Anal., 2012)

◇ The modified CH equation (with cubic nonlinear terms)

$$m_t + \left((u^2 - u_x^2)m \right)_x + \gamma u_x = 0, \quad m = u - u_{xx}.$$

(Olver, Rosenau, 1996; Fuchssteiner, 1996; Qiao, 2006)

♦ The short pulse equation

$$-u_{xt} + (u^2 u_x)_x + \gamma u = 0.$$

(Schäfer-Wayne, 2004) The short-pulse equation is the model for the propagation of ultra-short optical pulse approximation in nonlinear Maxwell's equations, where u is the magnitude of the electric field.

 \diamond The modified $\mu\text{-CH}$ equation

$$m_t + ((2\mu(u)u - u_x^2)m)_x = 0, \quad m = \mu(u) - u_{xx}.$$

(Qu, Fu, Liu, J. Func. Anal., 2014; Liu, Qu, Zhang, Phys. D, 2013)

Remark 1.1 Applying the tri-Hamiltonian duality approach (Olver, Rosenau, Fuchssteiner, 1995,1996) to the KdV and the mKdV equation yields the CH equation and the modified CH equation, respectively.

NUS, SINGAPORE

♦ A generalized Camassa-Holm equation with cubic and quadratic nonlinearities

 $m_t + k_1 \left((u^2 - u_x^2)m \right)_x + k_2 (2mu_x + um_x) + \gamma u_x = 0, \quad m = u - u_{xx}.$ (Fokas, 1995; Fuchssteiner 1996; Qiao, Xia, Li, 2012; Liu, Liu, Olver, Qu, 2014)

♦ The generalzied μ -CH equation with cubic and quadratic nonlinearities $m_t + k_1((2\mu(u)u - u_x^2)m)_x + k_2(2u_xm + um_x) + \gamma u_x = 0,$ (2) where $m = \mu(u) - u_{xx}$. (Qu, Fu, Liu, Comm. Math. Phys. 2014; Qu, Liu, Liu, Zhang, Arch. Rat. Mech. Anal., 2014)

♦ The two-component Camassa-Holm system

$$m_t + um_x + 2mu_x \pm \rho \rho_x = 0,$$

$$\rho_t + (\rho u)_x = 0, \quad x \in R,$$

where $m = u - u_{xx}$. (Olver, Rosenau, 1996 Chen, Liu, Zhang, 2006; Constatin, Ivanov, 2012)

Remark 1.1. The above system does not admit the peaked solitions.

♦ A two-component Camassa-Holm system

$$m_t + 2mu_x + m_x u + (mv)_x + nv_x = 0,$$

$$n_t + 2nv_x + n_x v + (nu)_x + mu_x = 0,$$

where $m = u - u_{xx}$, $n = v - v_{xx}$. (Qu, Fu, 2009) This system is equivalent to the following two-component CH system $\xi_t + \sigma \xi_x + 2\xi \sigma_x + \eta \bar{\eta}_x = 0, \quad \xi = (1 - \partial_x^2)\sigma,$ $\eta_t + (\eta \sigma)_x = 0, \quad \eta = (1 - \partial_x^2)\bar{\eta}, \quad x \in R,$

via the linear change of variables $\xi = m + n$, $\eta = m - n$, which was derived by (Holm et al, 1996) from the Euler-Poincare equation.

Question: Are there two-component μ -CH systems which admit peaked solutions and H^1 -conservation law?

\diamond A two-component μ -CH system

$$m_t + 2mu_x + m_x u + (mv)_x + nv_x = 0,$$

$$n_t + 2nv_x + n_x v + (nu)_x + mu_x = 0,$$
(3)

where $m = \mu(u) - u_{xx}$, $n = \mu(v) - v_{xx}$. (Li, Fu, Qu, 2019)

This system is equivalent to the following two-component μ -CH system

$$\begin{aligned} \xi_t + \sigma \xi_x + 2\xi \sigma_x + \eta \bar{\eta}_x &= 0, \quad \xi = (\mu - \partial_x^2)\sigma, \\ \eta_t + (\eta \sigma)_x &= 0, \quad \eta = (\mu - \partial_x^2)\bar{\eta}, \quad x \in R, \end{aligned}$$

via the linear change of variables $\xi = m + n$, $\eta = m - n$. This system can also be obtained from the Euler-Poincare equation with the Lagragian

$$L = \frac{1}{2}(\mu^2(\sigma) + \mu^2(\bar{\eta}) + \|\sigma_x\|_{L^2}^2 + \|\bar{\eta}_x\|_{L^2}^2).$$

\diamond The general two-component $\mu\text{-CH}$ system

$$m_{k,t} = \sum_{i,j=1}^{2} a_{i,j}^{k} m_{i} u_{j,x} + \sum_{i,j=1}^{2} b_{i,j}^{k} m_{i,x} u_{j}, \quad k = 1, 2,$$
(4)

where $\boldsymbol{u}_k(t,\boldsymbol{x})$ is a function of time t and a single spatial variable \boldsymbol{x} , and

$$m_k = \mu(u_k) - u_{k,xx}, \qquad \mu(u_k) = \int_S u_k(t,x) dx,$$

with S = R/Z which denotes the unit circle on the plane.

♦ A two-component modified CH system

$$m_{i,t} = \frac{1}{2} \sum_{j=1}^{n} \left[(u_j^2 - u_{j,x}^2) m_i \right]_x - \sum_{j=1}^{n} (u_i u_{j,x} - u_j u_{i,x}) m_j,$$

where $m_i = u_i - u_{i,xx}$, $1 \le i \le n$. (Qu, Song, Yao, 2013, SIGMA)

\diamond A two-component modified $\mu\text{-CH}$ system

$$m_{i,t} = \frac{1}{2} \sum_{j=1}^{n} \left[(2\mu(u_j)u_j - u_{j,x}^2)m_i \right]_x - \sum_{j=1}^{n} (u_i u_{j,x} - u_j u_{i,x})m_j,$$

where $m_i = \mu(u_i) - u_{i,xx}$, $1 \le i \le n$. (Qu, Song, Yao, 2013, SIGMA)

2. Integrability

♦ Bi-Hamiltonian structure

The generalized μ -CH equation (2) admits the bi-Hamiltonian structure

$$\frac{\partial m}{\partial t} = J \frac{\delta H_1}{\delta m} = K \frac{\delta H_2}{\delta m},$$

where

$$J = -k_1 \partial_x m \partial_x^{-1} m \partial_x - k_2 (m \partial_x + \partial_x m) - \frac{1}{2} \gamma u_x, \quad K = -\partial A = \partial_x^3$$

are compatible Hamiltonian operators, while

$$H_1 = \frac{1}{2} \int_R um dx,$$

and

$$H_{2} = k_{1} \int_{R} (\mu^{2}(u)u^{2} + \mu(u)uu_{x}^{2} - \frac{1}{12}u_{x}^{4} + 2\gamma u_{x}^{2})dx$$
$$+ k_{2} \int_{R} (\mu(u)u + \frac{1}{2}uu_{x}^{2})dx$$

are the corresponding Hamiltonian functionals.

♦ The Lax-pair

Equation (2) has the following Lax-pair

$$\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}_x = U(m,\lambda) \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}, \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}_t = V(m,u,\lambda) \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix},$$

Dec. 26, 2019

NUS, SINGAPORE

where U and V are given by, for $\gamma=0$

$$U(m,\lambda) = \begin{pmatrix} 0 & \lambda m \\ -k_1\lambda m - k_2\lambda & 0 \end{pmatrix},$$

 and

$$\begin{array}{l} V(m,u,\lambda) = \\ \begin{pmatrix} -\frac{1}{2}k_2u_x & -\frac{\mu(u)}{2\lambda} - k_1\lambda(2\mu(u)u - u_x^2)m - k_2\lambda um \\ G & \frac{1}{2}k_2u_x \end{array} \end{pmatrix},$$

with

$$G = k_2 \left(\frac{1}{2\lambda} + \lambda k_2 u\right) + \frac{1}{2\lambda} k_1 \mu(u) + k_1^2 \lambda (2\mu(u)u - u_x^2)m + k_1 k_2 \lambda (2\mu(u)u - u_x^2 - um)$$

and for $\gamma \neq 0$

$$U(m,\lambda) = \begin{pmatrix} -\lambda\sqrt{-\frac{\gamma}{2}} & \lambda m \\ -k_1\lambda m - k_2\lambda & \lambda\sqrt{-\frac{\gamma}{2}} \end{pmatrix}, \quad V(m,u,\lambda) = \begin{pmatrix} A & B \\ G & -A \end{pmatrix},$$

with

$$A = \frac{1}{4}\sqrt{-2\gamma} \left(\lambda^{-1} + 2k_1\lambda(2u\mu(u) - u_x^2) + 2\lambda k_2u\right) - \frac{1}{2}k_2u_x,$$

$$B = -\frac{\mu}{2\lambda} + \frac{1}{2}\sqrt{-2\gamma}u_x - k_1\lambda(2u\mu(u) - u_x^2)m - \lambda k_2um.$$

 \diamond Conservation laws ($\gamma = 0$)

$$H_{0} = \int_{S} u dx,$$

$$H_{1} = \frac{1}{2} \int_{S} (\mu^{2}(u) + u_{x}^{2}) dx,$$

$$H_{2} = k_{1} \int_{S} \left(\mu^{2}(u) u^{2} + \mu(u) u u_{x}^{2} - \frac{1}{12} u_{x}^{4} \right) dx + k_{2} \int_{S} (\mu(u) u + \frac{1}{2} u u_{x}^{2}) dx,$$

....

♦ Short capillary-gravity wave equation

Applying the scaling transformation

$$x \to \epsilon x, t \to \epsilon^{-1}t, u \to \epsilon^2 u$$

to (2) produces

$$(\epsilon^{2}\mu(u) - u_{xx})_{t} + k_{1}((2\epsilon^{2}u\mu(u) - u_{x}^{2})(\epsilon^{2}\mu(u) - u_{xx}))_{x} + k_{2}(2u_{x}(\epsilon^{2}\mu(u) - u_{xx}) + u(\epsilon^{2}\mu(u) - u_{xx})_{x}) + \gamma u_{x} = 0.$$

Expanding

$$u(t,x) = u_0(t,x) + \epsilon u_1(t,x) + \epsilon^2 u_2(t,x) + \cdots$$

in the small parameter ϵ , the leading order term $u_0(t, x)$ satisfies $-u_{0,xxt} + k_1(u_{0,x}^2 u_{0,xx})_x - k_2(u_{0,x}u_{0,xx} + u_0u_{0,xxx}) + \gamma u_{0,x} = 0.$ Then $v = u_{0,x}$ satisfies the integrable equation

$$v_{xt} - k_1 v_x^2 v_{xx} + k_2 (v v_{xx} + \frac{1}{2} v_x^2) - \gamma v = 0,$$

which describes asymptotic dynamics of a short capillary-gravity wave, where v(t, x) denotes the fluid velocity on the surface (Faquir, Manna, Neveu, 2007).

3. Preliminaries

Consider the Cauchy problem

 $m_t + k_1 (2\mu(u)u - u_x^2)m)_x + k_2 (2mu_x + um_x) = 0, \ t > 0, \ x \in R,$ $u(0, x) = u_0(x), \ m = \mu(u) - u_{xx}, \ x \in R,$ $u(t, x + 1) = u(t, x), \ t \ge 0, \ x \in R.$ (5)

In the following, all space of functions are defined over S = R/Z.

Definition 3.1 If $u \in C([0, T]; H^s) \cap C^1([0, T]; H^{s-1})$ with $s > \frac{5}{2}$ and some T > 0 satisfies (5), then u is called a strong solution on [0, T]. If u is a strong solution on [0, T] for every T > 0, then it is called a global strong solution.

NUS, SINGAPORE

Applying the inverse operator of $A = \mu - \partial_x^2$ to equation (2) results in the equation

$$u_t + k_1 \left[(2u\mu(u) - \frac{1}{3}u_x^2)u_x + \partial_x A^{-1}(2\mu^2(u)u + \mu(u)u_x^2) + \frac{1}{3}\mu(u_x^3) \right]$$

+ $k_2 \left[uu_x + A^{-1}\partial_x(2u\mu(u) + \frac{1}{2}u_x^2) \right] = 0.$

The Green function of the operator A is (Lenells, Misiolek, Tiğlay, 2010)

$$g(x) = \frac{1}{2}(x - \frac{1}{2})^2 + \frac{23}{24}$$

Its derivative can be assigned to zero at x = 0, so one has

$$g_x(x) = \begin{cases} 0, & x = 0, \\ x - \frac{1}{2}, & 0 < x < 1. \end{cases}$$

The above formulation allows us to define a weak solution as follows.

Definition 3.2 Given initial data $u_0 \in W^{1,3}$, the function $u \in L^{\infty}([0,T), W^{1,3})$ is said to be a weak solution to the initial-value problem (5) if it satisfies the following identity:

$$\begin{split} & \int_{0}^{T} \int_{\mathbb{S}} \left[u \, \varphi_{t} + k_{1}(\mu(u)u^{2}\varphi_{x} + \frac{1}{3}u_{x}^{3} \, \varphi - g_{x} * \left(2\mu^{2}(u)u + \mu(u)u_{x}^{2} \right) \varphi \right. \\ & \left. - \frac{1}{3}\mu(u_{x}^{3})\varphi \right) + k_{2}(\frac{1}{2}u^{2}\varphi_{x} - g_{x} * \left(2u\mu(u) + \frac{1}{2}u_{x}^{2} \right) \varphi) \right] dx \, dt \\ & \left. + \int_{\mathbb{S}} u_{0}(x) \, \varphi(0, x) \, dx = 0, \end{split}$$

for any smooth test function $\varphi(t,x) \in C_c^{\infty}([0,T) \times S)$. If u is a weak solution on [0,T) for every T > 0, then it is called a global weak solution.

A local well-posedess result is the following.

Theorem 3.1 (Qu, Fu, Liu, 2014) Suppose that $u_0 \in H^s(S)$ for s > 5/2. Then there exists T > 0, which depends only on $||u_0||_{H^s}$, such that problem (5) has a unique solution u(t,x) in the space $C([0,T); H^s(S)) \cap C^1([0,T); H^{s-1}(S))$. Moreover, the solution u depends continuously on the initial data u_0 in the sense that the mapping of the initial data to the solution is continuous from the Sobolev space H^s to the space $C([0,T); H^s(S)) \cap C^1([0,T); H^s(S)) \cap C^1([0,T); H^{s-1}(S))$.

NUS, SINGAPORE

4. Stability of solitons of the g-KdV equation

Consider the generalized KdV equation

$$u_t + u_{xxx} + (u^p)_x = 0, (6)$$

for p > 1 an integer, which, in the cases p = 2 and p = 3, are the KdV equation and mKdV equation, respectively. The case p = 5 is interesting due to the mass-critical property. For p > 1, it has the soliton

$$u(t,x) = c^{1/(p-1)}Q(c^{1/2}(x-x_0-ct))$$
(7)

where

$$Q(x) := (\frac{p+1}{2\cosh^2(\frac{p-1}{2}x)})^{1/(p-1)}$$

NUS, SINGAPORE

is a positive, smooth, rapidly decreasing solution to the ODE

$$Q_{xx} + Q^p = Q.$$

Define the ground state curve

 $\Sigma = \{Q(\cdot - x_0) : x_0 \in R\} \subset H^1(R)$

consisting of all translates of the ground state Q, then we see that u(t) stays close to Σ all t.

Theorem 4.1 (Benjamin, 1972; Bona, 1975; Weinstein, 1986) Let $1 . If <math>u_0 \in H^1(R)$ is such that $\operatorname{dist}_{H^1}(u_0, \Sigma)$ is sufficiently small (say less than σ for some small constant $\sigma > 0$), and u is the solution to (6) with initial data u_0 , then we have

 $\operatorname{dist}_{H^1}(u(t),\Sigma) \leq \operatorname{dist}_{H^1}(u_0,\Sigma)$

for all t. Here we use $X \leq Y$ or X = O(Y) to denote the estimate $|X| \leq CY$ for some C that depends only on p, and $X \sim$ as shorthand for $X \leq Y \leq X$.

Proof. Find a functional $u \to L(u)$ on H^1 with the following properties:

1. If u is an H^1 solution to (6), then L(u(t)) is non-increasing in t. 2. Q is a local minimizer of L, thus $L(u) - L(Q) \ge 0$ for all u sufficiently close to Q in H^1 .

3. Furthermore, the minimum is non-degenerate in the sense that $L(u) - L(Q) \ge ||u - Q||_{H^1}^2$, for all u sufficiently close to Q in H^1 .

5. Peaked solutions of (2)

Recall that the single peakon and multi-peakons for μ -CH equation and modified μ -CH equation. Their single peakons are given respectively by

$$u(t,x) = \frac{12}{13}cg(x-ct),$$

(Khesin, Lenells, Tiglay, 2010, CMP) and

$$u(t,x) = \frac{2\sqrt{3c}}{5}g(x-ct),$$

(Qu, Fu, Liu, 2014, JFA) where

NUS, SINGAPORE

$$g(x) = \frac{1}{2}(x - [x] - \frac{1}{2})^2 + \frac{23}{24}$$

with [x] denoting the largest integer part of x. Their multi-peakons are given by

$$u(t,x) = \sum_{i=1}^{N} p_i(t)g(x - q^i(t)),$$
(8)

where $p_i(t)$ and $q^i(t)$ satisfy the following ODE system respectively for the μ -CH equation (Khesin, Lenells, Tiglay, 2010, CMP)

$$\dot{p}_{i}(t) = -\sum_{\substack{j=1\\j=1}}^{N} p_{i} p_{j} g_{x}(q^{i} - q^{j}),$$

$$\dot{q}^{i}(t) = \sum_{\substack{j=1\\j=1}}^{N} p_{j} g(q^{i}(t) - q^{j}(t)), \quad i = 1, 2, \cdots, N,$$

and for the modified μ -CH equation (Qu, Fu, Liu, 2014, JFA)

$$\begin{split} \dot{p}_i(t) &= 0, \\ \dot{q}^i(t) &= \frac{1}{12} \left[\sum_{\substack{j,k \neq i}}^N (p_j + p_k)^2 + 25p_i^2 \right] + p_i \left[\sum_{\substack{j \neq i}}^N p_j ((q^i - q^j + \frac{1}{2}\lambda_{ij})^2 + \frac{49}{12}) \right] \\ &+ \sum_{\substack{j < k, j, k \neq i}}^N p_j p_k (q^j - q^k + \epsilon_{jk})^2, \end{split}$$

where

$$\lambda_{ij} = \begin{cases} 1, & i < j \\ -1, & i > j, \end{cases}$$

$$\epsilon_{jk} = \begin{cases} 1, & k - j \ge 2 \\ 0, & k - j \le 1, \end{cases}$$
(9)

The existence of the single peakons of Eq.(2) is governed by the following result.

Theorem 5.1. For any $c \ge -\frac{169k_2^2}{1200k_1}$, equation (2) with $\gamma = 0$ admits the peaked periodic-one traveling wave solution $u_c = \phi_c(\xi)$, $\xi = x - ct$, where $\phi_c(\xi)$ is given by

$$\phi_c(\xi) = a_{1,2} \left[\frac{1}{2} (\xi - \frac{1}{2})^2 + \frac{23}{24} \right] \tag{10}$$

with

$$a_{1,2} = \frac{-13k_2 \pm \sqrt{169k_2^2 + 1200ck_1}}{50k_1}, \quad k_1 \neq 0, \tag{11}$$

for $\xi \in [-1/2, 1/2]$ and $\phi(\xi)$ is extended periodically to the real line.

Remark 4.1 Note that the equation is invariant under $u \rightarrow -u$, $k_2 \rightarrow -k_2$. So it suffices to consider the peakon with amplitude a_1 .

Furthermore, Eq.(2) admits the multi-peakons of the form (8), where $p_i(t)$ and $q^i(t)$, i = 1, 2, ..., N, satisfy the following ODE system

$$\dot{p}_{i} + k_{2} \sum_{j=1}^{N} p_{i} p_{j} (q^{i} - q^{j} - \frac{1}{2}) = 0,$$

$$\dot{q}_{i} - k_{1} [\frac{1}{12} (23 \sum_{j,k \neq i} (p_{j} + p_{k})^{2} + 25p_{i}^{2}) - p_{i} (\sum_{j \neq i} p_{j} (q^{i} - q^{j})^{2} + \frac{1}{2}\lambda_{ij})^{2} + \frac{49}{12}) - \sum_{j < k, j, k \neq i} p_{j} p_{k} (q^{j} - q^{k} + \epsilon_{jk})^{2}] - k_{2} \sum_{j=1}^{N} p_{j} (\frac{1}{2} (q^{i} - q^{j})^{2} - \frac{1}{2} |q^{i} - q^{j}| + \frac{13}{12}) = 0.$$
(12)

where λ_{ij} and ϵ_{jk} are given by (9).

In particular, when N = 2, system (12) can be solved explicitly, which yields

$$p_{1} = \frac{ae^{b(t-t_{0})}}{1+e^{b(t-t_{0})}}, \quad p_{2} = \frac{a}{1+e^{b(t-t_{0})}},$$

$$q^{1} = -\frac{k_{1}a^{2}}{b} \left(\frac{1}{12} + (\frac{1}{2} - a_{1})^{2}\right) \frac{1}{1+e^{b(t-t_{0})}} + \frac{a}{12}(23k_{1}a + 6a_{1}(a_{1} - 1)k_{2} + 13k_{2})(t-t_{0}) + \frac{a}{6b}(k_{1}a - 3a_{1}(a_{1} - 1)k_{2})\ln(1 + e^{b(t-t_{0})}) + c_{1},$$

$$q^{2} = q^{1} + a,$$

where a, a_1 , b > 0 and t_0 are some constants.

6. Stability of peakons

 \diamond Case 6.1. $k_1 > 0$, $k_2 > 0$

Theorem 6.1 (Qu, Zhang, Liu, Liu, 2014, ARMA) Let c > 0 and assume that $\gamma = 0$, $k_1 > 0$, $k_2 > 0$. For every $\epsilon > 0$, there is a $\delta > 0$ such that if $u \in C([0,T); H^1(S))$ is a solution to (2) with

$$\|u(\cdot,0)-\varphi_c\|_{H^1(S)} < \delta,$$

then

$$\|u(\cdot,t)-\varphi_c(\cdot-\xi(t))\|_{H^1(S)} < \epsilon \quad for \ t \in [0,T),$$

where $\xi(t) \in R$ is a point where $u(\cdot + \frac{1}{2}, t)$ attains its maximum.

NUS, SINGAPORE

Lemma 6.1 The peakon $\varphi_c(x)$ is continuous on S with peak at $x = \pm \frac{1}{2}$. The extrema of φ_c are

$$M_{\varphi_c} = \max_{x \in S} \{\varphi_c(x)\} = \varphi_c \left(\frac{1}{2}\right) = \frac{13}{12} H_0[\varphi_c],$$
$$m_{\varphi_c} = \min_{x \in S} \{\varphi_c(x)\} = \varphi_c(0) = \frac{23}{24} H_0[\varphi_c].$$

Moreover, we have

$$\lim_{x \uparrow \frac{1}{2}} \varphi_{c,x}(x) = \frac{1}{2} H_0[\varphi_c], \quad \lim_{x \uparrow -\frac{1}{2}} \varphi_{c,x}(x) = -\frac{1}{2} H_0[\varphi_c],$$

with

$$H_0[\varphi_c] = a_1, \quad H_1[\varphi_c] = \frac{13}{12}a_1^2, \quad H_2[\varphi_c] = \frac{1043}{960}k_1a_1^4 + \frac{47}{45}k_2a_1^3.$$

1

Lemma 6.2 For every $u \in H^1(S)$ and $\xi \in R$,

$$H_1[u] - H_1[\varphi_c] = \|u - \varphi_c(\cdot - \xi)\|_{\mu}^2 + a_1(u(\xi + \frac{1}{2}) - M_{\varphi_c}).$$

Lemma 6.3 For any function $u \in H^1(S)$ with $\mu(u) > 0,$ define the function

$$F_u: \{(M,m) \in R^2 : M \ge m\} \to R$$

by

$$F_{u}(M,m) = \frac{4}{3}k_{1}(2M+m)H_{0}[u]H_{1}[u] - \frac{64}{45}k_{1}(M-m)(2H_{0}[u](M-m))^{\frac{3}{2}} + \frac{4}{3}k_{1}(2M+m)H_{0}^{3}[u] - \frac{4}{3}k_{1}m(4M-m)H_{0}^{2}[u] + 2k_{2}(2m+M)H_{0}^{2}[u] + 2k_{2}MH_{1}[u] - 4k_{2}MmH_{0}[u] - \frac{32}{15}k_{2}(M-m)^{\frac{5}{2}}\sqrt{2H_{0}[u]} - 4H_{2}[u].$$

Then it satisfies

$$F_u(M_u, m_u) \ge 0,$$

where $M_u = \max_{x \in S} \{u(x)\}$ and $m_u = \min_{x \in S} \{u(x)\}$. **Proof.** Introduce two functions

$$g(x) = \begin{cases} u_x + \sqrt{2\mu(u)(u-m)}, & \xi < x \le \eta, \\ u_x - \sqrt{2\mu(u)(u-m)}, & \eta \le x < \xi + 1. \end{cases}$$
(13)

and

$$h(x) = \begin{cases} k_1(\mu(u)u + \frac{1}{3}\sqrt{2\mu(u)(u-m)} u_x - \frac{1}{3}u_x^2) + k_2u, & \xi < x \le \eta, \\ k_1(\mu(u)u - \frac{1}{3}\sqrt{2\mu(u)(u-m)} u_x - \frac{1}{3}u_x^2) + k_2u, & \eta \le x < \xi + 1 \end{cases}.$$

Lemma 6.4 For the peakon φ_c , it holds that

$$F_{\varphi_c}(M_{\varphi_c}, m_{\varphi_c}) = 0, \quad \frac{\partial F_{\varphi_c}}{\partial M}(M_{\varphi_c}, m_{\varphi_c}) = 0,$$
$$\frac{\partial F_{\varphi_c}}{\partial m}(M_{\varphi_c}, m_{\varphi_c}) = 0, \quad \frac{\partial^2 F_{\varphi_c}}{\partial M \partial m}(M_{\varphi_c}, m_{\varphi_c}) = 0,$$
$$\frac{\partial^2 F_{\varphi_c}}{\partial M^2}(M_{\varphi_c}, m_{\varphi_c}) = -\frac{16}{3}k_1H_0^2[\varphi_c] - 4k_2H_0[\varphi_c],$$
$$\frac{\partial^2 F_{\varphi_c}}{\partial m^2}(M_{\varphi_c}, m_{\varphi_c}) = -\frac{8}{3}k_1H_0^2[\varphi_c] - 4k_2H_0[\varphi_c].$$

Moreover, $(M_{\varphi_c}, m_{\varphi_c})$ is the unique maximum of F_{φ_c} .

Lemma 6.5 Let $u \in C([0,T); H^1(S))$ be a solution of (2). Given a small neighborhood U of $(M_{\varphi_c}, m_{\varphi_c})$ in R^2 , there exists a $\delta > 0$ such that

$$(M_{u(t)}, m_{u(t)}) \in U \quad for \quad t \in [0, T)$$

$$(14)$$

 $\text{if } \|u(\cdot,0)-\varphi_c\|_{H^1(S)}<\delta.$

Proof of Theorem 6.1: Let $u \in C([0,T); H^1(S))$ be a solution of (2) and suppose $\epsilon > 0$ be given. Pick a neighborhood U of $(M_{\varphi_c}, m_{\varphi_c})$ small enough such that $|M - M_{\varphi_c}| < \frac{25k_1\epsilon^2}{-78k_2+6\sqrt{169k_2^2+1200ck_1}}$ if $(M,m) \in U$. Choose a $\delta > 0$ as in Lemma 5.5 so that (14) holds. Taking a smaller δ if necessary, we may assume that $\mu(u) > 0$ and

$$\begin{split} |H_1[u] - H_1[\varphi_c]| &< \frac{\epsilon^2}{6} \quad \text{if } \|u(\cdot, 0) - \varphi_c\|_{H^1(S)} < \delta. \\ \text{Then, by Lemma 6.2, we get} \\ \|u(\cdot, t) - \varphi_c(\cdot - \xi(t))\|_{H^1(S)}^2 \\ &\leq 3\|u(\cdot, t) - \varphi_c(\cdot - \xi(t))\|_{\mu}^2 \\ &= 3(H_1[u] - H_1[\varphi_c]) + 3a_1(M_{\varphi_c} - M_{u(t)}) < \epsilon^2, \ t \in [0, T), \\ \text{where } \xi(t) \in R \text{ is any point where } u(\xi(t) + \frac{1}{2}, t) = M_{u(t)}. \text{ Thus Theorem 5.1 is then proved} \\ \end{split}$$

orem 5.1 is then proved.

\diamond Case 6.2. $k_1 > 0$, $k_2 < 0$

Theorem 6.2 Let $k_1 > 0$, $k_2 < 0$, and assume that $c > 23k_2^2/(64k_1)$. For every $\epsilon > 0$, there is a $\delta > 0$ such that if $u \in C([0, T); H^1(S))$ is a solution to (2) with

$$\|u(\cdot,0)-\varphi_c\|_{H^1(S)} < \delta,$$

then

$$\|u(\cdot,t)-\varphi_c(\cdot-\xi(t))\|_{H^1(S)} < \epsilon \quad for \ t \in [0,T),$$

where $\xi(t) \in R$ is a point where $u(\cdot + \frac{1}{2}, t)$ attains its maximum.

Lemma 6.6. For any function $u \in H^1(S)$ with $\mu(u) > 0$, $k_1 > 0$, $k_2 \le 0$, and $4k_1\mu(u) + 3k_2 > 0$, define the function $F_u : \{(M, m) \in \mathbb{R}^2 : M \ge m\} \to \mathbb{R}$

by

$$F_{u}(M,m) = \frac{1}{3}k_{1}(2M+m)H_{0}[u]H_{1}[u] - \frac{16}{45}k_{1}(M-m)^{\frac{5}{2}}(2H_{0}[u])^{\frac{3}{2}} + \frac{1}{3}k_{1}(2M+m)H_{0}^{3}[u] - \frac{1}{3}k_{1}m(4M-m)H_{0}^{2}[u] \quad (15) + \frac{1}{2}k_{2}(2m+M)H_{0}^{2}[u] + \frac{1}{2}k_{2}MH_{1}[u] - k_{2}MmH_{0}[u] - \frac{8}{15}k_{2}(M-m)^{\frac{5}{2}}\sqrt{2H_{0}[u]} - H_{2}[u].$$

Then it satisfies

 $F_u(M_u, m_u) \ge 0,$

where
$$M_u = \max_{x \in S} \{u(x)\}$$
 and $m_u = \min_{x \in S} \{u(x)\}$.
Proof. Let $u \in H^1(S) \subset C(S)$ with $\mu(u) > 0$. Denote $M = M_u = \max_{x \in S} \{u(x)\}$, $m = m_u = \min_{x \in S} \{u(x)\}$. Let ξ and η be such that $u(\xi) = M$ and $u(\eta) = m$. Define
 $\tilde{H}_2[u] = k_1 /_S \left(\mu^2(u)(u-m)^2 + \mu(u)(u-m)u_x^2 - \frac{1}{12}u_x^4 \right) dx + k_2 /_S \left(\mu(u)(u-m)^2 + \frac{1}{2}(u-m)u_x^2 \right) dx$
 $\equiv k_1 \tilde{J}_1[u] + k_2 \tilde{J}_2[u],$
with
 $\tilde{J}_1[u] = \int_S \left(\mu^2(u)(u-m)^2 + \mu(u)(u-m)u_x^2 - \frac{1}{12}u_x^4 \right) dx,$

$$\tilde{J}_2[u] = \int_S \left(\mu(u)(u-m)^2 + \frac{1}{2}(u-m)u_x^2 \right) dx.$$

By the Cauchy inequality, we have the estimate

$$\widetilde{J}_1[u] \le \frac{4}{3}\mu(u)\widetilde{J}_2[u].$$
(16)

The equality holds if and only if u is the peakon of Eq. (2). On the other hand, a straightforward computation leads to

$$\begin{split} \tilde{J}_1[u] &= J_1[u] - mH_0^3[u] + m^2 H_0[u]^2 - mH_0[u]H_1[u], \text{ and} \\ \tilde{H}_2[u] &= H_2[u] - k_1 m(H_0^3[u] - mH_0^2[u] + H_0[u]H_1[u]) \\ &- k_2 m \left(\frac{3}{2} H_0^2[u] - mH_0[u] + \frac{1}{2} H_1[u]\right), \end{split}$$

where

$$J_1[u] = \int_S \left(\mu^2(u)u^2 + \mu(u)uu_x^2 - \frac{1}{12}u_x^4 \right) \, dx.$$

By virtue of the result in (Liu, Qu, Zhang, Phys. D, 2013), we have

$$\int \tilde{h}(x)g^{2}(x)dx = 4J_{1}[u] - 2mH_{0}^{3}[u] - 2mH_{0}[u]H_{1}[u] - \frac{8}{15}(m+4M)(2H_{0}[u](M-m))^{\frac{3}{2}},$$

where

$$\begin{split} \tilde{h}(x) &= \begin{cases} 2\mu(u)u + \frac{2}{3}\sqrt{2\mu(u)(u-m)} & u_x - \frac{1}{3}u_x^2, & \xi < x \le \eta, \\ 2\mu(u)u - \frac{2}{3}\sqrt{2\mu(u)(u-m)} & u_x - \frac{1}{3}u_x^2, & \eta \le x < \xi + 1, \end{cases} \\ \text{and } g(x) \text{ is given by (13). Notice that} \\ \tilde{h}(x) &\le 2MH_0[u] + \frac{2}{3}(M-m)H_0[u] = \frac{2}{3}(4M-m)H_0[u]. \end{split}$$

It then follows that

$$4J_{1}[u] -2mH_{0}^{3}[u] - 2mH_{0}[u]H_{1}[u] - \frac{8}{15}(m+4M)(2H_{0}[u](M-m))^{3}$$

$$\leq \frac{2}{3}(4M-m)H_{0}[u](H_{1}[u] + H_{0}^{2}[u] - 2mH_{0}[u]$$

$$-\frac{4}{3H_{0}[u]}(2H_{0}[u](M-m))^{\frac{3}{2}}).$$

Using this inequality and combining expressions, we can get (15). This completes the proof of the lemma.

7. Classification of the 2- μ -CH system

In this section, we classify the system (4), specifically, we consider the following system:

$$m_{t} = m(u_{x} + a_{1}v_{x}) + m_{x}(b_{1}u + c_{1}v) + n(d_{1}u_{x} + f_{1}v_{x}) + n_{x}(g_{1}u + h_{1}v),$$

$$n_{t} = n(v_{x} + a_{2}u_{x}) + n_{x}(b_{2}v + c_{2}u) + m(d_{2}v_{x} + f_{2}u_{x}) + m_{x}(g_{2}v + h_{2}u),$$
(17)

where $m = \mu(u) - u_{xx}$, $n = \mu(v) - v_{xx}$, $a_i, b_i, c_i, d_i, f_i, g_i$, and $h_i, i = 1, 2$ are some constants.

• Step 1. Assume that system (4) possesses the weak solution

$$\int_{S} (\mu(u_t)\phi - u_t\phi_{xx})dx = \int_{S} (F_1\phi + F_2\phi_x + F_3\phi_{xx})dx,$$

$$\int_{S} (\mu(v_t)\phi - v_t\phi_{xx})dx = \int_{S} (G_1\phi + G_2\phi_x + G_3\phi_{xx})dx,$$

for some functions $F_i(u, v, u_x, v_x)$, $G_i(u, v, u_x, v_x)$, i = 1, 2, 3 and $\phi(t, x) \in C_0^{\infty}([0, +\infty) \times S)$.

Then we find the constants satisfy

$$a_1 - c_1 = d_1 - g_1, \quad a_2 - c_2 = d_2 - g_2.$$

In this case, $\mu(u)$ and $\mu(v)$ are conserved.

• Step 2. Assume that system (4) admits two-peaked solutions of the form

$$u = p_1(t)g(x - q_1(t)) + p_2(t)g(x - q_2(t)),$$

$$v = r_1(t)g(x - q_1(t)) + r_2(t)g(x - q_2(t)),$$
(18)

where $g(x) = \frac{1}{2}(x - [x] - \frac{1}{2})^2 + \frac{23}{24}$, and [x] denotes the largest integer part of x, are the usual weak solutions in the sense of distribution, then the constants must satisfy

$$g_1 = h_1 = g_2 = h_2 = 0, \quad b_1 = c_2, \quad b_2 = c_1,$$

 $a_1 - c_1 = d_1, \quad a_2 - c_2 = d_2.$

• Step 3. Assume that system (4) enjoys the H^1 -conservation law $h_1[u] = \int_S (u_x^2 + v_x^2) dx.$

then the constants satisfy

$$a_1 = a_2 = b_1 = b_2 = c_1 = c_2 = f_1 = f_2 = \frac{1}{2},$$

 $d_1 = d_2 = g_1 = g_2 = h_1 = h_2 = 0.$

Hence system (4) reduces to (3).

Dec. 26, 2019

We have shown that system (3) has the two-peaked solutions (18) with satisfying

$$\begin{aligned} p_1' &= ((1-b_1)p_1p_2 + (a_1-c_1)(p_1r_2 + p_2r_1) \\ &+ f_1r_1r_2)sgn(q_2-q_1)(-|q_1-q_2| + \frac{1}{2}), \\ p_2' &= ((b_1-1)p_1p_2 + (c_1-a_1)(p_1r_2 + p_2r_1) \\ &- f_1r_1r_2)sgn(q_2-q_1)(-|q_1-q_2| + \frac{1}{2}), \\ r_1' &= ((1-b_2)r_1r_2 + (a_2-c_2)(p_1r_2 + p_2r_1) \\ &+ f_2p_1p_2)sgn(q_2-q_1)(-|q_1-q_2| + \frac{1}{2}), \\ r_2' &= ((b_2-1)r_1r_2 + (c_2-a_2)(p_1r_2 + p_2r_1) \\ &- f_2p_1p_2)sgn(q_2-q_1)(-|q_1-q_2| + \frac{1}{2}), \end{aligned}$$

.

$$q_{1}' = -\frac{1}{2}(b_{1}p_{2} + c_{1}r_{2})(-|q_{1} - q_{2}| + \frac{1}{2})^{2} -\frac{13}{12}(b_{1}p_{1} + c_{1}r_{1}) - \frac{23}{24}(b_{1}p_{2} + c_{1}r_{2}), q_{2}' = -\frac{1}{2}(b_{1}p_{1} + c_{1}r_{1})(-|q_{1} - q_{2}| + \frac{1}{2})^{2} -\frac{13}{12}(b_{1}p_{2} + c_{1}r_{2}) - \frac{23}{24}(b_{1}p_{1} + c_{1}r_{1}).$$

8. Stability of peakons for the cubic systems

Consider the following integrable two-component Novikov system

$$m_t + uvm_x + (2vu_x + uv_x)m = 0, \quad m = u - u_{xx}, n_t + uvn_x + (2uv_x + vu_x)n = 0, \quad n = v - v_{xx}.$$
(19)

It has the peaked solitions

$$u(t,x) = \varphi_c(x - ct) = ae^{-|x - ct|}, v(t,x) = \psi_c(x - ct) = be^{-|x - ct|},$$
(20)

where $c = ab \neq 0$, and the following conserved densities

$$E_0[u,v] = \int_R (mn)^{\frac{1}{3}} dx,$$

$$\begin{split} E_u[u] &= \operatorname{I}_R \left(u^2 + u_x^2 \right) \, dx, \quad E_v[v] = \operatorname{I}_R \left(v^2 + v_x^2 \right) \, dx, \\ H[u,v] &= \operatorname{I}_R \left(uv + u_x v_x \right) \, dx \end{split}$$

and

$$F[u,v] = \int_R \left(u^2 v^2 + \frac{1}{3} u^2 v_x^2 + \frac{1}{3} v^2 u_x^2 + \frac{4}{3} u v u_x v_x - \frac{1}{3} u_x^2 v_x^2 \right) \, dx,$$

while the corresponding three conserved quantities of Novikov equation are

$$\begin{aligned} H_0[u] &= \int_R m^{\frac{2}{3}} dx, \quad E[u] = \int_R (u^2 + u_x^2) \, dx, \\ F[u] &= \int_R \left(u^4 + 2u^2 u_x^2 - \frac{1}{3} u_x^4 \right) dx. \end{aligned}$$

Theorem 8.1. (He, Liu, Qu, 2019) Let φ_c and ψ_c be the peaked solitons traveling with speed c = ab > 0. Then φ_c and ψ_c are orbitally stable in the following sense. Assume that $u_0, v_0 \in H^s(R)$ for some $s \ge 3, 0 \not\equiv (1 - \partial_x^2)u_0(x)$ and $0 \not\equiv (1 - \partial_x^2)v_0(x)$ are nonnegative, and there is a $\delta > 0$ such that

$$||(u_0, v_0) - (\varphi_c, \psi_c)||_{H^1(R) \times H^1(R)} < \delta.$$

Then the corresponding solution (u(t, x), v(t, x)) of the Cauchy problem for the two-component Novikov equations (19) with the initial data $u(0, x) = u_0(x)$ and $v(0, x) = v_0(x)$ satisfies

$$\begin{split} \sup_{t \in [0,T)} \| (u(t,\cdot),v(t,\cdot)) - (\varphi_c(\cdot - \xi(t)),\psi_c(\cdot - \xi(t))) \|_{H^1(R) \times H^1(R)} \\ < A \delta^{\frac{1}{4}}, \end{split}$$

where T > 0 is the maximal existence time, $\xi(t) \in R$ is the maximum point of the function u(t, x)v(t, x), the constant A depends only on a, b as well as the norms $||u_0||_{H^s(R)}$ and $||v_0||_{H^s(R)}$. On stability of the train of peakons, we have the following result.

Theorem 8.2. (He, Liu, Qu, 2019) Let be given N velocities c_1, c_2, \dots, c_N such that $0 < a_1 < a_2 < \dots < a_N$, $0 < b_1 < b_2 < \dots < b_N$ and $c_i = a_i b_i$ for any $i \in \{1, \dots, N\}$. There exist A > 0, $L_0 > 0$ and $\epsilon_0 > 0$ such that if the initial data $(u_0, v_0) \in H^s(R) \times H^s(R)$ for some $s \ge 3$ with $0 \not\equiv (1 - \partial_x^2)u_0(x)$ and $0 \not\equiv (1 - \partial_x^2)v_0(x)$ being nonnegative, satisfy

$$\left\| u_0 - \sum_{i=1}^N \varphi_c(\cdot - z_i^0) \right\|_{H^1} + \left\| v_0 - \sum_{i=1}^N \psi_c(\cdot - z_i^0) \right\|_{H^1} \le \epsilon$$

for some $0 < \epsilon < \epsilon_0$ and $z_i^0 - z_i^0 \ge L$ with $L > L_0$, then there exist $x_1(t), ..., x_N(t)$ such that the corresponding strong solution (u(t, x), v(t, x)) satisfies

$$\| u(t, \cdot) - \Sigma_{i=1}^{N} \varphi_{c}(\cdot - x_{i}(t)) \|_{H^{1}} + \| v(t, \cdot) - \Sigma_{i=1}^{N} \psi_{c}(\cdot - x_{i}(t)) \|_{H^{1}}$$

$$\leq A \left(\epsilon^{\frac{1}{4}} + L^{-\frac{1}{8}} \right),$$

for all $t \in [0, T)$, where $x_j(t) - x_{j-1}(t) > L/2$.

Conclusions and remarks

Orbitally stable of peaked solutions to (3) in the energy space H¹?
The classifications of the nonlocal equations with cubic nonlinear terms?

$$m_{l,t} + \sum_{i,j,k=1}^{2} a_{i,j,k}^{l} u_{i} u_{j} m_{k,x} + \sum_{i,j,k=1}^{2} b_{i,j,k}^{l} u_{i} u_{j,x} m_{k} = 0,$$

 $l = 1, 2, m_l = \mu(u_l) - u_{l,xx}$ or $m_l = u_l - u_{l,xx}$. (Zhao, Qu, 2019)

- Geometric formulations to the cubic-type equations?
- Inverse scattering method for the μ -type equations?
- Nonlocal equations for the classical integrable systems?

