On Stability of Peakons to Nonlocal Integrable Equations

Changzheng Qu

Ningbo University, Ningo, China
(Joint work with C. He, Y.Y. Li, M. Zhao, X.C. Liu, Y. Fu, Y. Liu et al)
Nonlinear PDEs and Related Topics, Dec. 26-30, 2019, NUS, Singapore

Outline

- Introduction
- Integrability
- Analytic preliminaries
- Peaked solitons
- Stability of peakons
- Two-component quadratic μ-CH system
- Two-component cubic CH system
- Conclusions and remarks

1. Introduction

\diamond The μ-Camassa-Holm (CH) equation

$$
\begin{equation*}
m_{t}+2 m u_{x}+u m_{x}=0, \quad t>0, \quad x \in R \tag{1}
\end{equation*}
$$

where $m=\mu(u)-u_{x x}, \mu(u)={ }_{S} u(t, x) d x$. If $\mu(u)=0$, which implies $\mu\left(u_{t}\right)=0$, then this equation reduces to the Hunter-Saxton (HS) equation, which is a short wave limit of the CH equation. (Khesin, Lenells, Misiolek, 2008, Math. Ann.)

- It is a dynamical equation for rotators in liquid crystals with external magnetic field and self-intersection
- It is an integrable equation and admits peaked solitons
- The μ-CH equation describes the geodesic flow on $\mathcal{D}^{s}(S)$ with the right-invariant metric given by the inner product

$$
<u, v>=\mu(u) \mu(v)+\int_{S} u_{x} v_{x} d x
$$

\diamond The CH equation

$$
m_{t}+2 u_{x} m+u m_{x}+\gamma u_{x}=0, \quad m=u-u_{x x}
$$

(Camassa-Holm, 1993; Fokas-Fuchssteiner 1981)
\diamond The HS equation

$$
m_{t}+2 u_{x} m+u m_{x}+\gamma u_{x}=0, \quad m=-u_{x x}
$$

(Hunter-Saxton, 1996)

- Integrability, 2×2 spectral problem
- Existence of peakons
- Water waves
- Wave breaking
- Geometric formulations
- Quadratic nonlinearities
- H^{1}-weak solution
\diamond The Degasperis-Procesi equation

$$
m_{t}+3 u_{x} m+u m_{x}+\gamma u_{x}=0, \quad m=u-u_{x x}
$$

(Degasperis-Procesi, 1998)

- Intergrability, 3×3 spectral problem
- Existence of peakons
- Shock peakons
- Water waves
- Wave breaking
- Quadratic nonlinearities
\diamond The μ-DP equation

$$
m_{t}+3 m u_{x}+u m_{x}=0, \quad t>0, \quad x \in R,
$$

(Lenells, Misiolek, Tiğlay, 2010, CMP) where $m=\mu(u)-u_{x x}$. Setting $\mu(u)=0$, this equation becomes the short wave limit of the DP equation or the Burgers equation. Geometrically, it describes an affine surface (Fu, Liu, Qu, J. Funct. Anal., 2012)
\diamond The modified CH equation (with cubic nonlinear terms)

$$
m_{t}+\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}+\gamma u_{x}=0, \quad m=u-u_{x x} .
$$

(Olver, Rosenau, 1996; Fuchssteiner, 1996; Qiao, 2006)
\diamond The short pulse equation

$$
-u_{x t}+\left(u^{2} u_{x}\right)_{x}+\gamma u=0 .
$$

(Schäfer-Wayne, 2004) The short-pulse equation is the model for the propagation of ultra-short optical pulse approximation in nonlinear Maxwell's equations, where u is the magnitude of the electric field.
\diamond The modified μ-CH equation

$$
m_{t}+\left(\left(2 \mu(u) u-u_{x}^{2}\right) m\right)_{x}=0, \quad m=\mu(u)-u_{x x} .
$$

(Qu, Fu, Liu, J. Func. Anal., 2014; Liu, Qu, Zhang, Phys. D, 2013)
Remark 1.1 Applying the tri-Hamiltonian duality approach (Olver, Rosenau, Fuchssteiner, 1995,1996) to the KdV and the $m K d V$ equation yields the CH equation and the modified CH equation, respectively.
\diamond A generalized Camassa-Holm equation with cubic and quadratic nonlinearities

$$
m_{t}+k_{1}\left(\left(u^{2}-u_{x}^{2}\right) m\right)_{x}+k_{2}\left(2 m u_{x}+u m_{x}\right)+\gamma u_{x}=0, \quad m=u-u_{x x}
$$

(Fokas, 1995; Fuchssteiner 1996; Qiao, Xia, Li, 2012; Liu, Liu, Olver, Qu, 2014)
\diamond The generalzied μ-CH equation with cubic and quadratic nonlinearities

$$
\begin{equation*}
m_{t}+k_{1}\left(\left(2 \mu(u) u-u_{x}^{2}\right) m\right)_{x}+k_{2}\left(2 u_{x} m+u m_{x}\right)+\gamma u_{x}=0 \tag{2}
\end{equation*}
$$

where $m=\mu(u)-u_{x x}$. (Qu, Fu, Liu, Comm. Math. Phys. 2014; Qu, Liu, Liu, Zhang, Arch. Rat. Mech. Anal., 2014)
\diamond The two-component Camassa-Holm system

$$
\begin{gathered}
m_{t}+u m_{x}+2 m u_{x} \pm \rho \rho_{x}=0, \\
\rho_{t}+(\rho u)_{x}=0, \quad x \in R,
\end{gathered}
$$

where $m=u-u_{x x}$.
(Olver, Rosenau, 1996 Chen, Liu, Zhang, 2006; Constatin, Ivanov, 2012)

Remark 1.1. The above system does not admit the peaked solitions.
\diamond A two-component Camassa-Holm system

$$
\begin{array}{r}
m_{t}+2 m u_{x}+m_{x} u+(m v)_{x}+n v_{x}=0 \\
n_{t}+2 n v_{x}+n_{x} v+(n u)_{x}+m u_{x}=0
\end{array}
$$

where $m=u-u_{x x}, n=v-v_{x x}$.
(Qu, Fu, 2009)
This system is equivalent to the following two-component CH system

$$
\begin{aligned}
& \xi_{t}+\sigma \xi_{x}+2 \xi \sigma_{x}+\eta \bar{\eta}_{x}=0, \quad \xi=\left(1-\partial_{x}^{2}\right) \sigma \\
& \quad \eta_{t}+(\eta \sigma)_{x}=0, \quad \eta=\left(1-\partial_{x}^{2}\right) \bar{\eta}, \quad x \in R
\end{aligned}
$$

via the linear change of variables $\xi=m+n, \quad \eta=m-n$, which was derived by (Holm et al, 1996) from the Euler-Poincare equation.

Question: Are there two-component μ - CH systems which admit peaked solutions and H^{1}-conservation law?
\diamond A two-component μ-CH system

$$
\begin{array}{r}
m_{t}+2 m u_{x}+m_{x} u+(m v)_{x}+n v_{x}=0 \\
n_{t}+2 n v_{x}+n_{x} v+(n u)_{x}+m u_{x}=0 \tag{3}
\end{array}
$$

where $m=\mu(u)-u_{x x}, n=\mu(v)-v_{x x}$.
(Li, Fu, Qu, 2019)
This system is equivalent to the following two-component $\mu-\mathrm{CH}$ system

$$
\begin{gathered}
\xi_{t}+\sigma \xi_{x}+2 \xi \sigma_{x}+\eta \bar{\eta}_{x}=0, \quad \xi=\left(\mu-\partial_{x}^{2}\right) \sigma \\
\eta_{t}+(\eta \sigma)_{x}=0, \quad \eta=\left(\mu-\partial_{x}^{2}\right) \bar{\eta}, \quad x \in R
\end{gathered}
$$

via the linear change of variables $\xi=m+n, \quad \eta=m-n$.
This system can also be obtained from the Euler-Poincare equation with the Lagragian

$$
L=\frac{1}{2}\left(\mu^{2}(\sigma)+\mu^{2}(\bar{\eta})+\left\|\sigma_{x}\right\|_{L^{2}}^{2}+\left\|\bar{\eta}_{x}\right\|_{L^{2}}^{2}\right)
$$

\diamond The general two-component μ - CH system

$$
\begin{equation*}
m_{k, t}=\sum_{i, j=1}^{2} a_{i, j}^{k} m_{i} u_{j, x}+\sum_{i, j=1}^{2} b_{i, j}^{k} m_{i, x} u_{j}, \quad k=1,2, \tag{4}
\end{equation*}
$$

where $u_{k}(t, x)$ is a function of time t and a single spatial variable x, and

$$
m_{k}=\mu\left(u_{k}\right)-u_{k, x x}, \quad \mu\left(u_{k}\right)=\int_{S} u_{k}(t, x) d x
$$

with $S=R / Z$ which denotes the unit circle on the plane.
$\diamond \mathrm{A}$ two-component modified CH system

$$
m_{i, t}=\frac{1}{2} \sum_{j=1}^{n}\left[\left(u_{j}^{2}-u_{j, x}^{2}\right) m_{i}\right]_{x}-\sum_{j=1}^{n}\left(u_{i} u_{j, x}-u_{j} u_{i, x}\right) m_{j}
$$

where $m_{i}=u_{i}-u_{i, x x}, 1 \leq i \leq n$. (Qu, Song, Yao, 2013, SIGMA)
$\diamond \mathrm{A}$ two-component modified μ - CH system
$m_{i, t}=\frac{1}{2} \sum_{j=1}^{n}\left[\left(2 \mu\left(u_{j}\right) u_{j}-u_{j, x}^{2}\right) m_{i}\right]_{x}-\sum_{j=1}^{n}\left(u_{i} u_{j, x}-u_{j} u_{i, x}\right) m_{j}$,
where $m_{i}=\mu\left(u_{i}\right)-u_{i, x x}, 1 \leq i \leq n$. (Qu, Song, Yao, 2013, SIGMA)

2. Integrability

\diamond Bi-Hamiltonian structure
The generalized μ-CH equation (2) admits the bi-Hamiltonian structure

$$
\frac{\partial m}{\partial t}=J \frac{\delta H_{1}}{\delta m}=K \frac{\delta H_{2}}{\delta m}
$$

where

$$
J=-k_{1} \partial_{x} m \partial_{x}^{-1} m \partial_{x}-k_{2}\left(m \partial_{x}+\partial_{x} m\right)-\frac{1}{2} \gamma u_{x}, \quad K=-\partial A=\partial_{x}^{3}
$$

are compatible Hamiltonian operators, while

$$
H_{1}=\frac{1}{2} \int_{R} u m d x
$$

and

$$
\begin{aligned}
H_{2}= & k_{1} \int_{R}\left(\mu^{2}(u) u^{2}+\mu(u) u u_{x}^{2}-\frac{1}{12} u_{x}^{4}+2 \gamma u_{x}^{2}\right) d x \\
& +k_{2} \int_{R}\left(\mu(u) u+\frac{1}{2} u u_{x}^{2}\right) d x
\end{aligned}
$$

are the corresponding Hamiltonian functionals.
\diamond The Lax-pair
Equation (2) has the following Lax-pair

$$
\binom{\psi_{1}}{\psi_{2}}_{x}=U(m, \lambda)\binom{\psi_{1}}{\psi_{2}},\binom{\psi_{1}}{\psi_{2}}_{t}=V(m, u, \lambda)\binom{\psi_{1}}{\psi_{2}}
$$

where U and V are given by, for $\gamma=0$

$$
U(m, \lambda)=\left(\begin{array}{cc}
0 & \lambda m \\
-k_{1} \lambda m-k_{2} \lambda & 0
\end{array}\right),
$$

and

$$
\begin{aligned}
& V(m, u, \lambda)= \\
& \left(\begin{array}{cc}
-\frac{1}{2} k_{2} u_{x}-\frac{\mu(u)}{2 \lambda}-k_{1} \lambda\left(2 \mu(u) u-u_{x}^{2}\right) m-k_{2} \lambda u m \\
G & \frac{1}{2} k_{2} u_{x}
\end{array}\right),
\end{aligned}
$$

with

$$
\begin{aligned}
G= & k_{2}\left(\frac{1}{2 \lambda}+\lambda k_{2} u\right)+\frac{1}{2 \lambda} k_{1} \mu(u)+k_{1}^{2} \lambda\left(2 \mu(u) u-u_{x}^{2}\right) m \\
& +k_{1} k_{2} \lambda\left(2 \mu(u) u-u_{x}^{2}-u m\right)
\end{aligned}
$$

and for $\gamma \neq 0$

$$
U(m, \lambda)=\left(\begin{array}{cc}
-\lambda \sqrt{-\frac{\gamma}{2}} & \lambda m \\
-k_{1} \lambda m-k_{2} \lambda & \lambda \sqrt{-\frac{\gamma}{2}}
\end{array}\right), \quad V(m, u, \lambda)=\left(\begin{array}{cc}
A & B \\
G & -A
\end{array}\right),
$$

with

$$
\begin{aligned}
A & =\frac{1}{4} \sqrt{-2 \gamma}\left(\lambda^{-1}+2 k_{1} \lambda\left(2 u \mu(u)-u_{x}^{2}\right)+2 \lambda k_{2} u\right)-\frac{1}{2} k_{2} u_{x} \\
B & =-\frac{\mu}{2 \lambda}+\frac{1}{2} \sqrt{-2 \gamma} u_{x}-k_{1} \lambda\left(2 u \mu(u)-u_{x}^{2}\right) m-\lambda k_{2} u m
\end{aligned}
$$

\diamond Conservation laws $(\gamma=0)$

$$
\begin{aligned}
H_{0} & =\int_{S} u d x \\
H_{1} & =\frac{1}{2} \int_{S}\left(\mu^{2}(u)+u_{x}^{2}\right) d x \\
H_{2} & =k_{1} \int_{S}\left(\mu^{2}(u) u^{2}+\mu(u) u u_{x}^{2}-\frac{1}{12} u_{x}^{4}\right) d x+k_{2} \int_{S}\left(\mu(u) u+\frac{1}{2} u u_{x}^{2}\right) d x, \\
& \ldots .
\end{aligned}
$$

\diamond Short capillary-gravity wave equation
Applying the scaling transformation

$$
x \rightarrow \epsilon x, t \rightarrow \epsilon^{-1} t, u \rightarrow \epsilon^{2} u
$$

to (2) produces

$$
\begin{aligned}
& \left(\epsilon^{2} \mu(u)-u_{x x}\right) t+k_{1}\left(\left(2 \epsilon^{2} u \mu(u)-u_{x}^{2}\right)\left(\epsilon^{2} \mu(u)-u_{x x}\right)\right)_{x} \\
& +k_{2}\left(2 u_{x}\left(\epsilon^{2} \mu(u)-u_{x x}\right)+u\left(\epsilon^{2} \mu(u)-u_{x x}\right) x\right)+\gamma u_{x}=0
\end{aligned}
$$

Expanding

$$
u(t, x)=u_{0}(t, x)+\epsilon u_{1}(t, x)+\epsilon^{2} u_{2}(t, x)+\cdots
$$

in the small parameter ϵ, the leading order term $u_{0}(t, x)$ satisfies
$-u_{0, x x t}+k_{1}\left(u_{0, x}^{2} u_{0, x x}\right)_{x}-k_{2}\left(u_{0, x} u_{0, x x}+u_{0} u_{0, x x x}\right)+\gamma u_{0, x}=0$.
Then $v=u_{0, x}$ satisfies the integrable equation

$$
v_{x t}-k_{1} v_{x}^{2} v_{x x}+k_{2}\left(v v_{x x}+\frac{1}{2} v_{x}^{2}\right)-\gamma v=0
$$

which describes asymptotic dynamics of a short capillary-gravity wave, where $v(t, x)$ denotes the fluid velocity on the surface (Faquir, Manna, Neveu, 2007).

3. Preliminaries

Consider the Cauchy problem

$$
\begin{align*}
& \left.m_{t}+k_{1}\left(2 \mu(u) u-u_{x}^{2}\right) m\right)_{x}+k_{2}\left(2 m u_{x}+u m_{x}\right)=0, t>0, x \in R, \\
& u(0, x)=u_{0}(x), \quad m=\mu(u)-u_{x x}, \quad x \in R, \tag{5}\\
& u(t, x+1)=u(t, x), \quad t \geq 0, \quad x \in R .
\end{align*}
$$

In the following, all space of functions are defined over $S=R / Z$.
Definition 3.1 If $u \in \mathcal{C}\left([0, T] ; H^{s}\right) \cap \mathcal{C}^{1}\left([0, T] ; H^{s-1}\right)$ with $s>\frac{5}{2}$ and some $T>0$ satisfies (5), then u is called a strong solution on $[0, T]$. If u is a strong solution on $[0, T]$ for every $T>0$, then it is called a global strong solution.

Applying the inverse operator of $A=\mu-\partial_{x}^{2}$ to equation (2) results in the equation

$$
\begin{aligned}
& u_{t}+k_{1}\left[\left(2 u \mu(u)-\frac{1}{3} u_{x}^{2}\right) u_{x}+\partial_{x} A^{-1}\left(2 \mu^{2}(u) u+\mu(u) u_{x}^{2}\right)+\frac{1}{3} \mu\left(u_{x}^{3}\right)\right] \\
& +k_{2}\left[u u_{x}+A^{-1} \partial_{x}\left(2 u \mu(u)+\frac{1}{2} u_{x}^{2}\right)\right]=0 .
\end{aligned}
$$

The Green function of the operator A is (Lenells, Misiolek, Tiğlay, 2010)

$$
g(x)=\frac{1}{2}\left(x-\frac{1}{2}\right)^{2}+\frac{23}{24} .
$$

Its derivative can be assigned to zero at $x=0$, so one has

$$
g_{x}(x)=\left\{\begin{array}{cc}
0, & x=0 \\
x-\frac{1}{2}, & 0<x<1 .
\end{array}\right.
$$

The above formulation allows us to define a weak solution as follows.

Definition 3.2 Given initial data $u_{0} \in W^{1,3}$, the function $u \in$ $L^{\infty}\left([0, T), W^{1,3}\right)$ is said to be a weak solution to the initial-value problem (5) if it satisfies the following identity:

$$
\begin{gathered}
\int_{0}^{T} f_{s}\left[u \varphi_{t}+k_{1}\left(\mu(u) u^{2} \varphi_{x}+\frac{1}{3} u_{x}^{3} \varphi-g_{x} *\left(2 \mu^{2}(u) u+\mu(u) u_{x}^{2}\right) \varphi\right.\right. \\
\left.\left.-\frac{1}{3} \mu\left(u_{x}^{3}\right) \varphi\right)+k_{2}\left(\frac{1}{2} u^{2} \varphi_{x}-g_{x} *\left(2 u \mu(u)+\frac{1}{2} u_{x}^{2}\right) \varphi\right)\right] d x d t \\
+\jmath_{s} u_{0}(x) \varphi(0, x) d x=0,
\end{gathered}
$$

for any smooth test function $\varphi(t, x) \in C_{c}^{\infty}([0, T) \times S)$. If u is a weak solution on $[0, T)$ for every $T>0$, then it is called a global weak solution.

A local well-posedess result is the following.
Theorem 3.1 (Qu, Fu, Liu, 2014) Suppose that $u_{0} \in H^{s}(S)$ for $s>5 / 2$. Then there exists $T>0$, which depends only on $\left\|u_{0}\right\|_{H^{s}}$, such that problem (5) has a unique solution $u(t, x)$ in the space $C\left([0, T) ; H^{s}(S)\right) \cap C^{1}\left([0, T) ; H^{s-1}(S)\right)$. Moreover, the solution u depends continuously on the initial data u_{0} in the sense that the mapping of the initial data to the solution is continuous from the Sobolev space H^{s} to the space $C\left([0, T) ; H^{s}(S)\right) \cap C^{1}\left([0, T) ; H^{s-1}(S)\right)$.

4. Stability of solitons of the $\mathrm{g}-\mathrm{KdV}$ equation

Consider the generalized KdV equation

$$
\begin{equation*}
u_{t}+u_{x x x}+\left(u^{p}\right)_{x}=0 \tag{6}
\end{equation*}
$$

for $p>1$ an integer, which, in the cases $p=2$ and $p=3$, are the KdV equation and mKdV equation, respectively. The case $p=5$ is interesting due to the mass-critical property. For $p>1$, it has the soliton

$$
\begin{equation*}
u(t, x)=c^{1 /(p-1)} Q\left(c^{1 / 2}\left(x-x_{0}-c t\right)\right) \tag{7}
\end{equation*}
$$

where

$$
Q(x):=\left(\frac{p+1}{2 \cosh ^{2}\left(\frac{p-1}{2} x\right)}\right)^{1 /(p-1)}
$$

is a positive, smooth, rapidly decreasing solution to the ODE

$$
Q_{x x}+Q^{p}=Q
$$

Define the ground state curve

$$
\Sigma=\left\{Q\left(\cdot-x_{0}\right): x_{0} \in R\right\} \subset H^{1}(R)
$$

consisting of all translates of the ground state Q, then we see that $u(t)$ stays close to Σ all t.
Theorem 4.1 (Benjamin, 1972; Bona, 1975; Weinstein, 1986) Let $1<p<5$. If $u_{0} \in H^{1}(R)$ is such that dist $H^{1}\left(u_{0}, \Sigma\right)$ is sufficiently small (say less than σ for some small constant $\sigma>0$), and u is the solution to (6) with initial data u_{0}, then we have

$$
\operatorname{dist}_{H^{1}}(u(t), \Sigma) \approx \operatorname{dist}_{H^{1}}\left(u_{0}, \Sigma\right)
$$

for all t. Here we use $X \leq Y$ or $X=O(Y)$ to denote the estimate $|X| \leq C Y$ for some C that depends only on p, and $X \sim$ as shorthand for $X \leqslant Y \leqslant X$.

Proof. Find a functional $u \rightarrow L(u)$ on H^{1} with the following properties:

1. If u is an H^{1} solution to (6), then $L(u(t))$ is non-increasing in t.
2. Q is a local minimizer of L, thus $L(u)-L(Q) \geq 0$ for all u sufficiently close to Q in H^{1}.
3. Furthermore, the minimum is non-degenerate in the sense that $L(u)-L(Q) \geq\|u-Q\|_{H^{1}}^{2}$, for all u sufficiently close to Q in H^{1}.

5. Peaked solutions of (2)

Recall that the single peakon and multi-peakons for μ - CH equation and modified μ-CH equation. Their single peakons are given respectively by

$$
u(t, x)=\frac{12}{13} c g(x-c t)
$$

(Khesin, Lenells, Tiglay, 2010, CMP) and

$$
u(t, x)=\frac{2 \sqrt{3 c}}{5} g(x-c t)
$$

(Qu, Fu, Liu, 2014, JFA) where

$$
g(x)=\frac{1}{2}\left(x-[x]-\frac{1}{2}\right)^{2}+\frac{23}{24}
$$

with $[x]$ denoting the largest integer part of x. Their multi-peakons are given by

$$
\begin{equation*}
u(t, x)=\sum_{i=1}^{N} p_{i}(t) g\left(x-q^{i}(t)\right) \tag{8}
\end{equation*}
$$

where $p_{i}(t)$ and $q^{i}(t)$ satisfy the following ODE system respectively for the μ-CH equation (Khesin, Lenells, Tiglay, 2010, CMP)

$$
\begin{aligned}
\dot{p}_{i}(t) & =-\sum_{j=1}^{N} p_{i} p_{j} g_{x}\left(q^{i}-q^{j}\right), \\
\dot{q}^{i}(t) & =\sum_{j=1}^{N} p_{j} g\left(q^{i}(t)-q^{j}(t)\right), \quad i=1,2, \cdots, N,
\end{aligned}
$$

and for the modified μ-CH equation (Qu, Fu, Liu, 2014, JFA)
$\dot{p}_{i}(t)=0$,

$$
\begin{aligned}
\dot{q}^{i}(t)= & \frac{1}{12}\left[\sum_{j, k \neq i}^{N}\left(p_{j}+p_{k}\right)^{2}+25 p_{i}^{2}\right]+p_{i}\left[\sum_{j \neq i}^{N} p_{j}\left(\left(q^{i}-q^{j}+\frac{1}{2} \lambda_{i j}\right)^{2}+\frac{49}{12}\right)\right] \\
& +\underset{j<k, j, k \neq i}{N} p_{j} p_{k}\left(q^{j}-q^{k}+\epsilon_{j k}\right)^{2},
\end{aligned}
$$

where

$$
\begin{align*}
& \lambda_{i j}=\left\{\begin{array}{cc}
1, & i<j \\
-1, & i>j,
\end{array}\right. \\
& \epsilon_{j k}= \begin{cases}1, & k-j \geq 2 \\
0, & k-j \leq 1,\end{cases} \tag{9}
\end{align*}
$$

The existence of the single peakons of Eq.(2) is governed by the following result.

Theorem 5.1. For any $c \geq-\frac{169 k_{2}^{2}}{1200 k_{1}}$, equation (2) with $\gamma=0$ admits the peaked periodic-one traveling wave solution $u_{c}=\phi_{c}(\xi), \xi=x-c t$, where $\phi_{c}(\xi)$ is given by

$$
\begin{equation*}
\phi_{c}(\xi)=a_{1,2}\left[\frac{1}{2}\left(\xi-\frac{1}{2}\right)^{2}+\frac{23}{24}\right] \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{1,2}=\frac{-13 k_{2} \pm \sqrt{169 k_{2}^{2}+1200 c k_{1}}}{50 k_{1}}, \quad k_{1} \neq 0 \tag{11}
\end{equation*}
$$

for $\xi \in[-1 / 2,1 / 2]$ and $\phi(\xi)$ is extended periodically to the real line.
Remark 4.1 Note that the equation is invariant under $u \rightarrow-u, k_{2} \rightarrow$ $-k_{2}$. So it suffices to consider the peakon with amplitude a_{1}.

Furthermore, Eq.(2) admits the multi-peakons of the form (8), where $p_{i}(t)$ and $q^{i}(t), i=1,2, \ldots, N$, satisfy the following ODE system

$$
\begin{align*}
& \dot{p}_{i}+k_{2} \sum_{j=1}^{N} p_{i} p_{j}\left(q^{i}-q^{j}-\frac{1}{2}\right)=0, \\
& \dot{q}_{i}-k_{1}\left[\frac{1}{12}\left(23_{j, k \neq i}\left(p_{j}+p_{k}\right)^{2}+25 p_{i}^{2}\right)\right. \\
& \left.-p_{i}\left(\sum_{j \neq i} p_{j}\left(q^{i}-q^{j}\right)^{2}+\frac{1}{2} \lambda_{i j}\right)^{2}+\frac{49}{12}\right) \tag{12}\\
& \left.-{ }_{j<k, j, k \neq i}^{\sum} p_{j} p_{k}\left(q^{j}-q^{k}+\epsilon_{j k}\right)^{2}\right] \\
& -k_{2} \sum_{j=1}^{N} p_{j}\left(\frac{1}{2}\left(q^{i}-q^{j}\right)^{2}-\frac{1}{2}\left|q^{i}-q^{j}\right|+\frac{13}{12}\right)=0 .
\end{align*}
$$

where $\lambda_{i j}$ and $\epsilon_{j k}$ are given by (9).

In particular, when $N=2$, system (12) can be solved explicitly, which yields

$$
\begin{aligned}
p_{1}= & \frac{a e^{b\left(t-t_{0}\right)}}{1+e^{b\left(t-t_{0}\right)}}, \quad p_{2}=\frac{a}{1+e^{b\left(t-t_{0}\right)}}, \\
q^{1}= & -\frac{k_{1} a^{2}}{b}\left(\frac{1}{12}+\left(\frac{1}{2}-a_{1}\right)^{2}\right) \frac{1}{1+e^{b\left(t-t_{0}\right)}} \\
& +\frac{a}{12}\left(23 k_{1} a+6 a_{1}\left(a_{1}-1\right) k_{2}+13 k_{2}\right)\left(t-t_{0}\right) \\
& +\frac{a}{6 b}\left(k_{1} a-3 a_{1}\left(a_{1}-1\right) k_{2}\right) \ln \left(1+e^{b\left(t-t_{0}\right)}\right)+c_{1}, \\
q^{2}= & q^{1}+a,
\end{aligned}
$$

where $a, a_{1}, b>0$ and t_{0} are some constants.

6. Stability of peakons

\diamond Case 6.1. $k_{1}>0, k_{2}>0$
Theorem 6.1 (Qu, Zhang, Liu, Liu, 2014, ARMA)
Let $c>0$ and assume that $\gamma=0, k_{1}>0, k_{2}>0$. For every $\epsilon>0$, there is a $\delta>0$ such that if $u \in C\left([0, T) ; H^{1}(S)\right)$ is a solution to (2) with

$$
\left\|u(\cdot, 0)-\varphi_{c}\right\|_{H^{1}(S)}<\delta,
$$

then

$$
\left\|u(\cdot, t)-\varphi_{c}(\cdot-\xi(t))\right\|_{H^{1}(S)}<\epsilon \quad \text { for } t \in[0, T),
$$

where $\xi(t) \in R$ is a point where $u\left(\cdot+\frac{1}{2}, t\right)$ attains its maximum.

Lemma 6.1 The peakon $\varphi_{c}(x)$ is continuous on S with peak at $x=$ $\pm \frac{1}{2}$. The extrema of φ_{c} are

$$
\begin{aligned}
& M_{\varphi_{c}}=\max _{x \in S}\left\{\varphi_{c}(x)\right\}=\varphi_{c}\left(\frac{1}{2}\right)=\frac{13}{12} H_{0}\left[\varphi_{c}\right], \\
& m_{\varphi_{c}}=\min _{x \in S}\left\{\varphi_{c}(x)\right\}=\varphi_{c}(0)=\frac{23}{24} H_{0}\left[\varphi_{c}\right] .
\end{aligned}
$$

Moreover, we have

$$
\lim _{x \uparrow \frac{1}{2}} \varphi_{c, x}(x)=\frac{1}{2} H_{0}\left[\varphi_{c}\right], \quad \lim _{x \uparrow-\frac{1}{2}} \varphi_{c, x}(x)=-\frac{1}{2} H_{0}\left[\varphi_{c}\right],
$$

with

$$
H_{0}\left[\varphi_{c}\right]=a_{1}, \quad H_{1}\left[\varphi_{c}\right]=\frac{13}{12} a_{1}^{2}, \quad H_{2}\left[\varphi_{c}\right]=\frac{1043}{960} k_{1} a_{1}^{4}+\frac{47}{45} k_{2} a_{1}^{3}
$$

Lemma 6.2 For every $u \in H^{1}(S)$ and $\xi \in R$,

$$
H_{1}[u]-H_{1}\left[\varphi_{c}\right]=\left\|u-\varphi_{c}(\cdot-\xi)\right\|_{\mu}^{2}+a_{1}\left(u\left(\xi+\frac{1}{2}\right)-M_{\varphi_{c}}\right) .
$$

Lemma 6.3 For any function $u \in H^{1}(S)$ with $\mu(u)>0$, define the function

$$
F_{u}:\left\{(M, m) \in R^{2}: M \geq m\right\} \rightarrow R
$$

by

$$
\begin{aligned}
& F_{u}(M, m) \\
= & \frac{4}{3} k_{1}(2 M+m) H_{0}[u] H_{1}[u]-\frac{64}{45} k_{1}(M-m)\left(2 H_{0}[u](M-m)\right)^{\frac{3}{2}} \\
+ & \frac{4}{3} k_{1}(2 M+m) H_{0}^{3}[u]-\frac{4}{3} k_{1} m(4 M-m) H_{0}^{2}[u]+2 k_{2}(2 m+M) H_{0}^{2}[u] \\
+ & 2 k_{2} M H_{1}[u]-4 k_{2} M m H_{0}[u]-\frac{32}{15} k_{2}(M-m)^{\frac{5}{2}} \sqrt{2 H_{0}[u]}-4 H_{2}[u] .
\end{aligned}
$$

Then it satisfies

$$
F_{u}\left(M_{u}, m_{u}\right) \geq 0,
$$

where $M_{u}=\max _{x \in S}\{u(x)\}$ and $m_{u}=\min _{x \in S}\{u(x)\}$.
Proof. Introduce two functions

$$
g(x)= \begin{cases}u_{x}+\sqrt{2 \mu(u)(u-m)}, & \xi<x \leq \eta \tag{13}\\ u_{x}-\sqrt{2 \mu(u)(u-m)}, & \eta \leq x<\xi+1\end{cases}
$$

and
$h(x)= \begin{cases}k_{1}\left(\mu(u) u+\frac{1}{3} \sqrt{2 \mu(u)(u-m)} u_{x}-\frac{1}{3} u_{x}^{2}\right)+k_{2} u, & \xi<x \leq \eta, \\ k_{1}\left(\mu(u) u-\frac{1}{3} \sqrt{2 \mu(u)(u-m)} u_{x}-\frac{1}{3} u_{x}^{2}\right)+k_{2} u, & \eta \leq x<\xi+1 .\end{cases}$

Lemma 6.4 For the peakon φ_{C}, it holds that

$$
\begin{gathered}
F_{\varphi_{c}}\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)=0, \frac{\partial F_{\varphi_{c}}}{\partial M}\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)=0, \\
\frac{\partial{\varphi_{c}}_{c}}{\partial \varphi_{c}}\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)=0, \frac{\partial^{2} F_{\varphi_{c}}}{\partial M \partial m}\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)=0, \\
\frac{\partial^{2} F_{\varphi_{c}}}{\partial M^{2}}\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)=-\frac{16}{3} k_{1} H_{0}^{2}\left[\varphi_{c}\right]-4 k_{2} H_{0}\left[\varphi_{c}\right], \\
\frac{\partial^{2} F_{\varphi_{c}}}{\partial m^{2}}\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)=-\frac{8}{3} k_{1} H_{0}^{2}\left[\varphi_{c}\right]-4 k_{2} H_{0}\left[\varphi_{c}\right] .
\end{gathered}
$$

Moreover, $\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)$ is the unique maximum of $F_{\varphi_{c}}$.

Lemma 6.5 Let $u \in C\left([0, T) ; H^{1}(S)\right)$ be a solution of (2). Given a small neighborhood U of $\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)$ in R^{2}, there exists a $\delta>0$ such that

$$
\begin{equation*}
\left(M_{u(t)}, m_{u(t)}\right) \in U \quad \text { for } t \in[0, T) \tag{14}
\end{equation*}
$$

if $\left\|u(\cdot, 0)-\varphi_{c}\right\|_{H^{1}(S)}<\delta$.
Proof of Theorem 6.1: Let $u \in C\left([0, T) ; H^{1}(S)\right)$ be a solution of (2) and suppose $\epsilon>0$ be given. Pick a neighborhood U of $\left(M_{\varphi_{c}}, m_{\varphi_{c}}\right)$ small enough such that $\left|M-M_{\varphi_{c}}\right|<\frac{25 k_{1} \epsilon^{2}}{-78 k_{2}+6 \sqrt{169 k_{2}^{2}+1200 c k_{1}}}$ if $(M, m) \in U$. Choose a $\delta>0$ as in Lemma 5.5 so that (14) holds. Taking a smaller δ if necessary, we may assume that $\mu(u)>0$ and

$$
\left|H_{1}[u]-H_{1}\left[\varphi_{c}\right]\right|<\frac{\epsilon^{2}}{6} \quad \text { if }\left\|u(\cdot, 0)-\varphi_{c}\right\|_{H^{1}(S)}<\delta
$$

Then, by Lemma 6.2, we get

$$
\begin{aligned}
& \left\|u(\cdot, t)-\varphi_{c}(\cdot-\xi(t))\right\|_{H^{1}(S)}^{2} \\
& \leq 3\left\|u(\cdot, t)-\varphi_{c}(\cdot-\xi(t))\right\|_{\mu}^{2} \\
& =3\left(H_{1}[u]-H_{1}\left[\varphi_{c}\right]\right)+3 a_{1}\left(M_{\varphi_{c}}-M_{u(t)}\right)<\epsilon^{2}, t \in[0, T),
\end{aligned}
$$

where $\xi(t) \in R$ is any point where $u\left(\xi(t)+\frac{1}{2}, t\right)=M_{u(t)}$. Thus Theorem 5.1 is then proved.
\diamond Case 6.2. $k_{1}>0, k_{2}<0$
Theorem 6.2 Let $k_{1}>0, k_{2}<0$, and assume that $c>23 k_{2}^{2} /\left(64 k_{1}\right)$. For every $\epsilon>0$, there is a $\delta>0$ such that if $u \in C\left([0, T) ; H^{1}(S)\right)$ is a solution to (2) with

$$
\left\|u(\cdot, 0)-\varphi_{c}\right\|_{H^{1}(S)}<\delta,
$$

then

$$
\left\|u(\cdot, t)-\varphi_{c}(\cdot-\xi(t))\right\|_{H^{1}(S)}<\epsilon \quad \text { for } t \in[0, T),
$$

where $\xi(t) \in R$ is a point where $u\left(\cdot+\frac{1}{2}, t\right)$ attains its maximum.

Lemma 6.6. For any function $u \in H^{1}(S)$ with $\mu(u)>0, k_{1}>0$, $k_{2} \leq 0$, and $4 k_{1} \mu(u)+3 k_{2}>0$, define the function

$$
F_{u}:\left\{(M, m) \in R^{2}: M \geq m\right\} \rightarrow R
$$

by

$$
\begin{aligned}
F_{u}(M, m)= & \frac{1}{3} k_{1}(2 M+m) H_{0}[u] H_{1}[u]-\frac{16}{45} k_{1}(M-m)^{\frac{5}{2}}\left(2 H_{0}[u]\right)^{\frac{3}{2}} \\
& +\frac{1}{3} k_{1}(2 M+m) H_{0}^{3}[u]-\frac{1}{3} k_{1} m(4 M-m) H_{0}^{2}[u] \\
& +\frac{1}{2} k_{2}(2 m+M) H_{0}^{2}[u]+\frac{1}{2} k_{2} M H_{1}[u]-k_{2} M m H_{0}[u] \\
& -\frac{8}{15} k_{2}(M-m)^{2} \sqrt{2 H_{0}[u]}-H_{2}[u] .
\end{aligned}
$$

Then it satisfies

$$
F_{u}\left(M_{u}, m_{u}\right) \geq 0,
$$

where $M_{u}=\max _{x \in S}\{u(x)\}$ and $m_{u}=\min _{x \in S}\{u(x)\}$.
Proof. Let $u \in H^{1}(S) \subset C(S)$ with $\mu(u)>0$. Denote $M=M_{u}=$ $\max _{x \in S}\{u(x)\}, m=m_{u}=\min _{x \in S}\{u(x)\}$. Let ξ and η be such that $u(\xi)=$ M and $u(\eta)=m$. Define

$$
\begin{aligned}
\tilde{H}_{2}[u]= & k_{1} \int_{S}\left(\mu^{2}(u)(u-m)^{2}+\mu(u)(u-m) u_{x}^{2}-\frac{1}{12} u_{x}^{4}\right) d x \\
& +k_{2} \int_{S}\left(\mu(u)(u-m)^{2}+\frac{1}{2}(u-m) u_{x}^{2}\right) d x \\
\equiv & k_{1} \tilde{J}_{1}[u]+k_{2} \tilde{J}_{2}[u]
\end{aligned}
$$

with

$$
\begin{aligned}
& \tilde{J}_{1}[u]=\int_{S}\left(\mu^{2}(u)(u-m)^{2}+\mu(u)(u-m) u_{x}^{2}-\frac{1}{12} u_{x}^{4}\right) d x \\
& \tilde{J}_{2}[u]=\int_{S}\left(\mu(u)(u-m)^{2}+\frac{1}{2}(u-m) u_{x}^{2}\right) d x
\end{aligned}
$$

By the Cauchy inequality, we have the estimate

$$
\begin{equation*}
\tilde{J}_{1}[u] \leq \frac{4}{3} \mu(u) \tilde{J}_{2}[u] . \tag{16}
\end{equation*}
$$

The equality holds if and only if u is the peakon of Eq. (2). On the other hand, a straightforward computation leads to

$$
\begin{aligned}
\tilde{J}_{1}[u]= & J_{1}[u]-m H_{0}^{3}[u]+m^{2} H_{0}[u]^{2}-m H_{0}[u] H_{1}[u], \quad \text { and } \\
\tilde{H}_{2}[u]= & H_{2}[u]-k_{1} m\left(H_{0}^{3}[u]-m H_{0}^{2}[u]+H_{0}[u] H_{1}[u]\right) \\
& -k_{2} m\left(\frac{3}{2} H_{0}^{2}[u]-m H_{0}[u]+\frac{1}{2} H_{1}[u]\right)
\end{aligned}
$$

where

$$
J_{1}[u]=J_{S}\left(\mu^{2}(u) u^{2}+\mu(u) u u_{x}^{2}-\frac{1}{12} u_{x}^{4}\right) d x .
$$

By virtue of the result in (Liu, Qu, Zhang, Phys. D, 2013), we have

$$
\begin{aligned}
\int \tilde{h}(x) g^{2}(x) d x= & 4 J_{1}[u]-2 m H_{0}^{3}[u]-2 m H_{0}[u] H_{1}[u] \\
& -\frac{8}{15}(m+4 M)\left(2 H_{0}[u](M-m)\right)^{\frac{3}{2}},
\end{aligned}
$$

where

$$
\tilde{h}(x)= \begin{cases}2 \mu(u) u+\frac{2}{3} \sqrt{2 \mu(u)(u-m)} u_{x}-\frac{1}{3} u_{x}^{2}, & \xi<x \leq \eta, \\ 2 \mu(u) u-\frac{2}{3} \sqrt{2 \mu(u)(u-m)} u_{x}-\frac{1}{3} u_{x}^{2}, & \eta \leq x<\xi+1,\end{cases}
$$

and $g(x)$ is given by (13). Notice that

$$
\tilde{h}(x) \leq 2 M H_{0}[u]+\frac{2}{3}(M-m) H_{0}[u]=\frac{2}{3}(4 M-m) H_{0}[u] .
$$

It then follows that

$$
\begin{aligned}
4 J_{1}[u] & -2 m H_{0}^{3}[u]-2 m H_{0}[u] H_{1}[u]-\frac{8}{15}(m+4 M)\left(2 H_{0}[u](M-m)\right)^{2} \\
& \leq \frac{2}{3}(4 M-m) H_{0}[u]\left(H_{1}[u]+H_{0}^{2}[u]-2 m H_{0}[u]\right. \\
& \left.-\frac{4}{3 H_{0}[u]}\left(2 H_{0}[u](M-m)\right)^{\frac{3}{2}}\right)
\end{aligned}
$$

Using this inequality and combining expressions, we can get (15). This completes the proof of the lemma.

7. Classification of the $2-\mu-\mathrm{CH}$ system

In this section, we classify the system (4), specifically, we consider the following system:

$$
\begin{aligned}
m_{t}= & m\left(u_{x}+a_{1} v_{x}\right)+m_{x}\left(b_{1} u+c_{1} v\right) \\
& +n\left(d_{1} u_{x}+f_{1} v_{x}\right)+n_{x}\left(g_{1} u+h_{1} v\right) \\
n_{t}= & n\left(v_{x}+a_{2} u_{x}\right)+n_{x}\left(b_{2} v+c_{2} u\right) \\
& +m\left(d_{2} v_{x}+f_{2} u_{x}\right)+m_{x}\left(g_{2} v+h_{2} u\right)
\end{aligned}
$$

where $m=\mu(u)-u_{x x}, n=\mu(v)-v_{x x}, a_{i}, b_{i}, c_{i}, d_{i}, f_{i}, g_{i}$, and $h_{i}, i=1,2$ are some constants.

- Step 1. Assume that system (4) possesses the weak solution

$$
\left.\begin{array}{l}
{ }^{s} S\left(\mu\left(u_{t}\right) \phi-u_{t} \phi_{x x}\right) d x={ }^{{ }_{S}}(\\
\\
{ }^{S}(
\end{array}\left(F_{1} \phi\left(v_{t}\right) \phi-v_{t} \phi_{x} \phi_{x x}\right) d x={ }_{s} \phi_{x x}\right) d x, ~\left(G_{1} \phi+G_{2} \phi_{x}+G_{3} \phi_{x x}\right) d x,
$$

for some functions $F_{i}\left(u, v, u_{x}, v_{x}\right), G_{i}\left(u, v, u_{x}, v_{x}\right), i=1,2,3$ and $\phi(t, x) \in C_{0}^{\infty}([0,+\infty) \times S)$.

Then we find the constants satisfy

$$
a_{1}-c_{1}=d_{1}-g_{1}, \quad a_{2}-c_{2}=d_{2}-g_{2}
$$

In this case, $\mu(u)$ and $\mu(v)$ are conserved.

- Step 2. Assume that system (4) admits two-peaked solutions of the form

$$
\begin{gather*}
u=p_{1}(t) g\left(x-q_{1}(t)\right)+p_{2}(t) g\left(x-q_{2}(t)\right), \\
v=r_{1}(t) g\left(x-q_{1}(t)\right)+r_{2}(t) g\left(x-q_{2}(t)\right), \tag{18}
\end{gather*}
$$

where $g(x)=\frac{1}{2}\left(x-[x]-\frac{1}{2}\right)^{2}+\frac{23}{24}$, and $[x]$ denotes the largest integer part of x, are the usual weak solutions in the sense of distribution, then the constants must satisfy

$$
\begin{gathered}
g_{1}=h_{1}=g_{2}=h_{2}=0, \quad b_{1}=c_{2}, \quad b_{2}=c_{1} \\
a_{1}-c_{1}=d_{1}, \quad a_{2}-c_{2}=d_{2}
\end{gathered}
$$

- Step 3. Assume that system (4) enjoys the H^{1}-conservation law

$$
h_{1}[u]=\int_{S}\left(u_{x}^{2}+v_{x}^{2}\right) d x
$$

then the constants satisfy

$$
\begin{gathered}
a_{1}=a_{2}=b_{1}=b_{2}=c_{1}=c_{2}=f_{1}=f_{2}=\frac{1}{2} \\
d_{1}=d_{2}=g_{1}=g_{2}=h_{1}=h_{2}=0
\end{gathered}
$$

Hence system (4) reduces to (3).

We have shown that system (3) has the two-peaked solutions (18) with satisfying

$$
\begin{aligned}
p_{1}^{\prime}= & \left(\left(1-b_{1}\right) p_{1} p_{2}+\left(a_{1}-c_{1}\right)\left(p_{1} r_{2}+p_{2} r_{1}\right)\right. \\
\quad & \left.+f_{1} r_{1} r_{2}\right) \operatorname{sgn}\left(q_{2}-q_{1}\right)\left(-\left|q_{1}-q_{2}\right|+\frac{1}{2}\right), \\
p_{2}^{\prime}= & \left(\left(b_{1}-1\right) p_{1} p_{2}+\left(c_{1}-a_{1}\right)\left(p_{1} r_{2}+p_{2} r_{1}\right)\right. \\
\quad & \left.-f_{1} r_{1} r_{2}\right) \operatorname{sgn}\left(q_{2}-q_{1}\right)\left(-\left|q_{1}-q_{2}\right|+\frac{1}{2}\right), \\
r_{1}^{\prime}= & \left(\left(1-b_{2}\right) r_{1} r_{2}+\left(a_{2}-c_{2}\right)\left(p_{1} r_{2}+p_{2} r_{1}\right)\right. \\
& \left.+f_{2} p_{1} p_{2}\right) \operatorname{sgn}\left(q_{2}-q_{1}\right)\left(-\left|q_{1}-q_{2}\right|+\frac{1}{2}\right), \\
r_{2}^{\prime}= & \left(\left(b_{2}-1\right) r_{1} r_{2}+\left(c_{2}-a_{2}\right)\left(p_{1} r_{2}+p_{2} r_{1}\right)\right. \\
\quad & \left.\quad f_{2} p_{1} p_{2}\right) \operatorname{sgn}\left(q_{2}-q_{1}\right)\left(-\left|q_{1}-q_{2}\right|+\frac{1}{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
q_{1}^{\prime}= & -\frac{1}{2}\left(b_{1} p_{2}+c_{1} r_{2}\right)\left(-\left|q_{1}-q_{2}\right|+\frac{1}{2}\right)^{2} \\
& -\frac{13}{12}\left(b_{1} p_{1}+c_{1} r_{1}\right)-\frac{23}{24}\left(b_{1} p_{2}+c_{1} r_{2}\right), \\
q_{2}^{\prime}=- & \frac{1}{2}\left(b_{1} p_{1}+c_{1} r_{1}\right)\left(-\left|q_{1}-q_{2}\right|+\frac{1}{2}\right)^{2} \\
& -\frac{13}{12}\left(b_{1} p_{2}+c_{1} r_{2}\right)-\frac{23}{24}\left(b_{1} p_{1}+c_{1} r_{1}\right) .
\end{aligned}
$$

8. Stability of peakons for the cubic systems

Consider the following integrable two-component Novikov system

$$
\begin{align*}
m_{t}+u v m_{x}+\left(2 v u_{x}+u v_{x}\right) m=0, & m=u-u_{x x} \\
n_{t}+u v n_{x}+\left(2 u v_{x}+v u_{x}\right) n=0, & n=v-v_{x x} \tag{19}
\end{align*}
$$

It has the peaked solitions

$$
\begin{align*}
& u(t, x)=\varphi_{c}(x-c t)=a e^{-|x-c t|} \\
& v(t, x)=\psi_{c}(x-c t)=b e^{-|x-c t|} \tag{20}
\end{align*}
$$

where $c=a b \neq 0$, and the following conserved densities

$$
\begin{aligned}
& E_{0}[u, v]=\int_{R}(m n)^{\frac{1}{3}} d x, \\
& E_{u}[u]={ }^{{ }^{R}} R\left(u^{2}+u_{x}^{2}\right) d x, \quad E_{v}[v]={ }_{{ }^{s}} R\left(v^{2}+v_{x}^{2}\right) d x, \\
& H[u, v]={ }^{{ }^{R}}\left(u v+u_{x} v_{x}\right) d x
\end{aligned}
$$

and

$$
F[u, v]=\int_{R}\left(u^{2} v^{2}+\frac{1}{3} u^{2} v_{x}^{2}+\frac{1}{3} v^{2} u_{x}^{2}+\frac{4}{3} u v u_{x} v_{x}-\frac{1}{3} u_{x}^{2} v_{x}^{2}\right) d x
$$

while the corresponding three conserved quantities of Novikov equation are

$$
\begin{gathered}
H_{0}[u]={ }^{\prime} R m^{\frac{2}{3}} d x, \quad E[u]={ }^{{ }^{\prime}} R \\
\\
\left(u^{2}+u_{x}^{2}\right) d x \\
F[u]={ }^{{ }^{\prime}} R \\
\left(u^{4}+2 u^{2} u_{x}^{2}-\frac{1}{3} u_{x}^{4}\right) d x .
\end{gathered}
$$

Theorem 8.1. (He, Liu, Qu, 2019) Let φ_{c} and ψ_{c} be the peaked solitons traveling with speed $c=a b>0$. Then φ_{c} and ψ_{c} are orbitally stable in the following sense. Assume that $u_{0}, v_{0} \in H^{s}(R)$ for some $s \geq 3,0 \not \equiv\left(1-\partial_{x}^{2}\right) u_{0}(x)$ and $0 \not \equiv\left(1-\partial_{x}^{2}\right) v_{0}(x)$ are nonnegative, and there is a $\delta>0$ such that

$$
\left\|\left(u_{0}, v_{0}\right)-\left(\varphi_{c}, \psi_{c}\right)\right\|_{H^{1}(R) \times H^{1}(R)}<\delta .
$$

Then the corresponding solution $(u(t, x), v(t, x))$ of the Cauchy problem for the two-component Novikov equations (19) with the initial data $u(0, x)=u_{0}(x)$ and $v(0, x)=v_{0}(x)$ satisfies

$$
\begin{gathered}
\sup _{t \in[0, T)}\left\|(u(t, \cdot), v(t, \cdot))-\left(\varphi_{c}(\cdot-\xi(t)), \psi_{c}(\cdot-\xi(t))\right)\right\|_{H^{1}(R) \times H^{1}(R)} \\
<A \delta^{\frac{1}{4}}
\end{gathered}
$$

where $T>0$ is the maximal existence time, $\xi(t) \in R$ is the maximum point of the function $u(t, x) v(t, x)$, the constant A depends only on a, b as well as the norms $\left\|u_{0}\right\|_{H^{s}(R)}$ and $\left\|v_{0}\right\|_{H^{s}(R)}$.
On stability of the train of peakons, we have the following result.
Theorem 8.2. (He, Liu, Qu, 2019) Let be given N velocities $c_{1}, c_{2}, \cdots, c_{N}$ such that $0<a_{1}<a_{2}<\ldots<a_{N}, 0<b_{1}<b_{2}<\ldots<$ b_{N} and $c_{i}=a_{i} b_{i}$ for any $i \in\{1, \ldots, N\}$. There exist $A>0, L_{0}>0$ and $\epsilon_{0}>0$ such that if the initial data $\left(u_{0}, v_{0}\right) \in H^{s}(R) \times H^{s}(R)$ for some $s \geq 3$ with $0 \not \equiv\left(1-\partial_{x}^{2}\right) u_{0}(x)$ and $0 \not \equiv\left(1-\partial_{x}^{2}\right) v_{0}(x)$ being nonnegative, satisfy

$$
\left|u_{0}-\sum_{i=1}^{N} \varphi_{c}\left(\cdot-z_{i}^{0}\right) \|_{H^{1}}+\left|v_{0}-\sum_{i=1}^{N} \psi_{c}\left(\cdot-z_{i}^{0}\right)\right|_{H^{1}} \leq \epsilon\right.
$$

for some $0<\epsilon<\epsilon_{0}$ and $z_{i}^{0}-z_{i}^{0} \geq L$ with $L>L_{0}$, then there exist $x_{1}(t), \ldots, x_{N}(t)$ such that the corresponding strong solution $(u(t, x), v(t, x))$ satisfies

$$
\begin{gathered}
\left\|u(t, \cdot)-\left.\Sigma_{i=1}^{N} \varphi_{c}\left(\cdot-x_{i}(t)\right)\right|_{H^{1}}+\right\| v(t, \cdot)-\left.\Sigma_{i=1}^{N} \psi_{c}\left(\cdot-x_{i}(t)\right)\right|_{H^{1}} \\
\leq A\left(\epsilon^{\frac{1}{4}}+L^{-\frac{1}{8}}\right),
\end{gathered}
$$

for all $t \in[0, T)$, where $x_{j}(t)-x_{j-1}(t)>L / 2$.

Conclusions and remarks

- Orbitally stable of peaked solutions to (3) in the energy space H^{1} ?
- The classifications of the nonlocal equations with cubic nonlinear terms?

$$
m_{l, t}+\sum_{i, j, k=1}^{2} a_{i, j, k}^{l} u_{i} u_{j} m_{k, x}+\sum_{i, j, k=1}^{2} b_{i, j, k}^{l} u_{i} u_{j, x} m_{k}=0
$$

$$
l=1,2, m_{l}=\mu\left(u_{l}\right)-u_{l, x x} \text { or } m_{l}=u_{l}-u_{l, x x} . \text { (Zhao, Qu, 2019) }
$$

- Geometric formulations to the cubic-type equations?
- Inverse scattering method for the μ-type equations?
- Nonlocal equations for the classical integrable systems?

Thank you!!!

