Analysis on steady subsonic solutions with both fixed and free boundaries

Chunjing Xie

Shanghai Jiao Tong University

Dec 30, 2019

Workshop on Nonlinear PDEs and Related Topics at Institute of Mathematical Sciences in National University of Singapore

向下 イヨト イヨト

- The well-posedness theory for unsteady compressible Euler equations is widely open
- An important problem in the transonic flows

回 と く ヨ と く ヨ と

æ

Three Dimensional Euler System and Divergent Nozzles

The three-dimensional steady full Euler system reads as

$$\begin{cases} \operatorname{div} (\rho \mathbf{u}) = 0, \\ \operatorname{div} (\rho \mathbf{u} \otimes \mathbf{u} + PI_n) = 0, \\ \operatorname{div} (\rho(\frac{1}{2}|\mathbf{u}|^2 + e)\mathbf{u} + P\mathbf{u}) = 0, \end{cases}$$
(1)

where $\mathbf{u} = (u_1, u_2, u_3), \rho, P, e$ and S stand for the velocity, density, pressure, internal energy and specific entropy, respectively. The equation of state, the internal energy e, and the sound speed are given by

$$P=A
ho^{\gamma}e^{rac{S}{c_{v}}}, \quad e=rac{P}{(\gamma-1)
ho}, \quad c(
ho,S)=\sqrt{\partial_{
ho}P(
ho,S)}.$$

The nozzle wall Γ^2 can be represented by

$$\sqrt{x_2^2 + x_3^2} = x_1 \tan(\theta_0 + \epsilon f(r)), x_1 > 0, r_1 < r < r_2$$
(2)

and $\theta_0 \in (0, \frac{\pi}{2})$ and f is a smooth $C^{2,\alpha}$ function defined on $[r_1, r_2]$.

Background Transonic Shock Solutions

Given
$$U_b^-(r_1) > c(\rho_b(r_1), S_b^-) > 0$$
 and $P_b(r_1), S_b^-$,
 $(\mathbf{u}^-, P_b^-, S_b^-)(\mathbf{x}) = (U_b^-(\mathbf{r}_1)\mathbf{e}_{\mathbf{r}}, P_b^-(\mathbf{r}_1), S_b^-)$ at $\mathbf{r} = \mathbf{r}_1$,

there exists two positive constants P_1 and P_2 such that if the pressure $P_e \in (P_1, P_2)$ is posed at the exit $r = r_2$, there exists a unique spherical symmetric transonic shock solution

$$(\mathbf{u}_{b}^{\pm}, P_{b}^{\pm}, S_{b}^{\pm})(\mathbf{x}) = (\mathbf{U}_{b}^{\pm}(\mathbf{r})\mathbf{e}_{\mathbf{r}}, \mathbf{P}_{b}^{\pm}(\mathbf{r}), \mathbf{S}_{b}^{\pm}),$$
 (3)

to (1) defined in

$$\Omega_{un}^{-} = \{ x \in \mathbb{R}^3 : x_2^2 + x_3^2 \le x_1^2 \tan^2 \theta_0, r \in (r_1, r_b) \}$$

and

$$\Omega_{\textit{un}}^+ = \{ x \in \mathbb{R}^3 : x_2^2 + x_3^2 \ge x_1^2 \tan^2 \theta_0, r \in (\textit{r}_b,\textit{r}_2) \},$$

where $r = r_b \in (r_1, r_2)$ is a shock wave, and

$$[\rho U_b] = 0, \quad [\rho_b U_b^2 + P_b] = 0, \quad S_b^+ > S_b^-,$$

where [f] denotes the jump of f at $r = r_b$.

Introduce the spherical coordinates

$$x_1 = r \cos \theta, \quad x_2 = r \sin \theta \cos \varphi, \quad x_3 = r \sin \theta \sin \varphi.$$
 (4)

and decompose the velocity $\mathbf{u} = U_1 \mathbf{e}_r + U_2 \mathbf{e}_{\theta} + U_3 \mathbf{e}_{\varphi}$. The axisymmpetric solutions do not depend on φ so that the Euler system reads

$$\begin{cases} \partial_r (r^2 \rho U_1 \sin \theta) + \partial_\theta (r \rho U_2 \sin \theta) = 0, \\ \rho U_1 \partial_r U_1 + \frac{1}{r} \rho U_2 \partial_\theta U_1 + \partial_r P - \frac{\rho (U_2^2 + U_3^2)}{r} = 0, \\ \rho U_1 \partial_r U_2 + \frac{1}{r} \rho U_2 \partial_\theta U_2 + \frac{1}{r} \partial_\theta P + \frac{\rho U_1 U_2}{r} - \frac{\rho U_3^2}{r} \cot \theta = 0, \end{cases} (5) \\ \rho U_1 \partial_r (r U_3 \sin \theta) + \frac{1}{r} \rho U_2 \partial_\theta (r U_3 \sin \theta) = 0, \\ \rho U_1 \partial_r S + \frac{1}{r} \rho U_2 \partial_\theta S = 0. \end{cases}$$

回 と く ヨ と く ヨ と

The perturbed nozzle is $\Omega = \{(r, \theta, \varphi) : r_1 < r < r_2, 0 \le \theta \le \theta_0 + \epsilon f(r), \varphi \in [0, 2\pi]\},$ where $f \in C^{2,\alpha}([r_1, r_2])$ satisfying

$$f(r_1) = f'(r_1) = 0.$$
 (6)

Suppose the supersonic incoming flow at the inlet $r = r_1$ is given by

$$\Phi_{en}^{-} = (U_1^{-}, U_2^{-}, U_3^{-}, P^{-}, S^{-}) = \Phi_b^{-} + \epsilon \Psi(\theta),$$
(7)

where $\Phi_b^- = (U_b^-(r), 0, 0, P_b^-(r), S_b^-)$ and $\Psi(\theta) \in (C^{2,\alpha}([0, \theta_0]))^5$ At the exit of the nozzle, the end pressure is prescribed by

$$P^+(x) = P_e + \epsilon P_0(\theta) \text{ on } r = r_2, \tag{8}$$

here $\epsilon > 0$ is sufficiently small, and $P_0 \in C^{1,\alpha}([0, 2\theta_0])$.

Denote the transonic shock surface by S and the upstream and downstream flows by $x_1 = \eta(x_2, x_3)$ and $(\mathbf{u}^{\pm}, P^{\pm}, S^{\pm})(x)$, respectively. Then the Rankine-Hugoniot conditions on S become

$$\begin{cases} [(1, -\nabla_{x'}\eta(x')) \cdot \rho \mathbf{u}] = 0, \\ [((1, -\nabla_{x'}\eta(x')) \cdot \rho \mathbf{u})\mathbf{u}] + (1, -\nabla_{x'}\eta(x'))^{t}[P] = 0, \\ [(1, -\nabla_{x'}\eta(x')) \cdot (\rho(e + \frac{1}{2}|\mathbf{u}|^{2}) + P)\mathbf{u}] = 0, \end{cases}$$
(9)

where $\nabla_{x'}=(\partial_{x_2},\partial_{x_3}).$ Moreover, the physical entropy condition is also satisfied

$$S^+(x) > S^-(x)$$
, on $x_1 = \eta(x_2, x_3)$. (10)

Stability of Transonic Shocks

<u>Theorem 1</u> (Weng, Xie, Xin) Given the supersonic incoming flow Φ_{en}^- satisfying the certain compatibility conditions, the transonic shock problem has a unique solution $\Phi^+ = (U_1^+, U_2^+, U_3^+, P^+, S^+)(r, \theta)$ and $\xi(\theta)$ satisfying (i) $\xi(\theta) \in C_{3,\alpha;(0,\theta_*)}^{(-1-\alpha;\{\theta_*\})}$ and

$$\|\xi(\theta) - r_b\|_{3,\alpha;(0,\theta_*)}^{(-1-\alpha;\{\theta_*\})} \le C_0 \epsilon,$$
(11)

where (r_*, θ_*) stands for the intersection circle of the shock surface with the nozzle wall and C_0 is a positive constant depending only on the supersonic incoming flow.

(ii) $\Phi^+(r,\theta) \in C^{(-\alpha;\Gamma_{w,s})}_{2,\alpha;R_+}$, and $\|\Phi^+ - \Phi^+_b\|^{(-\alpha;\Gamma_{w,s})}_{2,\alpha;R_+} \le C_0\epsilon,$ (12)

where

$$\Gamma_{w,s} = \{(r,\theta) : \xi(\theta) \le r \le r_2, \theta = \theta_0 + \epsilon f(r)\}.$$

Know Results and Remarks

Known Results

- Potential flows: G.-Q. Chen and Feldman (Dirichlet condition for velocity potential at the exit), Xin and Yin (the problem is in general ill-posedenss given the exit pressure), Bae and Feldman (Non-isentropic potential flows)
- flat nozzle for the Euler system: G. Q. Chen et al for velocity boundary conditions at the exit, S. X. Chen etc for the particular pressure at the exit
- Divergent nozzle for the Euler system: Li-Xin-Yin for 2D and 3D axisymmetric without swirl, S. X. Chen for 2D case

<u>Remark</u>

- The nozzle wall Γ^2 can depend on both r and θ .
- There is another result on the stability of transonic shock for 3D axisymmetric case with swirl via a different approach by Park after we uploaded the paper

Main Difficulty and Key Observation

- There is a singular factor sin θ in the density equation of (5), the standard Lagragian coordinate used by Li-Xin-Yin is not invertible near the axis θ = 0.
- Observation: $\sin \theta$ is of order $O(\theta)$ near $\theta = 0$. Define $(\tilde{y}_1, \tilde{y}_2) = (r, \tilde{y}_2(r, \theta))$ such that

$$\frac{\partial \tilde{y}_2}{\partial r} = -r\rho^{\pm} U_2^{\pm} \sin \theta, \quad \frac{\partial \tilde{y}_2}{\partial \theta} = r^2 \rho^{\pm} U_1^{\pm} \sin \theta, \quad \text{if } (r, \theta) \in \overline{R_{\pm}}, \\ \tilde{y}_2(r_1, 0) = 0, \quad \tilde{y}_2(r_2, 0) = 0.$$

It is clear that $\tilde{y}_2 \ge 0$ in $\overline{R_-} \cup \overline{R_+}$. Setting

$$y_1 = \tilde{y}_1 = r, \ y_2 = \tilde{y}_2^{\frac{1}{2}}(r, \theta).$$

The transformation $\mathcal{L}: (r, \theta) \in \bar{R} \mapsto (y_1, y_2) \in \bar{D}$ satisfies

$$\det \left(\begin{array}{cc} \frac{\partial y_1}{\partial r} & \frac{\partial y_1}{\partial \theta} \\ \frac{\partial y_2}{\partial r} & \frac{\partial y_2}{\partial \theta} \end{array}\right) = \frac{r^2 \rho U_1 \sin \theta}{2y_2} \ge C_3 > 0. \tag{13}$$

The reformulated system can be written as

$$\begin{cases} \partial_{y_1} \left(\frac{2y_2}{y_1^2 \rho U_1 \sin \theta} \right) - \partial_{y_2} \left(\frac{U_2}{y_1 U_1} \right) = 0, \\ \partial_{y_1} (U_1 + \frac{P}{\rho U_1}) - \frac{y_1 \sin \theta}{2y_2} \partial_{y_2} (\frac{PU_2}{U_1}) - \frac{2P}{y_1 \rho U_1} - \frac{PU_2 \cos \theta}{y_1 \rho U_1^2 \sin \theta} - \frac{(U_2^2 + U_3^2)}{y_1 U_1} = 0, \\ \partial_{y_1} (y_1 U_2) + \frac{y_1^2 \sin \theta}{2y_2} \partial_{y_2} P - \frac{U_3^2}{U_1} \cot \theta = 0, \\ \partial_{y_1} (y_1 U_3 \sin \theta) = 0, \\ \partial_{y_1} B = 0. \end{cases}$$

The nozzle wall $\Gamma_{w,s}$ is straighten to be $\Gamma_{w,y} = (\phi(M), r_2) \times \{M\}$.

回 と く ヨ と く ヨ と

Elliptic Modes

Put
$$\varpi = \frac{U_2}{U_1}$$
, then one has

$$\begin{cases}
\partial_{y_1} \varpi - \frac{y_1 \rho U_1 \varpi \sin \theta}{2y_2} \partial_{y_2} \varpi - \frac{\varpi}{y_1} - \frac{\varpi^2}{y_1} \cot \theta + \frac{y_1 \sin \theta}{2y_2 U_1} \partial_{y_2} P \\
- \frac{\varpi}{\rho c^2(\rho, S)} \partial_{y_1} P - \frac{U_3^2}{y_1 U_1^2} \cot \theta = 0, \\
\partial_{y_1} P - \frac{\rho c^2(\rho, S) U_1^2}{y_1(c^2(\rho, S) - U_1^2)} (\frac{y_1^2 \rho U_1 \sin \theta}{2y_2} \partial_{y_2} \varpi + \varpi \cot \theta) \\
- \frac{y_1 \rho c^2(\rho, S) U_1 \varpi \sin \theta}{2y_2(c^2(\rho, S) - U_1^2)} \partial_{y_2} P - \frac{\rho c^2(\rho, S) U_1^2}{y_1(c^2(\rho, S) - U_1^2)} (\varpi^2 + 2) \\
- \frac{\rho c^2(\rho, S) U_3^2}{y_1(c^2(\rho, S) - U_1^2)} = 0.
\end{cases}$$

The corresponding boundary conditions become

$$\begin{cases} \varpi(y_1,0) = 0, & \forall y_1 \in [r_1, r_2], \\ \varpi(y_1,M) = \epsilon y_1 f'(y_1), & \forall y_1 \in [r_1, r_2], \\ P(r_2, y_2) = P_e + \epsilon P_0(\theta(r_2, y_2)), & \forall y_2 \in [0, M] \end{cases}$$

Fix the Domain

Introduce the coordinate transformation

$$z_1 = rac{y_1 - \psi(y_2)}{r_2 - \psi(y_2)}N, \quad z_2 = y_2, \quad N = r_2 - r_b$$

so that the free boundary becomes a fixed boundary. Setting

$$W_{1}(z) = \tilde{U}_{1}(z) - \tilde{U}_{0}^{+}(z_{1}), \quad W_{2}(z) = \tilde{\varpi}(z), W_{3}(z) = \tilde{U}_{3}(z), \quad W_{4}(z) = \tilde{P}(z) - \tilde{P}_{b}^{+}(z_{1}),$$
(14)

$$W_5(z) = \tilde{S}(z) - S_b^+, \ W_6(z_2) = \psi(z_2) - r_b.$$
 (15)

After this coordinate transformation, the equation for the shock becomes

$$\psi'(z_2) = \frac{2z_2}{\sin\theta} \frac{(\tilde{U}_b^+(0) + W_1)W_2 - U_2^-(r_b + W_6(z_2), z_2)}{(r_b + W_6(z_2))((\tilde{P}_b^+(0) + W_4) - P^-(r_b + W_6(z_2), z_2))},$$

where the functions are evaluated at $(0, z_2)$.

Define the solution class

$$\Xi_{\delta} = \left\{ \mathbf{W} : \|\mathbf{W}\|_{\Xi_{\delta}} : \sum_{i=1}^{5} \|W_{i}\|_{2,\alpha;E_{+}}^{(-\alpha;\Gamma_{w,z})} + \|W_{6}\|_{3,\alpha;(0,M)}^{(-1-\alpha;\{M\})} \le \delta; \\ \partial_{z_{2}}W_{j}(z_{1},0) = 0, j = 1, 3, 4, 5; W_{6}'(0) = W_{6}^{(3)}(0) = 0; \\ W_{2}(z_{1},0) = \partial_{z_{2}}^{2}W_{2}(z_{1},0) = W_{5}(z_{1},0) = 0 \right\}.$$

Given any $\hat{\mathbf{W}} \in \Xi_{\delta}$, we will develop an iteration to produce a new $\mathbf{W} \in \Xi_{\delta}$ so we get a mapping \mathcal{T} from Ξ_{δ} to itself by choosing suitable small δ . To design a good iteration, we first need to find the explicit form of the leading linear order term, and all the \mathbf{W} in the remaining nonlinear error terms will be replaced by $\hat{\mathbf{W}}$ and finally the error terms should be bounded by $C(\|\hat{\mathbf{W}}\|_{\Xi_{\delta}}^2 + \epsilon)$.

通 とう ほうとう ほうど

It is easy to derive that

$$\partial_{z_1}W_5 = 0, \quad \partial_{z_1}\tilde{B} = 0, \ \forall z \in [0, N] \times [0, M).$$
 (16)

Furthermore, one has

$$\begin{cases} \partial_{z_1}[(r_b + z_1 + \frac{N - z_1}{N} W_6(z_2)) W_3 \sin \theta(z_1, z_2)] = 0, \\ W_3(0, z_2) = U_3^-(r_0 + W_6(z_2), z_2). \end{cases}$$
(17)

The equation for the shock can be written as

$$W_6'(z_2) = \frac{2z_2}{\sin\theta} \frac{(\tilde{U}_b(0) + W_1)W_2 - U_2^-(r_b + W_6(z_2), z_2)}{(r_b + W_6(z_2))\{\tilde{P}_b^+(0) - P_b^-(r_b) + W_4 - (P^- - P_b^-(r_b))\}},$$

where W_i are evaluated at $(0, z_2)$ and P^- is evaluated at the corresponding point on the shock.

同下 イヨト イヨト

Second Order Elliptic Equation

The elliptic modes can be governed by a problem for second order equation

$$\begin{cases} \partial_{z_1} \left(\frac{\lambda_4(z_1)}{\lambda_2(z_1)} \partial_{z_1} \phi \right) - \left\{ a \lambda_6(z_1) + \frac{d}{dz_1} \left(\frac{\lambda_4(z_1)\lambda_3(z_1)}{\lambda_2(z_1)} \right) \right\} \left(\phi(0, z_2) - \frac{W_6(M)}{a} \right) \\ + \frac{\lambda_5(z_1)}{\lambda_1(z_1)} \left(\frac{\sin \theta_b(z_2)}{2z_2} \partial_{z_2} \left(\frac{\sin \theta_b(z_2)}{2z_2} \partial_{z_2} \phi \right) + \frac{\kappa_b \cos \theta_b(z_2)}{2z_2} \partial_{z_2} \phi \right) = \mathcal{F}, \\ \partial_{z_1} \phi(0, z_2) + \beta \left(\phi(0, z_2) - \frac{W_6(M)}{a} \right) = \mathcal{G}, \\ \partial_{z_1} \phi(N, z_2) = \epsilon \lambda_2(N) P_0(\hat{\theta}(N, z_2)) - \int_{z_2}^M G_1(N, s) ds, \\ \partial_{z_2} \phi(z_1, 0) = 0, \\ \partial_{z_2} \phi(z_1, M) = -\frac{2M}{\sin \theta_b(M)} \lambda_1(z_1) \epsilon(r_0 + z_1 + \frac{N - z_1}{N} \hat{W}_6(M)) f'. \end{cases}$$

The solvability condition for this problem determines the location of the shock.

Jet Problems

A Simpler Case for Two Dimensional Flows

イロン イヨン イヨン イヨン

æ

Steady Euler System

2D steady Euler System:

$$\begin{cases} div(\rho \mathbf{u}) = 0, \\ div(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = 0, \end{cases}$$
(19)

where $p = p(\rho)$. If we denote $p'(\rho) = c^2(\rho)$, and

$$A = \begin{pmatrix} \frac{uc^{2}(\rho)}{\rho} & c^{2}(\rho) & 0\\ c^{2}(\rho) & \rho u & 0\\ 0 & 0 & \rho u \end{pmatrix}, B = \begin{pmatrix} \frac{vc^{2}(\rho)}{\rho} & 0 & c^{2}(\rho)\\ 0 & \rho v & 0\\ c^{2}(\rho) & 0 & \rho v \end{pmatrix}, U = \begin{pmatrix} \rho\\ u\\ v \end{pmatrix}$$

then, 2-D system can be written as

$$AU_{x_1}+BU_{x_2}=0.$$

$$\det(\lambda A - B) = 0 \Longrightarrow \lambda_1 = \frac{v}{u}, \ \lambda_{\pm} = \frac{uv \pm c(\rho)\sqrt{u^2 + v^2 - c^2(\rho)}}{u^2 - c^2}.$$

Boundary Conditions

The nozzle walls are assumed to be impermeable

$$(u, v) \cdot \vec{n} = 0, \quad \text{on } \partial\Omega,$$
 (20)

where \vec{n} is the unit outer normal of the nozzle walls.

the mass flux crossing any section transversal to the x₁-axis remains a positive constant m₀,

$$\int_{S} (\rho u, \rho v) \cdot \vec{l} dS = m, \qquad (21)$$

where \vec{l} is the unit normal of S in the positive x_1 -direction.

prescribe horizontal velocity of the flow in the upstream,

$$u(x_1, x_2)
ightarrow u_0(x_2)$$
 as $x_1
ightarrow -\infty$. (22)

<u>Remark</u> One can also prescribe the Bernoulli function in the upstream.

Jet Problem

<u>Problem</u> Given the incoming horizontal velocity u_0 and the total flux m, find (ρ, u, v) , the free boundary Γ , and the outer pressure p_e such that Γ connects with S_1 , (ρ, u_1, u_2) satisfies the Euler system (19) in Ω , and

$$p(\rho) = p_e$$
 and $(u_1, u_2) \cdot \mathbf{n} = 0$ on Γ ,

where Ω is the region bounded by S_0 , S_1 , and Γ .

Major Progress:

- Early works: Gilbarg, Serrin, ...
- Alt, Caffarelli, Friedman (JDE, 1985): Existence of an irrotational solution via variational formulation (some recent reformulation by Lili Du, etc);
- Wang and Xin: Existence of a subsonic and sonic jet for potential flows via hodograph transformation

Main Results on Subsonic Flows with Jet

<u>Theorem 2</u> (Shi, Tang, Xie) Suppose that $S_1 = \{(x_1, x_2) | x_1 = \xi(x_2), x_2 \in [1/2, 1]\}$ and $S_0 = \{(x_1, 0) : x_1 \in \mathbb{R}\}$. Without loss of generality, we assume $\lim_{x_2 \to 1} \xi(x_2) = -\infty$. There exists an $\epsilon_0 > 0$ such that

$$u_0'(1) = 0, \quad |u_0'| + |u_0''| \le \epsilon_0.$$
 (23)

There exists an m_{cr} such that as long as $m > m_{cr}$, the jet problem has a unique solution. Furthermore, at far field, the free boundary has a representation $x_2 = k(x_1)$ satisfying

$$\lim_{x_1\to\infty}k(x_1)=\bar{a}$$

where \bar{a} is unique determined by m and \bar{u}_1 . <u>Remarks:</u>

 Jets and cavities for 2D full Euler and 3D axisymmetric Euler system

Equivalent form for Euler system

Proposition 1

$$AU_{x_1} + BU_{x_2} = 0 \Leftrightarrow \begin{cases} (\rho u)_{x_1} + (\rho v)_{x_2} = 0, \\ (u, v) \cdot \nabla \left(\frac{u^2 + v^2}{2} + h(\rho)\right) = 0, \\ (u, v) \cdot \nabla \left(\frac{\omega}{\rho}\right) = 0, \end{cases}$$
(24)

where $\omega = v_{x_1} - u_{x_2}$, if the given flows satisfy

$$u > 0 \text{ in } \Omega,$$
 (25)

(本部)) (本語)) (本語)) (語)

and the following asymptotic behavior

 $u, \ \rho \text{ and } v_{x_2} \text{ are bounded, while } v, \ v_{x_1} \text{ and } \rho_{x_2} \to 0, \text{ as } x_1 \to -\infty.$

Stream Function

Stream function $\psi:$

$$\psi_{\mathbf{x}_1} = -\rho \mathbf{v}, \ \psi_{\mathbf{x}_2} = \rho \mathbf{u} \Longrightarrow \nabla^{\perp} \psi \cdot \nabla \left(\frac{u^2 + v^2}{2} + \mathbf{h}(\rho) \right) = \mathbf{0},$$

where
$$\nabla^{\perp} = (-\partial_{x_2}, \partial_{x_1}).$$

 $h(\rho) + \frac{|\nabla \psi|^2}{2\rho^2} = h(\rho) + \frac{1}{2}(u^2 + v^2) = \mathcal{B}(\psi).$ (26)

In the upstream,

$$\psi = \int_0^{X_2} \rho_0 u_0(s) ds \Longrightarrow X_2 = \kappa(\psi).$$
(27)

Set

$$f(\psi) = u'_0(\kappa(\psi)), \text{ and } F(\psi) = u_0(\kappa(\psi)).$$
 (28)

Then f and F are well-defined on [0, m]. Furthermore,

$$f(\psi) = \rho_0 F(\psi) F'(\psi). \tag{29}$$

Representation of Density and Vorticity

$$(h(\rho) + \frac{|\nabla \psi|^2}{2\rho^2})(\mathbf{x}_1, \mathbf{x}_2) = (h(\rho) + \frac{u^2 + v^2}{2})(-\infty, \kappa(\psi))$$

= $h(\rho_0) + \frac{F^2(\psi(\mathbf{x}_1, \mathbf{x}_2))}{2}.$
 $\rho = H(|\nabla \psi|^2, \psi) = J\left(|\nabla \psi|^2, h(\rho_0) + \frac{F^2(\psi)}{2}\right),$ (30)
 $\nabla \psi \cdot \nabla(\frac{\omega}{\rho}) = 0 \Rightarrow \frac{\omega}{\rho}(\mathbf{x}_1, \mathbf{x}_2) = -\frac{f(\psi(\mathbf{x}_1, \mathbf{x}_2))}{\rho_0} = -F(\psi)F'(\psi).$ (31)

The density ρ can be represented by

$$\rho = H(|\nabla \psi|^2, \psi).$$

One has the following boundary conditions

$$\psi = 0$$
 on S_1 , and $\psi = m$ on S_2 .

(32

Using the stream function formulation, the jet problem can be formulated into the following boundary value problem

$$\nabla \cdot \left(g(|\nabla \psi|^2, \psi) \nabla \psi\right) - \frac{F(\psi)F'(\psi)}{g(|\nabla \psi|^2, \psi)} = 0 \text{ in } \{\psi < m\},$$

$$\psi = 0 \text{ on } \mathbb{R} \times \{0\},$$

$$\psi = m \text{ on } S_1 \cup \partial \{\psi < m\},$$

$$|\nabla \psi| = \Lambda \text{ on } \partial \{\psi < m\}.$$
(33)

and we also ask ψ satisfies

$$|
abla \psi|^2 < \Sigma^2(\psi) ext{ on } \{\psi < m\},$$
 where $g = 1/H$ and $p(H(\Lambda^2,m)) = p_e.$

Variational Formulation

$\underline{\mathsf{Lemma 1}}$ Let ψ be a minimizer of the problem

$$\min_{\psi \in \mathcal{K}_{\mu,R}} J^{\epsilon}_{\mu,R}(\psi), \tag{34}$$

with

$$\mathcal{K}_{\mu,R} := \{ \psi \in H^1(\Omega_{\mu,R}) : \psi = \phi_{\mu,R} \text{ on } \partial\Omega_{\mu,R} \}.$$
$$J^{\epsilon}_{\mu,R}(\psi) := \int_{\Omega_{\mu,R}} G_{\epsilon}(|\nabla \psi|^2, \psi) + \lambda^2_{\epsilon} \chi_{\{\psi < m\}} dx, \qquad (35)$$

where

$$\mathcal{G}_\epsilon(t,z) := rac{1}{2} \int_0^t g_\epsilon(au,z) d au + rac{1}{\gamma} \left(g_\epsilon(0,z)^{-\gamma} - g_\epsilon(0,m)^{-\gamma}
ight)$$

and

$$\lambda_{\epsilon}^2 := 2\partial_t G_{\epsilon}(\Lambda^2, m)\Lambda^2 - G_{\epsilon}(\Lambda^2, m).$$

Then ψ is a weak solution to the equation in (33) and satisfies the boundary conditions in (33) in the weak sense

Let ψ be a minimizer for (34).

• ψ is a supersolution, i.e.

$$\int_{\Omega} \partial_{p} \mathcal{G}(\nabla \psi, \psi) \cdot \nabla \zeta + \partial_{z} \mathcal{G}(\nabla \psi, \psi) \zeta \geq 0, \text{ for all } \zeta \geq 0, \ \zeta \in C_{0}^{\infty}(\Omega).$$

• If $0 \leq \psi_0 \leq m$ on $\partial \Omega$, then

$$0 \leq \psi \leq m.$$

►
$$\psi \in C^{0,\alpha}_{loc}(\Omega)$$
 for any $\alpha \in (0,1)$. Moreover,
 $\|\psi\|_{C^{0,\alpha}(K)} \leq C(m, K, \epsilon_0, \lambda, \alpha, n)$ for any $K \Subset \Omega$.

回 と く ヨ と く ヨ と …

æ

Comparison Principle and and Linear Decay

• Let ψ be a supersolution in the sense of (27). Let ϕ be a solution

$$\int_{\Omega} \partial_{p} \mathcal{G}(\nabla \phi, \phi) \cdot \nabla \zeta + \partial_{z} \mathcal{G}(\nabla \phi, \phi) \zeta = 0, \text{ for all } \zeta \in C_{0}^{\infty}(\Omega),$$
(36)
and $\phi \leq \psi$ on $\partial \Omega$. Then if ϵ_{0} is sufficiently small, we have
 $\phi \leq \psi$ in Ω .

► Let $x_0 \in \{\psi < m\}$ such that dist $(x_0, \Gamma_{\psi}) \le \min\{1, \frac{1}{4} \operatorname{dist}(x_0, \partial \Omega)\}$. Then if ϵ_0 is sufficiently small, there exists C > 0 such that

$$\psi(x_0) \geq m - C\lambda \operatorname{dist}(x_0, \Gamma_{\psi}).$$

伺 と く き と く き と

Lipschitz Regularity, Non-Degeneracy, and Fine Properties

Let ψ be a minimizer for (34). Then

- $\psi \in C^{0,1}_{loc}(\Omega).$
- ► For any p > 1 and any 0 < r < 1, there exists a constant $c_r > 0$ such that for any $B_R \subset \Omega$ with $R \le 1$, if

$$\frac{1}{R}\left(\frac{1}{|B_R|}\int_{B_R}|m-\psi|^p\right)^{1/p}\leq c_r\lambda,$$

then $\psi = m$ in B_{rR} .

• Assume that u_0 satisfies (23). Then

 $\psi_0(-\mu, x_2) < \psi(x_1, x_2) < \psi_0(R, x_2), \text{ for all } (x_1, x_2) \in \Omega_{\mu, R}.$

• ψ is the unique minimizer and furthermore, $\partial_{x_1}\psi \ge 0$.

伺い イヨト イヨト 三日

Inspired by the unique continuation results by Koch and Tataru, we have the following proposition.

<u>Proposition 2</u> Let $\psi, \psi_0 \in W^{1,2}_{loc}(\mathbb{R} \times [0, \overline{\xi}]), \overline{\xi} > 0$, be two solutions to the Cauchy problem

$$\begin{aligned} \nabla \cdot \partial_{p} \mathcal{G}(\nabla \psi, \psi) + \mathcal{H}(\nabla \psi, \psi) &= 0 \text{ in } \mathbb{R} \times (0, \bar{\xi}), \\ \psi &= m, \; \partial_{x_{2}} \psi = \Lambda \text{ on } \mathbb{R} \times \{\bar{\xi}\}, \end{aligned}$$

where m, Λ are constants. Assume that $\mathbb{R}^2 \times \mathbb{R} \ni (p, z) \mapsto \mathcal{G}(p, z)$ are C^2 and $(p, z) \mapsto \mathcal{H}(p, z)$ are C^1 . Then $\psi_0 = \psi$.

向下 イヨト イヨト

We combine the comparison principle and unique continuation type results.

- If $\Lambda_n \to \Lambda$, then $\psi_{\Lambda_n} \to \psi_{\Lambda}$ uniformly in $\Omega_{\mu,R}$ and $k_{\Lambda_n}(x_2) \to k_{\Lambda}(x_2)$ for each $\bar{a} < x_2 \le 1/2$.
- If Λ > 0 is large, then the free boundary Γ_{μ,R,Λ} is nonempty and it satisfies k_Λ(1/2) < 0; if Λ is small, then k_Λ(1/2) > 0.
- N ∪ Γ is C¹ in a {ψ < m}-neighborhood of A (the connecting point).</p>

伺 と く き と く き と

Summary and Ongoing Projcts

Summary

- Stability of transonic shocks for 3D axisymmetric solutions
- Subsonic flow with jet

Ongoing Projects

- Stability of transonic shocks under 3D perturbations for the exit pressure
- Well-posedness for 3D jet for potential flows
- 2D problem with both transonic shock and jet

A B K A B K

Thanks!

Chunjing Xie Subsonic Flows with Physical Boundaries

・ロン ・回 と ・ ヨ と ・ ヨ と

3