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Motivation

I The well-posedness theory for unsteady compressible Euler
equations is widely open

I An important problem in the transonic flows
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Three Dimensional Euler System and Divergent Nozzles

The three-dimensional steady full Euler system reads as
div (ρu) = 0,

div (ρu⊗ u + PIn) = 0,

div (ρ( 1
2 |u|

2 + e)u + Pu) = 0,

(1)

where u = (u1, u2, u3), ρ,P, e and S stand for the velocity, density,
pressure, internal energy and specific entropy, respectively. The
equation of state, the internal energy e, and the sound speed are
given by

P = Aργe
S
cv , e =

P

(γ − 1)ρ
, c(ρ, S) =

√
∂ρP(ρ, S).

The nozzle wall Γ2 can be represented by√
x2

2 + x2
3 = x1 tan(θ0 + εf (r)), x1 > 0, r1 < r < r2 (2)

and θ0 ∈ (0, π2 ) and f is a smooth C 2,α function defined on [r1, r2].
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Background Transonic Shock Solutions

Given U−b (r1) > c(ρb(r1),S−b ) > 0 and Pb(r1), S−b ,

(u−,P−b ,S
−
b )(x) = (U−b (r1)er,P

−
b (r1),S−b ) at r = r1,

there exists two positive constants P1 and P2 such that if the
pressure Pe ∈ (P1,P2) is posed at the exit r = r2, there exists a
unique spherical symmetric transonic shock solution

(u±b ,P
±
b , S

±
b )(x) = (U±b (r)er,P

±
b (r), S±b ), (3)

to (1) defined in

Ω−un = {x ∈ R3 : x2
2 + x2

3 ≤ x2
1 tan2 θ0, r ∈ (r1, rb)}

and

Ω+
un = {x ∈ R3 : x2

2 + x2
3 ≥ x2

1 tan2 θ0, r ∈ (rb, r2)},
where r = rb ∈ (r1, r2) is a shock wave, and

[ρUb] = 0, [ρbU
2
b + Pb] = 0, S+

b > S−b ,

where [f ] denotes the jump of f at r = rb.
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The Axisymmetric Flows

Introduce the spherical coordinates

x1 = r cos θ, x2 = r sin θ cosϕ, x3 = r sin θ sinϕ. (4)

and decompose the velocity u = U1er + U2eθ + U3eϕ. The
axisymmpetric solutions do not depend on ϕ so that the Euler
system reads

∂r (r2ρU1 sin θ) + ∂θ(rρU2 sin θ) = 0,

ρU1∂rU1 + 1
r ρU2∂θU1 + ∂rP −

ρ(U2
2 +U2

3 )
r = 0,

ρU1∂rU2 + 1
r ρU2∂θU2 + 1

r ∂θP + ρU1U2
r − ρU2

3
r cot θ = 0,

ρU1∂r (rU3 sin θ) + 1
r ρU2∂θ(rU3 sin θ) = 0,

ρU1∂rS + 1
r ρU2∂θS = 0.

(5)
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Perturbed Domain and Boundary Conditions

The perturbed nozzle is
Ω = {(r , θ, ϕ) : r1 < r < r2, 0 ≤ θ ≤ θ0 + εf (r), ϕ ∈ [0, 2π]},
where f ∈ C 2,α([r1, r2]) satisfying

f (r1) = f ′(r1) = 0. (6)

Suppose the supersonic incoming flow at the inlet r = r1 is given by

Φ−en = (U−1 ,U
−
2 ,U

−
3 ,P

−, S−) = Φ−b + εΨ(θ), (7)

where Φ−b = (U−b (r), 0, 0,P−b (r),S−b ) and Ψ(θ) ∈ (C 2,α([0, θ0]))5

At the exit of the nozzle, the end pressure is prescribed by

P+(x) = Pe + εP0(θ) on r = r2, (8)

here ε > 0 is sufficiently small, and P0 ∈ C 1,α([0, 2θ0]).
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Rankine-Hugoniot Conditions and Entropy Condition

Denote the transonic shock surface by S and the upstream and
downstream flows by x1 = η(x2, x3) and (u±,P±,S±)(x),
respectively. Then the Rankine-Hugoniot conditions on S become

[(1,−∇x ′η(x ′)) · ρu] = 0,

[((1,−∇x ′η(x ′)) · ρu)u] + (1,−∇x ′η(x ′))t [P] = 0,

[(1,−∇x ′η(x ′)) · (ρ(e + 1
2 |u|

2) + P)u] = 0,

(9)

where ∇x ′ = (∂x2 , ∂x3). Moreover, the physical entropy condition is
also satisfied

S+(x) > S−(x), on x1 = η(x2, x3). (10)
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Stability of Transonic Shocks

Theorem 1 (Weng, Xie, Xin) Given the supersonic incoming flow
Φ−en satisfying the certain compatibility conditions, the transonic
shock problem has a unique solution
Φ+ = (U+

1 ,U
+
2 ,U

+
3 ,P

+,S+)(r , θ) and ξ(θ) satisfying

(i) ξ(θ) ∈ C
(−1−α;{θ∗})
3,α;(0,θ∗)

and

‖ξ(θ)− rb‖
(−1−α;{θ∗})
3,α;(0,θ∗)

≤ C0ε, (11)

where (r∗, θ∗) stands for the intersection circle of the shock
surface with the nozzle wall and C0 is a positive constant
depending only on the supersonic incoming flow.

(ii) Φ+(r , θ) ∈ C
(−α;Γw,s)
2,α;R+

, and

‖Φ+ −Φ+
b ‖

(−α;Γw,s)
2,α;R+

≤ C0ε, (12)

where

Γw ,s = {(r , θ) : ξ(θ) ≤ r ≤ r2, θ = θ0 + εf (r)}.
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Know Results and Remarks

Known Results

I Potential flows: G.-Q. Chen and Feldman (Dirichlet condition
for velocity potential at the exit), Xin and Yin (the problem is
in general ill-posedenss given the exit pressure), Bae and
Feldman (Non-isentropic potential flows)

I flat nozzle for the Euler system: G. Q. Chen et al for velocity
boundary conditions at the exit, S. X. Chen etc for the
particular pressure at the exit

I Divergent nozzle for the Euler system: Li-Xin-Yin for 2D and
3D axisymmetric without swirl, S. X. Chen for 2D case

Remark

I The nozzle wall Γ2 can depend on both r and θ.

I There is another result on the stability of transonic shock for
3D axisymmetric case with swirl via a different approach by
Park after we uploaded the paper
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Main Difficulty and Key Observation

I There is a singular factor sin θ in the density equation of (5),
the standard Lagragian coordinate used by Li-Xin-Yin is not
invertible near the axis θ = 0.

I Observation: sin θ is of order O(θ) near θ = 0. Define
(ỹ1, ỹ2) = (r , ỹ2(r , θ)) such that

∂ỹ2
∂r = −rρ±U±2 sin θ, ∂ỹ2

∂θ = r2ρ±U±1 sin θ, if (r , θ) ∈ R±,
ỹ2(r1, 0) = 0, ỹ2(r2, 0) = 0.

It is clear that ỹ2 ≥ 0 in R− ∪ R+. Setting

y1 = ỹ1 = r , y2 = ỹ
1
2

2 (r , θ).

The transformation L : (r , θ) ∈ R̄ 7→ (y1, y2) ∈ D̄ satisfies

det

( ∂y1
∂r

∂y1
∂θ

∂y2
∂r

∂y2
∂θ

)
=

r2ρU1 sin θ

2y2
≥ C3 > 0. (13)
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Reformulated System and the Domain

The reformulated system can be written as

∂y1

(
2y2

y2
1 ρU1 sin θ

)
− ∂y2

(
U2
y1U1

)
= 0,

∂y1(U1 + P
ρU1

)− y1 sin θ
2y2

∂y2(PU2
U1

)− 2P
y1ρU1

− PU2 cos θ
y1ρU2

1 sin θ
− (U2

2 +U2
3 )

y1U1
= 0,

∂y1(y1U2) +
y2

1 sin θ
2y2

∂y2P −
U2

3
U1

cot θ = 0,

∂y1(y1U3 sin θ) = 0,

∂y1B = 0.

The nozzle wall Γw ,s is straighten to be Γw ,y = (φ(M), r2)× {M}.
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Elliptic Modes

Put $ = U2
U1

, then one has

∂y1$ −
y1ρU1$ sin θ

2y2
∂y2$ −

$

y1
− $2

y1
cot θ +

y1 sin θ

2y2U1
∂y2P

− $

ρc2(ρ,S)
∂y1P −

U2
3

y1U2
1

cot θ = 0,

∂y1P −
ρc2(ρ, S)U2

1

y1(c2(ρ, S)− U2
1 )

(
y2

1 ρU1 sin θ

2y2
∂y2$ +$ cot θ)

− y1ρc
2(ρ,S)U1$ sin θ

2y2(c2(ρ, S)− U2
1 )

∂y2P −
ρc2(ρ, S)U2

1

y1(c2(ρ,S)− U2
1 )

($2 + 2)

− ρc2(ρ, S)U2
3

y1(c2(ρ, S)− U2
1 )

= 0.

The corresponding boundary conditions become
$(y1, 0) = 0, ∀y1 ∈ [r1, r2],

$(y1,M) = εy1f
′(y1), ∀y1 ∈ [r1, r2],

P(r2, y2) = Pe + εP0(θ(r2, y2)), ∀y2 ∈ [0,M].
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Fix the Domain

Introduce the coordinate transformation

z1 =
y1 − ψ(y2)

r2 − ψ(y2)
N, z2 = y2, N = r2 − rb

so that the free boundary becomes a fixed boundary. Setting

W1(z) = Ũ1(z)− Ũ+
0 (z1), W2(z) = $̃(z),

W3(z) = Ũ3(z), W4(z) = P̃(z)− P̃+
b (z1), (14)

W5(z) = S̃(z)− S+
b , W6(z2) = ψ(z2)− rb. (15)

After this coordinate transformation, the equation for the shock
becomes

ψ′(z2) =
2z2

sin θ

(Ũ+
b (0) + W1)W2 − U−2 (rb + W6(z2), z2)

(rb + W6(z2))((P̃+
b (0) + W4)− P−(rb + W6(z2), z2))

,

where the functions are evaluated at (0, z2).
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Iteration

Define the solution class

Ξδ =

{
W : ‖W‖Ξδ :

5∑
i=1

‖Wi‖
(−α;Γw,z )
2,α;E+

+ ‖W6‖(−1−α;{M})
3,α;(0,M) ≤ δ;

∂z2Wj(z1, 0) = 0, j = 1, 3, 4, 5; W ′
6(0) = W

(3)
6 (0) = 0;

W2(z1, 0) = ∂2
z2
W2(z1, 0) = W5(z1, 0) = 0

}
.

Given any Ŵ ∈ Ξδ, we will develop an iteration to produce a new
W ∈ Ξδ so we get a mapping T from Ξδ to itself by choosing
suitable small δ. To design a good iteration, we first need to find
the explicit form of the leading linear order term, and all the W in
the remaining nonlinear error terms will be replaced by Ŵ and
finally the error terms should be bounded by C (‖Ŵ‖2

Ξδ
+ ε).
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Hyperbolic Mode

It is easy to derive that

∂z1W5 = 0, ∂z1B̃ = 0, ∀z ∈ [0,N]× [0,M). (16)

Furthermore, one has{
∂z1 [(rb + z1 + N−z1

N W6(z2))W3 sin θ(z1, z2)] = 0,

W3(0, z2) = U−3 (r0 + W6(z2), z2).
(17)

The equation for the shock can be written as

W ′6(z2) =
2z2

sin θ

(Ũb(0) + W1)W2 − U−2 (rb + W6(z2), z2)

(rb + W6(z2)){P̃+
b (0)− P−b (rb) + W4 − (P− − P−b (rb))}

,

where Wi are evaluated at (0, z2) and P− is evaluated at the
corresponding point on the shock.
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Second Order Elliptic Equation

The elliptic modes can be governed by a problem for second order
equation

∂z1

(
λ4(z1)

λ2(z1)
∂z1φ

)
−
{
aλ6(z1) +

d

dz1

(
λ4(z1)λ3(z1)

λ2(z1)

)}(
φ(0, z2)− W6(M)

a

)
+
λ5(z1)

λ1(z1)

(
sin θb(z2)

2z2
∂z2

(
sin θb(z2)

2z2
∂z2φ

)
+
κb cos θb(z2)

2z2
∂z2φ

)
= F ,

∂z1φ(0, z2) + β

(
φ(0, z2)− W6(M)

a

)
= G,

∂z1φ(N, z2) = ελ2(N)P0(θ̂(N, z2))−
ˆ M

z2

G1(N, s)ds,

∂z2φ(z1, 0) = 0,

∂z2φ(z1,M) = − 2M

sin θb(M)
λ1(z1)ε(r0 + z1 +

N − z1

N
Ŵ6(M))f ′.

(18)

The solvability condition for this problem determines the location
of the shock.
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Jet Problems

S1

S0

Γ1

Γ0

u0

p = pe

p = pe

General Jet Problems for Two Dimensional Flows

S0

S1

Γ

u0

p = pe

A Simpler Case for Two Dimensional Flows
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Steady Euler System

2D steady Euler System:{
div(ρu) = 0,
div(ρu⊗ u) +∇p = 0,

(19)

where p = p(ρ). If we denote p′(ρ) = c2(ρ), and

A =


uc2(ρ)

ρ
c2(ρ) 0

c2(ρ) ρu 0

0 0 ρu

 , B =


vc2(ρ)

ρ
0 c2(ρ)

0 ρv 0

c2(ρ) 0 ρv

 , U =

 ρ

u

v


then, 2-D system can be written as

AUx1 + BUx2 = 0.

det(λA−B) = 0 =⇒ λ1 =
v

u
, λ± =

uv ± c(ρ)
√

u2 + v2 − c2(ρ)

u2 − c2
.
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Boundary Conditions

I The nozzle walls are assumed to be impermeable

(u, v) · ~n = 0, on ∂Ω, (20)

where ~n is the unit outer normal of the nozzle walls.

I the mass flux crossing any section transversal to the x1-axis
remains a positive constant m0,

ˆ
S

(ρu, ρv) ·~ldS = m, (21)

where ~l is the unit normal of S in the positive x1-direction.

I prescribe horizontal velocity of the flow in the upstream,

u(x1, x2)→ u0(x2) as x1 → −∞. (22)

Remark One can also prescribe the Bernoulli function in the
upstream.
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Jet Problem

Problem Given the incoming horizontal velocity u0 and the total
flux m, find (ρ, u, v), the free boundary Γ, and the outer pressure
pe such that Γ connects with S1, (ρ, u1, u2) satisfies the Euler
system (19) in Ω, and

p(ρ) = pe and (u1, u2) · n = 0 on Γ,

where Ω is the region bounded by S0, S1, and Γ.

Major Progress:

I Early works: Gilbarg, Serrin, ...

I Alt, Caffarelli, Friedman (JDE, 1985): Existence of an
irrotational solution via variational formulation (some recent
reformulation by Lili Du, etc);

I Wang and Xin: Existence of a subsonic and sonic jet for
potential flows via hodograph transformation
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Main Results on Subsonic Flows with Jet

Theorem 2 (Shi, Tang, Xie) Suppose that
S1 = {(x1, x2)|x1 = ξ(x2), x2 ∈ [1/2, 1]} and
S0 = {(x1, 0) : x1 ∈ R}. Without loss of generality, we assume
limx2→1 ξ(x2) = −∞. There exists an ε0 > 0 such that

u′0(1) = 0, |u′0|+ |u′′0 | ≤ ε0. (23)

There exists an mcr such that as long as m > mcr , the jet problem
has a unique solution. Furthermore, at far field, the free boundary
has a representation x2 = k(x1) satisfying

lim
x1→∞

k(x1) = ā

where ā is unique determined by m and ū1.
Remarks:

I Jets and cavities for 2D full Euler and 3D axisymmetric Euler
system
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Equivalent form for Euler system

Proposition 1

AUx1 + BUx2 = 0⇔



(ρu)x1 + (ρv)x2 = 0,

(u, v) · ∇
(
u2 + v2

2
+ h(ρ)

)
= 0,

(u, v) · ∇
(
ω

ρ

)
= 0,

(24)

where ω = vx1 − ux2 , if the given flows satisfy

u > 0 in Ω, (25)

and the following asymptotic behavior

u, ρ and vx2 are bounded, while v , vx1 and ρx2 → 0, as x1 → −∞.
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Stream Function

Stream function ψ:

ψx1 = −ρv , ψx2 = ρu. =⇒ ∇⊥ψ · ∇
(
u2 + v2

2
+ h(ρ)

)
= 0,

where ∇⊥ = (−∂x2 , ∂x1).

h(ρ) +
|∇ψ|2

2ρ2
= h(ρ) +

1

2
(u2 + v2) = B(ψ). (26)

In the upstream,

ψ =

ˆ X2

0
ρ0u0(s)ds =⇒ X2 = κ(ψ). (27)

Set
f (ψ) = u′0(κ(ψ)), and F (ψ) = u0(κ(ψ)). (28)

Then f and F are well-defined on [0,m]. Furthermore,

f (ψ) = ρ0F (ψ)F ′(ψ). (29)
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Representation of Density and Vorticity

(h(ρ) +
|∇ψ|2

2ρ2
)(x1, x2) = (h(ρ) +

u2 + v2

2
)(−∞, κ(ψ))

= h(ρ0) +
F 2(ψ(x1, x2))

2
.

ρ = H(|∇ψ|2, ψ) = J

(
|∇ψ|2, h(ρ0) +

F 2(ψ)

2

)
, (30)

∇ψ · ∇(
ω

ρ
) = 0⇒ ω

ρ
(x1, x2) = − f (ψ(x1, x2))

ρ0
= −F (ψ)F ′(ψ).

(31)
The density ρ can be represented by

ρ = H(|∇ψ|2, ψ).

One has the following boundary conditions

ψ = 0 on S1, and ψ = m on S2. (32)
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Stream Function Formulation for the Jet Problem

Using the stream function formulation, the jet problem can be
formulated into the following boundary value problem

∇ ·
(
g(|∇ψ|2, ψ)∇ψ

)
− F (ψ)F ′(ψ)

g(|∇ψ|2, ψ)
= 0 in {ψ < m},

ψ = 0 on R× {0},
ψ = m on S1 ∪ ∂{ψ < m},
|∇ψ| = Λ on ∂{ψ < m}

(33)

and we also ask ψ satisfies

|∇ψ|2 < Σ2(ψ) on {ψ < m},

where g = 1/H and p(H(Λ2,m)) = pe .
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Variational Formulation

Lemma 1 Let ψ be a minimizer of the problem

min
ψ∈Kµ,R

Jεµ,R(ψ), (34)

with
Kµ,R := {ψ ∈ H1(Ωµ,R) : ψ = φµ,R on ∂Ωµ,R}.

Jεµ,R(ψ) :=

ˆ
Ωµ,R

Gε(|∇ψ|2, ψ) + λ2
εχ{ψ<m} dx , (35)

where

Gε(t, z) :=
1

2

ˆ t

0
gε(τ, z)dτ +

1

γ

(
gε(0, z)−γ − gε(0,m)−γ

)
and

λ2
ε := 2∂tGε(Λ2,m)Λ2 − Gε(Λ2,m).

Then ψ is a weak solution to the equation in (33) and satisfies the
boundary conditions in (33) in the weak sense.
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L∞ Estimate and Hölder Estimate

Let ψ be a minimizer for (34).

I ψ is a supersolution, i.e.

ˆ
Ω
∂pG(∇ψ,ψ)·∇ζ+∂zG(∇ψ,ψ)ζ ≥ 0, for all ζ ≥ 0, ζ ∈ C∞0 (Ω).

I If 0 ≤ ψ0 ≤ m on ∂Ω, then

0 ≤ ψ ≤ m.

I ψ ∈ C 0,α
loc (Ω) for any α ∈ (0, 1). Moreover,

‖ψ‖C0,α(K) ≤ C (m,K , ε0, λ, α, n) for any K b Ω.
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Comparison Principle and and Linear Decay

I Let ψ be a supersolution in the sense of (27). Let φ be a
solutionˆ

Ω
∂pG(∇φ, φ) · ∇ζ + ∂zG(∇φ, φ)ζ = 0, for all ζ ∈ C∞0 (Ω),

(36)
and φ ≤ ψ on ∂Ω. Then if ε0 is sufficiently small, we have
φ ≤ ψ in Ω.

I Let x0 ∈ {ψ < m} such that
dist(x0, Γψ) ≤ min{1, 1

4 dist(x0, ∂Ω)}. Then if ε0 is sufficiently
small, there exists C > 0 such that

ψ(x0) ≥ m − Cλ dist(x0, Γψ).
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Lipschitz Regularity, Non-Degeneracy, and Fine Properties

Let ψ be a minimizer for (34). Then

I ψ ∈ C 0,1
loc (Ω).

I For any p > 1 and any 0 < r < 1, there exists a constant
cr > 0 such that for any BR ⊂ Ω with R ≤ 1, if

1

R

(
1

|BR |

ˆ
BR

|m − ψ|p
)1/p

≤ crλ,

then ψ = m in BrR .

I Assume that u0 satisfies (23). Then

ψ0(−µ, x2) < ψ(x1, x2) < ψ0(R, x2), for all (x1, x2) ∈ Ωµ,R .

I ψ is the unique minimizer and furthermore, ∂x1ψ ≥ 0.
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Unique Continuation

Inspired by the unique continuation results by Koch and Tataru, we
have the following proposition.

Proposition 2 Let ψ,ψ0 ∈W 1,2
loc (R× [0, ξ̄]), ξ̄ > 0, be two solutions

to the Cauchy problem

∇ · ∂pG(∇ψ,ψ) +H(∇ψ,ψ) = 0 in R× (0, ξ̄),

ψ = m, ∂x2ψ = Λ on R× {ξ̄},

where m,Λ are constants. Assume that R2 × R 3 (p, z) 7→ G(p, z)
are C 2 and (p, z) 7→ H(p, z) are C 1. Then ψ0 = ψ.
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Continuous and smooth Fit of the Jet and the Nozzle Wall

We combine the comparison principle and unique continuation type
results.

I If Λn → Λ, then ψΛn → ψΛ uniformly in Ωµ,R and
kΛn(x2)→ kΛ(x2) for each ā < x2 ≤ 1/2.

I If Λ > 0 is large, then the free boundary Γµ,R,Λ is nonempty
and it satisfies kΛ(1/2) < 0; if Λ is small, then kΛ(1/2) > 0.

I N ∪ Γ is C 1 in a {ψ < m}-neighborhood of A (the connecting
point).
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Summary and Ongoing Projcts

Summary

I Stability of transonic shocks for 3D axisymmetric solutions

I Subsonic flow with jet

Ongoing Projects

I Stability of transonic shocks under 3D perturbations for the
exit pressure

I Well-posedness for 3D jet for potential flows

I 2D problem with both transonic shock and jet

I ...
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Thanks!
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