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£+ Outline of lectures

® | ecture 1

Introduction to strong correlations, many-body problem, recap on
essential linear algebra we will need later.

® | ecture 2

Tensors and contractions, product states and variational principle,
matrix product states (MPS), and their entanglement properties.

® |ecture 3
The “calculus” of MPS, algorithms for their variational optimisation,
and algorithms for time-evolution of MPS.

® | ecture 4

Moving to finite temperatures, renormalisation approaches to
tensor networks, extension to 2D with projected entangled pairs.
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B+ Lecture 2
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i * 1: Tensors and contractions




* Tensors

For us a “tensor” is nothing more than a multi-dimensional array of
complex numbers. The number of indices an array has is called its
“rank”. Simplest tensors includes the very familiar ...

rank O = scalars rank 1 = vectors rank 2 = matrices
( X1 \ A A oo Agg \
L2 Aoy Aoy -+ Aoy
a T — - A — : : - :

Introduce a diagrammatic notation — “blobs and sticks”:

@ Leg = index dim=m
«— dim=n — “

Each leg of a tensor has a certain dimension, i.e. range of the index.
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RIS+ Tensors

We won’t be too concerned about how we precisely draw tensors:

However, we need to keep track of which leg is which and may label
them or introduce a convention. For example:

row column . .
=@ — G

Contraction: We can join tensors together by “contracting”
legs together which are of the same dimension:

Q\f@=m=—@

contract




K+ Tensors

Contraction means multiply elements and sum. So in terms of tensor

elements this contraction is simply: A
. . Ly —
@@ i@ =Y
Zj or Ax = y

i.e. it reduces to matrix-vector multiplication. Likewise other linear
algebra operations have diagrams:
tr(A)

AR —@D-"




All of this generalises naturally to higher rank tensors. Consider the
contraction of two rank-4 tensors: Qa
‘|

h

or explicitly ...
If Tadfh — Zbc RabcdSbcfh

We will also often “reshape” tensors to lower or higher rank by
combining or splitting legs.

ab

\

<« “fat” indices

Reshape rank-4 tensor into a matrix:

MATLAB command reshape (...)




~ Tensors

Quantum states give a concrete (very relevant) example of higher

rank tensors. Take three spin-1/, particles: x / \

) = ex| TH) + co A1) + cal 144) + ea] L)
+ 5] T + co| J1L) + er 1LY + es| L)

Conventionally we represent this state as a vector, but can reshape:

23 x 1 vector 2 x 2 x 2 array rank-3 tensor

( 1) rank-1 tensor '
co A ¢ ¢
C3 / Ce /68
C4 Cl// 63 ) /// k
Cy S

ty ey / | | |
Ce
: - spin 1 spin 2 spin 3

cr i F—J depth

\ Cs / column g;= {T= 0, i,= 1}



SN 1+ Tensors

A tensor representation exposes each degree of freedom. Many QM

calculations have simple diagrams ...
compute norm:

apply operator on spin 2:

Il®oc*R1)yY) =

compute expectation value: \

b ) = ()

compute reduced density matrix:

p2 = tr13(|Y)(Y]) -

W1 ®o* 1Y) ¢




'*f__ff* Our problem restated ...

What about N spins? Now represented by a rank-N tensor:

— \
V)= D Yorononl01,00,0 1 0N)

01,02,...,0N

_;_;S\_ ------ ; —%—- tensor contains 27 complex numbers!

Since ) is a structureless tensor any calculation we perform is
forced to operate on exponentially many elements ...

The “curse of dimensionality” again

Even computing the norm is (’)(QN)

Punch line — we have to factorise this tensor into a network of
smaller tensors with a physically motivated structure ...



{8EE  Our approach ...

We are confronted with an intractable problem because our tensor
for an arbitrary state is structureless = exponentially large.
2N

Physical states have structure (see shortly) — so
we want to break-up this tensor into a network
of smaller ones:

Contract pieces together
to build a state: 9

Can we accurately encode physical states into such networks with
only a number of parameters that grows only polynomially with N?

S
e
< ‘.

But even with this we also need to be able to:
* find and time evolve our representation efficiently
* and then be able to efficiently calculate observables from it



t:i+ Physical states

99

One might question whether our goal is even possible in principle —
why should we be able to encode states so compactly?

Random states in Hilbert space are clearly not compressible.

However, we're interested in physical
states, i.e. those arising as stationary states
of lattice Hamiltonians with short-range 2-
body interactions, like:

H=1JY ;000 +BY,0]

Since H is specified by a polynomial number of pg = le—ﬁlﬁf
parameters in N a thermal states appears efficient: Z

Alas, we can’t efficiently evolve or compute observables from this.

We’ll characterise physical states in more detail later ...



@ 2: Product states



~ Simplest tensor network

Let’s start by taking to approach to its most extreme limit:

Slice up tensor
into N pieces:

Sinceﬁ’: ‘gpﬁthisgives ‘¢> — 901> & |902> K ‘SON>

This is a product state — it clearly cannot be exact. Parameter
counting shows that we have gone from d" to just dN amplitudes.

Yet, this quantum state origami makes calculations trivially easy:

_______
_____________________________
_________
,,,,,
- S
~

—’a
-
-
il —— ~s~ -
- -
- -
e —————

W) = 11;(eiles)  (05) = (p2105]02) [T,25(w5le5)



Y -p-'_-.f_ g ___* 3

Al Product state ansatz

However, this also shows that product states are very crude.
Consider long-ranged correlations along a spin-chain:

awwmwm

J+€

We quantify the quantum correlation by computing:
© = (Wlojoi|v) — (Plof ) {dlose|v)

But for product states this can never be anything but zero ...




At

&1+ Computing the ground state

Product states are a very commonly used approximation. So how do
we find the “best” or “closest” such state to the exact ground state?

|deally we would want to find:

min [|]1) — |¢p)][2

closest PS exact GS

The problem is we don’t know the exact GS. But we do know the
Hamiltonian it comes from. For example an Ising spin system:

A J

and we can easily compute its expectation v
value for PS independent of dimension:



&84+ Variational principle

For this reason our strategy for finding the best product state
approximation will be to apply the variational principle:

<¢(p)“€[‘¢(p)> > € upper-bounds
<¢(p)|¢(p)> — exact GS energy

Compute: E(p) —

1 G(p) Then minimise over parameter(s):

Px
\\M\/ €ost = €(Ps) = mpin e(p)

> D to get the “best” estimate.

This is a powerful principle we will exploit frequently for other
more complex tensor networks. Let’s see how it works here:



+ Mean-field theory

Assume translational invariance — we need only solve for one site
by finding an effective Hamiltonian and Norm:

sum up averaged n.n. terms:

- + /#n.n.

Heg = —2J(0%)0* + Bo?

So in this case it reduces to

Formally we have a local a standard eigenvalue

generalised eigenvalue ‘ problem:

problem, but ... - o— 8 -0
Negg = 1 which is then iterated.

For obvious reasons this approach is called “mean-field” theory
and we have seen this for two particles in two boxes.



@R+ Aside: lower energy = better?

Not quite. The variational principle is subtle. Consider three simple
trial wave-functions for “simple hydrogen”:

H W g2 _ €
2m dmregr
i ' ! ' ' : ' 1 2 3
10 F —— u=2pexpl-p) .
ulb, 9) = | ee™™ [ e
S —
w2 — | 1p4me fdb 3/4b5
b)Y En — lpr—gp | (n— 8b)j2nb? 162 — b
bmin = 1 in 2
Har = — Eq —0.81 Bx —0.75 Ex
By — Ho — 0 0.25 0.33
I — By
(24/ IV June = | 2pe7® ol(§=)* + ¢*]t % 9|/§ p% e~ he
{var = L.5 o oo 1.66 ao
g=1— |<’:P-I]|!pva\1'>|2 = 0 0.21 0.05

[See QM by A. Messiah page 768]

Having a lower energy only tells us that a given ansatz estimates
energy better — it’s no guarantee it does anything else better.



@+ 3: Matrix Product States




{5+ Matrix Product States

While useful product states miss out a lot of physics. Can we build a
proper tensor network from them? Yes, lets add some new links:

________

____________________________________
———————————

~~~~~

-
-~
S~

v

Except the boundaries we now = internal legs dim =X
have rank-3 tensors at each site: . .
< physical leg dim = ({

For fixed X we still only have a polynomial number of parameters.
We can interpret each rank-3 tensor as a matrix indexed by the
physical leg. For spins we would have:

AT- = A- g, it
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dilE Matrix Product States
By explicitly writing out all the contractions we arrive at:

Py =N A01A02+..AUN\01,02,...,aN>

01,02,4...,0N

A matrices are different on every site

The amplitudes of the state are therefore parameterised by products
of matrices which are collapsed to a scalar (hence the name MPS):

wal,az,...,aN — A1 A%2... A9N-1 AON
— /1 ? A
7 (Ixx)(xxx) (xxx)(xx1)

We can make all A tensors rank-3 by e /R
introducing “internal” boundary ! ’
vectors giving instead: L

wO'l,O'Q,...,O‘N — ETAUlAJQ e AO-N_lAO-Nﬁ




e S = =

A Example MPS
Note that product states are just MPS with Yy = 1:
V) =lp)y@lp)@-- AT — o

! —

) =al 1)+ 8] ) Av =6

However, the purpose of introducing “internal” legs was to allow for
correlations. Some simple examples show we now get this once Y > 1

AF-GHZstate: |[Wapy) = | P4+ L)+ [ 41+ 1)

Set all A 0 0
tensorsto: Al = g1 = (8 (1)> At =0~ = ( 1 0 )

Since (AT)2 — (A¢)2 = () there are only two non-zero products:



Hdilidi * Example MPS

The AF-GHZ state is then obtained by using: [ = B = < 1 )

=1 =1
— —
Wenz) = Lioto Rt -+ )+ Lo o "R| I1) -+ 1)

This state has infinite-ranged correlations since CZZ — (_1)£ /.

Wstate: [Dyy) = | 141 4) [ 1o ) oo [ 1110 1)

Set all A 1 0 .1 - (00
tensors to : ATZ]IZ(() 1) AT =0 _(1 Q)

Since (A¢)2 — (Qonly N + 1 products of matrices are non-zero:

ATATAT...AT =1 and AYATAT...AT = 5~

+ translates



The W state is then obtained by using: I = ( 0 ) R = (
=0 =1

D ~
Ww) = LIR[ 111 --- 1) + Lo R 41t D) + ...

Another perspective: view the rank-3 tensors as a matrix of states:

e A7 A A
o S I )R R WA
?ﬁz(é(?)d_((?) <3>) SEREY

Matrix multiplication (contraction) yields Kronecker product of states:

. 1) e]1) 0
A A—<[|¢>®w>+|¢>®|¢>] |¢>®|¢>>

Full state is then just: \\IJW> — ETAA ‘o A}_?: a useful trick.




i O °
Ak Adding two MPS
Consider two MPS of dimension X'1 and X2 respectively:

’¢> :Z(?A‘HAUQ...AUN‘(ﬂ ‘¢> 223B01B02...B0N|5’>

We can form the MPS of their superposition by embedding their
matrices in the bulk into a large matrix:

- e o ime [ AT 0
o) =) +80) » o =arenr= (A 1)

and boundaries (vectors) as: Co1 — ( aA°t BB )

AN
ON __
This MPS for |#) therefore has dimension X3 = X1 + X2 i.e. it has
enlarged, but it is also usually sub-optimal (see later).

Thus the family of MPS with a dimension X' do not form a subspace.



{ffii + Sequential generation

What about MPS with larger X' ? Consider the following quantum
circuit for N d-level systems and one X-level ancilla:

The ancilla interacts via a unitary gate y/lilsequentially with each d-
level system in turn giving a “staircase circuit”. We then project out
the ancilla in the state |©y) leaving the N d-level systems in some
state |W). This state is a X dimensional MPS ..



&1+ Sequential generation

We can see this by rearranging the circuit into a tensor network:

Contract all the inputs
to unitaries and
projection of ancilla

conveyer of atoms
Ancilla carries correlations from one site to

the next. It’s ability to do so is heavily
influenced by its dimension. This process can
even give a physical construction of MPS:

Y cavity



Fi . 4 Entanglement properties




~+ Entanglement

To fully understand MPS, i.e. where it will work and fail, we need to
unravel its correlations in terms of entanglement. Take a system of
spins in some state 1) ...

Let’s split the system into two:

How entangled are A and B?

First, reshape tensor into a matrix: Z ww ‘
1)

ﬂ —@— b




G Entanglement
Remember D is diagonal

Now SVD this matrix: D, = A,
- - O

This operation “Schmidt decomposes” the state:

¢> — Zz’j (Zgzl UiaDaa(VT)Oéj) ‘Z>A|J>B
¥) = Scy A X Uialida) (55(V1asli) )
‘¢> - 22:1 )\a‘¢a>A‘¢a>B Schmidt bases =

)\a = Schmidt coefficients ZT )\i — 1

a=1
Schmidt rank = 7 = min (dim(A), dim(B))

Any state with r > 1 is entangled = not a product state.




How are quantum correlations between A and B exposed? Compute

reduced density operators: pa = tre(|P)(]) = Z—.— i/

A’s Schmidt basis diagonalises pa: =

Whenr>1 p4 is mixed (despite ]¢> being pure). The more uncertain
pA the more entangled 1)) is. Quantify this via an entropy:

von Neumann entropy:  S(p) = —tr(plog(p))

Shannon entropy of )\(QX: S(pA) — S(,OB) — Z )\i log()‘czx)
a=1



G+ Exact MPS for any state

4.4

If we allow the dimension X of an MPS to vary as needed then any
state can be represented exactly. Take an arbltrary statew

Keep peelmg off physical
legs and doing SVD ...

Yields an MPS tensor network.
Internal dimensions = Schmidt
ranks = entanglement.

But, the dimension of the
internal legs (e.g. in the centre)
can scale exponentially with N

|
— we’ve gain nothing so far ... | | | | |




@ - Physical states/boundary laws

We now come to an important observation about physical states.

Suppose we have a Hamiltonian of the form: \g ; \g /
H = Zj hj hj

where hj acts only on a finite number of sites or / @ \&

spins (usually 2) that are geometrically local x ; ;

(usually nearest-neighbour) then ... \g

WO> ¢ f % Q‘{ f\f k{ Pick any region A then we find
£ Ay

that for the ground state |1/ ):
"y

94 k f f S(pa) ~ |0A

The entanglement between A and
¥ K % the rest scales with the boundary

)Y

é }; Contrast this to entropies in stat.

mech. which scale with | A|.



I+ Physical states/boundary laws

Intuitively a boundary law means that entanglement, and so
correlations, between a region and the rest is concentrated at their

interface. In 1D this is particularly constraining ...

WAYS L

Obeying the boundary law means that S(,OA) ~ const. for any /.

Beyond numerical evidence the boundary law has been proven for:

* Any gapped 1D Hamiltonian with unique GS.
* For gapped free bosonic/fermionic models in any dimension.

Even critical gapless systems in 1D, which S(pA)A
violate the boundary-law, do so “gently” as: K
S _________




&1+ Physical states/boundary laws

A consequence of the boundary law is that the Schmidt coefficients for
such states decay very quickly with the index ¢v:

OA

| This indicates that in 1D GS and low-
logm()\i) | lying excitations are only very weakly
104N entangled with only a few relevant
1 2!0 Y degrees of freedom.

We can truncate the rank r for every bipartition without any significant
loss of accuracy: N_1 . :
119) = )3 < 232550 | el i (Ad)?

The locality of physical states means they B-L
occupy an exponentially small “corner” of
the many-body Hilbert space:

Tensor-networks try to encode this corner ...




{ffii » Projected entangled pairs

The connection between MPS and the boundary law is best exposed
by considering the projected entangled pairs construction:

Introduce a pair of X-level ancilla for

each physical site: =@=v<@=@=

Maximally entangle neighbouring ancilla: ](I)> \/_ Z ‘]> \]>

Resulting state exactly embodies the boundary law. Bipartition the
system anywhere:

R T > > Sl

we will always cut through two bonds so S(,OA) — 9 log(X) and
SO is constant.

This state is a bit artificial, but it can be used to generate MPS ...



(T Projected entangled pairs

Let us apply a projector which maps CX ® CX — C¢ the on-site pair

of ancilla to the proper physical site:
Diagrammatically: | | ;@%
O—0 = | | v = Y _71 _____ i _____ ‘P/--

Putting this together we can #_|
identify our rank-3 A tensor / R | | | [

as the projector glued -Q— / Y Y Y

together by entangled pairs: PN ’

What about boundaries? O—l — I—O ‘ — ‘
f
R

Can generalise to L
2D (see later): OBC as before PBC new option

—LTAA..-AR =tr(AA---A)



A AKLT example
The PEPS construction can give exact ground state. Here is a famous

example for a spin-1 chain: - Z S S+1—|- (S; S+1)
j J

=@T@=@= is a sum of projectors of spin 1

pairs into spin 2 subspace, so
2= 2 -1m=5( 0 o) By < €
0) =

GS given by the projection of shared singlets
— [0 O GSsven by the projectio :

! into the triplet subspace:
|
Y le\)\P+(1 O)PO 1(0 1)P_:(0 0)

AT~ 0 0 V21 0 0 1

Merge (and normalise): |W k) = . tr(ATA%2 ... A7V)|5)
MPS with tensors: A1 = \/gcfr A = é A =

First exactly solved system with characteristics of a Haldane phase, e.g.
gapped GS with finite correlation length (see problem class).

OJI[\D



