Tensor Network Theory

An introduction to DMRG and MPS methods

Quantum and Kinetic Problems: Modeling, Analysis, Numerics and Applications
IMS Singapore

Dieter Jaksch

University of Oxford

Special thanks to: Stephen Clark, University of Bristol

Q-mAc (LY EPSRC

OXFORD




£+ Outline of lectures

® | ecture 1

Introduction to strong correlations, many-body problem, recap on
essential linear algebra we will need later.

® | ecture 2

Tensors and contractions, product states and variational principle,
matrix product states (MPS), and their entanglement properties.

® | ecture 3

The “calculus” of MPS, algorithms for their variational optimisation,
and algorithms for time-evolution of MPS.

® | ecture 4

Moving to finite temperatures, renormalisation approaches to
tensor networks, extension to 2D with projected entangled pairs.



T+ 1: Calculus of MPS




FH + Calculus of MPS

The key property of MPS tensor network is that many calculations
become very efficient:

Norms and overlaps: <¢W> _

A useful obJect in this network is:

reshape Zgj A o (A[ ilos )*
called the “transfer matrix”

The normiis then:  (4)|a)) = E EB] ... EIN-1] F[N]
S T ! ™
(1> X0 x x?) (¢ x ) (x* x 1)

This is the multiplication of (1 x y2)with N—=2 (x? X x*) matrices
with a complexity that scales as: (O(Ny*) > efficient!



T+ Calculus of MPS

Expectation values:

(Y| XiYj19) =

1 J
In addition to the transfer matrices we now also have:

X—>§ reshape=||__§:||= X_ oo A[Z]JZXJZ (AH Ok

Aldl Similarly for Y

The expectation value is then a product of vectors and matrices:
()| X;Y;)¢p) = EMEX ...E[i—l]E[;;]E[iJrl] . E[j_l]E%Z]EUH] ... EIN-1] FIN]

This has the same complexity as the norm O(NX4) - efficient!



FH + Calculus of MPS

Correlation lengths:
The transfer matrix, which appears many times, contains crucial
information about how correlations behaviour in general in MPS:

Diagonalise =LI_I:I|=

eigenvalues: Cu

corr. lengths:

W’UJZ%ZH\W (o W><¢’%+e\¢> Eu = 1/1og(|Cul)

One can show that : log(C77)
, A

X
2z __ CM ) —E/&"H 1 |
& Z <Ku‘ W

= log(€) log(¢)

Once X is fixed and finite MPS always have exponentially decaying
correlations, but can still model algebraic on short length scales.




-+ (Gau ge freedom

An MPS representation of a state is not-unique. Given any invertible
square matrix X we can simply insert it and its inverse on any
internal leg without changing the state:

‘¢> — 26 AP1L A2 A3 .. .AO'N’5-’>

We obtain a different MPS of
the same dimension:

This “gauge freedom” can be exploited to establish a crucial property
for stable algorithms — orthogonality ...



&t Orthogonality
Let’s take an MPS and split some internal leg into two pieces ...

14 {+1

O—?-?— _?_i —?—?—O is equivalent to the form:
\!] i ) = Y, [Lar)|Re)

| UL )

1
V4
Ly ap  RE)

What are the properties of the states \L[fb and |R£ﬂ> of the left and
right subsystems? In particular are they orthogonal? Consider:

Qg

4 4 14 14 N
se& gl CTE STS
* N\

/
Qy

which is an overlap matrix for the set of “left” states. If this is the
identity matrix then they are an orthonormal basis of a subspace.



E» Orthogonality

Suppose that the “left” states at the splitting ¢ — 1 are orthogonal,
then

[0—1]
Loy 1|Lae ; so for [LY¥)) to be
orthogonal we need:

m :i: :i: Ei: Z [E]ae)TA[E]oe —1

Thus we are left with a local condition on the A I matrices. If this is
obeyed by all the matrices Alklfor sites & < {then all their left
states are orthogonal. This is exactly what we want for an exact MPS:

each —q— “unitary”

UTU:]l

they came from a reduced SVD, so
they automatically obey:




+ Orthogonality

A similar condition applies to the “right” states of our spIitting:

ZUE_H A[€—|—1]0e+1 (A[€+1]Jg+1 T — 1

We say this is right
orthonormalised

Ofe 2
a£+2 +

0TI

If this is obeyed by all the matrices A[k]for sites k > fthen all their
right states are orthogonal. So how do we turn any MPS into a form
with left-right orthogonality about some split?

A |

A ARASRA

J 1\

1
all left orthonormalised all r:ght orthonormalised

Apply same strategy as for the exact MPS construction ...



{if:i * Enforcing orthogonality

Start from the left: ,--_-Q1

SVD ...

.
gzl‘T[JO‘?=B

next A matrix is left p \
orthonormalised: ?—?:'.‘?':'?‘
I o3l 1

\____/




{8+ Enforcing orthogonality

Do analogously from the right. Meet up at desired splitting:
I
|
l

Finally we SVD the remainder: —.—D— m

Can absorb unitaries into adjacent A matrices — doesn’t alter their
orthonormality properties — end up with a diagonal at the split:

W Zae >‘Oze|¢a£>A‘¢ >

i _— . oy,

~——— e —

oiya Ae \¢ B

Thus we have converted the MPS into Schmidt form about the split
and exposed the Schmidt coefficients (entanglement) there.




~ Truncation of bond

So far we have used the gauge freedom to alter the A matrices of the
MPS — we have not altered the state represented. However what if

we find that: dim = 7 0
l - loglo(A?M) i
1 20 Oy

Being in Schmidt form we can identify irrelevant states, e.g. Schmidt
states with a weight A2~ 107! and truncate them away.

Orthogonality of the left and right states means is crucial for the
optimality of this “local” truncation in terms of the global 2-norm:

[19) = [ Iz < e, —y1(Aar)”

We have therefore “compressed” the original MPS on this single
internal bond into a smaller one with very little loss of fidelity.



* Shifting the split

Having truncated one bond how do we move to another? Simple, do
another SVD to shift the splitting:

—-— o oy,

I
i | ‘ “ ‘ ‘ ‘ | now left orthonormalised

- - s -

move right: ﬁ. ﬂ_oo_
“~absorb to right

Schmldt coefficients of

move left: next bond )\

_&r = M analogous in this direction

We can of course perform truncation on every bond in sequence like
this. However, repeated truncations are no longer globally optimal.

Qr41



Matrix Product Operators

The matrix product representation can be applied to operators as
well as states. This will be very useful in what is to follow.

We have already encountered the simplest MPQO'’s, product operators:

includes on-site observables, terms in

¢ ¢ ¢ ¢ ¢ Hamiltonians and n-point correlations:
01002003 ---®0nN

Again we generalise this by introducing internal legs:

dim=m

s

FormaIIy it is just an expansion in the physical basis as usual:

=35 5 LIATI 71 A/720% .. ATNON B|G) (]



FR{T + Matrix Product Operators

Many useful operators have an MPO representation with a very
small internal dimension. We can build them by hand using a trick

from earlier ...

wrap up physical legs so A matrix elements are on-site operators:

reducing the MPO to the

b .
Oé—¢—ﬂ ., ¢¢ ¢ product:

¢¢ " o O=I'AA-- AR

and then use a lower-triangular form by choosing the m-dimensional
boundary vectors to be:

LT =10,0,...,0,1] RT =[1,0,...,0,0]
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diE Matrix Product Operators

Multiplication of A matrices gives
tensor products the operators as:

A x A — ( _.p®p 0 )

Examples: Choose A matrices with m = 2 as: 50
A= ("
g

For longer products the bottom left corner becomes a sum of all

translates of termslike ' @ -+  XT R GRXIP R -+ QX P

obvious example is ... but generalises to larger m easily:
- N 2 N-—1 N
Z = 23:1 o Hinv = Zj:l 050541+ B Zj:l 0;
1 0 O
1 0 :
A = : q A = o 0 O
o Bo* o 1



(i + 2: Variational optimisation




{{f} * Finding the ground state

We have seen how we can compute physical properties efficiently if
given an MPS. We now come to the variational calculation of an MPS
approximation of the ground state ..

(v )

Our task is to minimise: ¢ — with |¥) € MPS(x

(U] W)
We can construct an MPO for H = O—¢—¢—¢—¢—

Then:
(W|H|U) = (U]W) =




(! * Finding the ground state

Minimising over all A tensors simultaneously would be very difficult.
We adopt a site by site strategy instead: freeze all A tensors but one
site’s and solve a local (dy?) x (dx?)optimisation problem:

Effective Hamiltonian: Effective Norm:

00 o—o— O—.-0-0

—o—..
g oy
Ther T
Local minimisation of G(A) — 4 Hj_, — Hx = A\NZ

ATN




FEEE L+ Finding the ground state

However, we can avoid a generalised eigenvalue problem if we use
an orthonormal gauge for the MPS with a split at the site so:

Effective Norm:

oo-o! Lo-.-00 4 L

00~ -0 O-.-00 |

\ J | )
! !

left orthonormalised right orthonormalised

We then solve the local standard eigenvalue problem Hr = \1

Find the lowest eigenvector and —
. =X — -?-
replace A tensor by this: ﬁ’



{if:i * Finding the ground state

To devise a proper algorithm we need to define some intermediate
tensors for this calculation. At site £ we have:

P A . L R
i N - -
oo.or 000, W' B

_— s s e e .

Given that we have minimised for site £ then we want to move on to
site £ 4+ 1 so we SVD the eigenvector:

—

Keep the left unitary as the new A tensor (so its left orthonormalised),
pass on the rest to improve initial guess for next A tensor ...



(! * Finding the ground state

Now create a hew left environment tensor one site further on:
€+1] 1,6+ R+

[
-

We compute (or retrieve) the right environment tensor R[Hl] and
then form a new local eigenvalue problem for site ¢ 4 1.

— —_— then

This algorithm thus performs a left => right alternating least-squares
minimisation sweep of the A tensors individually.

The right => left sweep is defined analogously. Overall algorithm
consists of repeated left=>right and right=>left sweeps until
convergence in energy (usually only a handful are needed).



+ Finding the ground state

What was the cost?

Each local eigenvalue problem formally scales as (’)(d3X6) if solved
completely. However, we only want the lowest eigenvector — use
iterative methods (Jacobi-Davidson or Lanczos) instead

m- L. I"_I"I /5

.- T

In fact we should not even build H explicitly since iterative solvers
only need to know the matrix-vector multiplication Hy = Zz.

This operation costs O(dX3m) after exploiting internal structure.



~+ TNTgo example

Let’s try an example DMRG calculation using our online web
interface tool:

www.tntgo.org

We can compute the ground state for the isotropic Heisenberg
Hamiltonian for some OBC chain of length N:

H = JZ (Sx SR R y+1)

The exact energy density in the thermodynamic limit, given by the
Bethe ansatz solution is:

Ey/J = —0.43929075655



Fi8i+ 3: Time-evolution



{1+ MPO x MPS zip

Suppose we have an MPO and we wish to apply this to an MPS and
get the MPS for the resulting state. Exact approach is to contract ...

[T
o ™ OlY)

T No orthonormality.

The MPS dimension grows exponentially with the number of MPOs we
multiplied by. Can we approximate/compress? Yes, use SVD again:

—>
\
move to next site ...

Contract and SVD, sweeping from left to right, —_s
passing on the remainder, but don’t truncate yet. i\




G+ MPO x MPS zip

We will establish a fully left orthonormalised state, but with an
enlarged internal dimension m Y. Now we sweep back and truncate:

truncate dim = X/

o — ,___\/
| ]

Orthonormality ensures locally optimal truncation, but not globally.
This is because of the one-sided interdependence of truncations.
Continuing we end up with a fully right orthonormalised MPS with

dimension X’...
TP O )

Whether compression is accurate depends on the Schmidt spectra
encountered during the sweep. Overall the cost is O(m3X3).



~+ Variational MPO x MPS

An alternative approach is to variationally target the 2-norm residual
between the “exact” MPO x MPS and a compressed MPS result:

10[¢) — [)||53 = (W|OTO[Y) — ($|O) — (W|OT[¢) + ()

\

|
This is a highly non-linear optimisation problem in terms of the A

matrices of the compressed MPS. Use the strategy of extremising with
respect to one A matrix at a time (will all the others frozen) ...

min |Of) — [¢)[3 = min (ETNA‘— ATB - BtA+ B’Té)

Solution found from a linear system of equations: NJAT - E



* Variational MPO x MPS

Graphically the equation N/T — é is equivalent to:

A «— unknown

Can be solved iteratively, e.g. by using conjugate gradients, where the
solution N1 B is found by using repeatedly the multiplication N}Y.
However, if left-right orthonormality applies to the frozen A matrices
then the problem reduces to ...

No system of equations I—?-‘ _
to solve now! |_$_

Use SVD on local solution to shift orthonormality split one site along.
Efficiency depends heavily on the initial guess for the A matrices.

—)
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A Time-evolution of MPS

We have seen how to efficiently compute physical properties from
MPS and how to efficiently find a variational approximation to the
ground state, now we come to how to efficiently time-evolve MPS ...

Take a Hamiltonian H( ) = t) composed of time-dependent
nearest-neighbour terms, eg X ; \&g{ &_ﬁ \x x \g

]-|-1
Given some initial MPS |1)) at time t, we want to compute the action

of the unitary time-evolution operator:
2 —i [t H(s)d
U(t,to) :T{B ’Lfto (5) S}
. .d -
which formally solves to the TDSE e [(t)) = H(t)|1p(t)) as

W(t)) = U(t, to)|¥)



&t * Time-evolution of MPS

To handle this we first digitise the time-dependence into T piece-wise
constant segments Jt: A 51

Ult,to) =1, U

|

|

I

|

|

~ I

A —H |
U, = e H(k)ot - 5 i > s

>

However, we are still left with an exponentially sized unitary U
for any given segment, so next step is to “Trotterise”. Simplest case:

6(A—|—é)x _ eﬁxeéx + O(sz)

akin to assuming A and B commute (not true), so usually more
accurate higher-order versions are used like:

G(A—I—B)a} _ 6Ax/2€éweflaz/2 4 0(333)
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* Time-evolution of MPS

For a given segment we have: Uk — 6_7“& 2 hj (k)

we then divide the terms in the Hamiltonian into two parts:

even pairs: ;'\5&;{__’591 i ‘xs{e% ‘lg A=3" hy(k)

jEeven

odd pairs: -___i‘&);-_-if’ &l’_ﬁb‘%__%}‘}g B = ilj (k)

ondd
Notice that (for spins and bosons) all terms within either set commute
since they act on disjoint sites, so for example:

o0 = exp | —idt Z hik) | = H exp (—iét ﬁj(k))

jcodd j€odd

is an exact expansion and is simply a product of two-site unitaries.
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Ed+ Time-evolution of MPS

The evolution for a single segment can be approximated to (’)(5153) as

= T e (—z— o ) I1 exp( it I ( k)) [T e (—z‘%hj(k))

jEeven j€odd JEeven

This is equivalent to applying a quantum circuit of two-site unitaries:

6_ %il (k)
e—iathj(k)
6_ %il (k)

Other segments will be analogously decomposed for their times. We
need €dt < 1 where € is a relevant energy scale, both for
smoothly approximating time-variations and reducing Trotter errors.



i3 Time-evolution of MPS
We now recast this circuit as an MPO. First we SVD the gates like:

VD vD dim = d? (at most)

#SL?MD IS VNP ':_,+_(:H
| e =7

dim = d* (at most)



gt Time-evolution of MPS

The complete time-evolutions is now an MPS repeatedly multiplied by
a sequence of MPOs for each time segment:

o

time

ty

The t-MPS algorithm proceeds by starting at the top and performing
one by one each of the MPO x MPS for each row of the grid, while
compressing the resulting MPS to control its internal dimension.




+ Calculations we can do

In this lecture we have presented efficient algorithms for solving
problems (1) finding the GS and (2) doing time-evolution for 1D
strongly correlated systems using MPS. As examples we can:

® Find a ground state in some regime of a Hamiltonian.
® Apply an excitation to it (like a spin-flip) and time-evolve.
® Or, time-evolve with a time-dependent Hamiltonian.

As well as straight dynamical evolution of an initial state we can also
compute spectral functions by considering two evolutions:

() = U(t,0)|0) |[vs(t) = Ut 0)B|p)

then compute the time-dependent overlap of them:

(WA BO)|¢) = (W(1)|Alys(t))

Fourier transform w.rt. ttoget Ssp (w)



4 Driving local vibrations - erc

= o

* Include driving of a-b lattice with frequency

V V
Hd(r)=EZsin( T—¢)nj+EZSin( T+ @) n;

j€a jEb
we assume the driving to be out of phase ¢ = %

x‘

W \U/ :3:0:
L1




Driving Amplitude(T)

%))

N

w
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Simulations for 1D infinite system erc

OXFORD
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We use td-iDMRG to study the dynamics for a slowly increasing drive and
starting from the ground state

— V= 6.0t
— V= 5.7t
=V} = 5.0t
—Vy = 4.0t

0 20

We look at correlation functions
and their structure factors

Density-density correlations
N;; = (nin;) — (n;)(n;)

Spin-spin correlations

where S7 = (n; —n;y)/2

Pair correlations
_ gt
Pij = (b; ;41 bjj+1)
where bij = (CiTle — CileT)/\/i



B4 Density structure factor erc

OXFORD

| | T
=T U =20t
0.2} Hubbard GS — 6t
| | 1
0 10 20 30 40 L=o
n=1/2
~0.3F I ' ' i krp = 7'[/4
) 0.2 | Driver} State |
0 10 20 30 40
J
2.5 ( ,) — :
—v(oo) =1.8 .
| —1(c0) =2 . For small quasi-momentum ¢
— v(oo) =22
£ 5l—v() =24 Ve < Ked
L\:‘T T
Repulsive Luttinger liquid (M) for K, < 1
0.5 : . L
0 40 20 Attractive Luttinger liquid (SC) for K, > 1



Spin structure factor erc

" S(q) = (1~ cosq) 2kp kr = (n)

.
\VAVAUS?AVAVA/}

ro |

The g = 2k spin wave In the Hubbard ground state gives way
to AFM bound pairs.
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Pair correlations erc

OXFORD e

(| 2Tt =30

1076 L
, 0.5 10Y 10*
g q/2m 5

Long-range pair correlations are enhanced by the driving

Correlations spread with speed t/4 = |



hd Finite temperature B, driven state

UNIVERSITY OF

OXFORD

Effective inverse temperature S
of the driven state in the tJ model

14 1 1 1 1 1
(d)
_l ] 1 1 | |
1 2.5 5
Bot

Many-body version of adiabatic cooling

-~ = =

—_—




{ffii + Code for doing TNT

You could write your own, but our group is developing an open-
access TNT library (in C) which does a lot of the hard work for you:

www.tensornetworktheory.org

Available:
® DMRG and td-DMRG available now.
® U(1) guantum number symmetry.

Coming soon:
® Finite-temperature calculation

® Master equation evolution.
® Quantum trajectory code.

3

Coming later:

® Parallelised versions of codes.
® I[mpurity solvers for DMFT.
® Tensor tree, PEPS and MERA.




