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i1+ Outline of lectures

® | ecture 1

Introduction to strong correlations, many-body problem, recap on
essential linear algebra we will need later.

® | ecture 2

Tensors and contractions, product states and variational principle,
matrix product states (MPS), and their entanglement properties.

® |ecture 3
The “calculus” of MPS, algorithms for their variational optimisation,
and algorithms for time-evolution of MPS.

® | ecture 4

Moving to finite temperatures, renormalisation approaches to
tensor networks, extension to 2D with projected entangled pairs.
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{1+ 1: Finite temperature



So far we have dealt exclusively with ground states (i.e. T=0). So
how do we handle finite temperatures? We can use the formalism
already developed by exploiting purification:

Suppose we have a density
operator p describing a system
P. By diagonalizing, this can
always be written as:

P = 2221 pa‘a>P<a‘P

i.e. as a mixture of orthogonal states in P. However, by adding an
identically sized ancillary system Q we can interpret QO as a pure state:

V) =2 a1 vPala) pla)q

This is just a Schmidt decomposition. Partially tracing out Q gives the
mixed state p for system P.




* Infinite temperature

We can use this neat approach to immediately write down a purified
state for infinite temperature. Recall that:

& 5H with: Z(/B):tr(e_ﬁﬁ) and 5:@%

Ps = Z(ﬁ)

Sowhen 3 = () we have:
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i.e. an equal mixture of all eigenstates. Purification of the identity
operator on each site is just a maximally entangled state with one

ancilla site!
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Each site in either
system is otherwise
unentangled.
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At Finite temperature

Let’s interleave system and ancilla sites along a chain. Graphically
(ignoring factors of 1/d) the state has a very simple MPS form:

o) = T 11 1~ 1

The density operator then gives an MPO graphically as:

wolonywo)- S LS -E-1[]]-]

l\
\trace over Q

Its invariance to any local unitaries on P and Q is now obvious. Given
we have infinite temperature how do we get a finite temperature?
Here is a handy observation, since 1 = Z(0)pg then:

pg = Z(ﬁ)—le—ﬁﬂ/z 1 e BH/2 — g((gge BH /2 o € —BH /2

since we have a purification for pg we then immediately get ...



&+ Finite temperature

This means that a finite temperature thermal state is given by:

Ps = 7(5 7@ (6‘5H/2|¢o><¢o\€_w/2>

The purification of pﬁ is then simply the imaginary time-evolved

infinite temperature purification: 77/
[Yg) = e PH2]4hg)

Note that e_ﬁH/Q acts only on the system P, and not Q, so:

trpq(|vs) (Vsl) = (Vplg) = g%;

and the partition function is easy to obtain as the norm of the purified
state (since Z(0) = d*). Thermal expectation values are also easy:

01 = rloi0) = Zgyrralld vl = R




{fii * Finite temperature

We can implement imaginary time-evolution e_ﬁH/Z as a “Trotter”
MPO just like with real time-evolution earlier. The tricky part is that
now the evolution only acts on every other site (i.e. just the system):

_waj(k)m_i

o—08h; (k) /2

—6h; (k)/iF

We now have to SVD twice this next-nearest neighbour “gate” to get

a 3-site MPO: 12
dim = d“ (at most) Despite the gate doing nothing

L] | e
\ \ to the ancilla it will have non-
( , trivial elements in the MPO.
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(T * Finite temperature

We can then construct an MPO for a complete imaginary time-
evolution segment 04

e 0PH -4 3

This MPO is applied repeatedly to WO) until the required final value
of 3 isreached.

Once the pure state |1)g) is obtained real time-evolution can then
be applied in an identical way giving access to dynamics at finite
temperatures. Similar MPS methods also allow open quantum
systems (e.g. noise) to be simulated.



{ifii * 2: Renormalisation approach




{1+ Renormalisation group

One of the first methods of handling the “curse of dimensionality”
was to renormalise the system thinning the d.o.f. down successively:

Kadanoff’s spin blocking:

block spi
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The leading intuition was that at criticality the system will display
scale invariance and spin-blocking converges to a fixed point.



{ffii * Renormalisation group

A physically sensible idea is to use the low-energy eigenstates of a
block’s Hamiltonian to define the coarse-graining projection:
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The leading intuition here is that we are searching for the ground
state and so target the projection to the local low-energy sector.



An improved scheme instead uses the eigenstates of the reduced
density matrix of a block to define the coarse-graining projection:

White’s density-matrix  Sf- sl keep d’ lowest

RG: —> ,0 | —p eigenstates
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The leading intuition here is to target the local support of the global
ground state (or approximation of) and so optimises state fidelity.



{fii * Renormalisation networks

In 1D renormalisation of physical sites into an effective site is
implemented by a rank-3 isometric tensor:

dim = d/ How projections are
Y ‘ applied spatially makes
‘ || = a big difference to the
resulting tensor

/‘l |\ * )
dim=d1 dim=d2 x\networ .

. 4
Suppose we renormalise The boundary “vectors”
an effective site with of the MPS are the fixed
one physical site at each ‘ input and output states

step. This gives MPS of the effective sites.
network since it is

equivalent to sequential
generation earlier. 6 | = | ‘ | -?




{11 * Renormalisation networks

Alternatively we could follow the Kandanoff blocking scheme and
renormalise pairs of sites in parallel in each layer to get:

A

The result is a tensor tree network (TTN). This tree geometry alone
ensures contraction can be done exactly and efficiently. However, it
simplifies considerably for isometric tensors ...



TR Tensor tree network

Consider the network contraction for a simple on-site expectation
value after we repeatedly use the isometric property:
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{f{ii » Tensor tree network

Finally we can rearrange the remaining network as a product of

matrices, similar to an MPS contraction:
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{ffi + Tensor tree network

Can perform variational minimisation of the rank-3 tensors one by
one as with MPS by building effective Hamiltonian and norm matrices
and solving a generalised eigenvalue problem.

The isometric constraint on the tensors can be imposed after
minimisation, if they are done layer by layer upwards, using the usual

SVD and “pass on” approach: - _‘ -
|
pass remainder on . E |
SVD =iy € to next layer up ! :
- :.'{Q:g'," that hasyettobe ' Y _ .
. T _ optimised:
isometric ||

Tensor tree networks can mildly violate the boundary law. For some
blocks the number of bonds connecting it to the rest scales as log( L)
where [, is the size of the block. This is useful for critical systems.
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A+ Entanglement renormalisation

An important improvement on real-space renormalisation is to
account for entanglement between blocks:

standard RG entanglement RG
4 4 4 4 4 A
KRR N . it it

Introduce a unitary acting between the boundaries of neighbouring
blocks which “disentangles” them before projection.



({1 + Entanglement renormalisation

We can illustrate why this might be useful by examining blocks where
some sites are maximally entangled with those of other blocks:

maximally entangled pair

complete partial none

If entanglement is shared at the boundaries then then an appropriate
unitary can completely disentangle the blocks (retaining/encoding this
correlation) before projection. If entanglement is longer ranged then
it will fail — such correlations will have to be addressed higher up.



4+ Entanglement renormalisation

By attempting to “disentangle” as much as possible at each layer
longer ranged entanglement at larger length scales will be captured.
In 1D the resulting multi-scale network looks like:

isometry for projector:

The resulting hierarchical tensor network is called the multi-scale
entanglement renormalisation ansatz (MERA).



* Entanglement renormalisation

The MERA ansatz also possesses exact efficient contractibility, like
MPS and TTNs, due to the special properties of the tensors:

Massive cancellation.
The causal cone
around any site has
bounded width due
to the isometries.

Can similarly perform variational minimisation, but slightly more tricky
now as isometric and unitarity properties must be preserved.



FEEE + 3: Extending TNT to 2D ...




{f:i + Building networks

Earlier we saw how MPS can be thought of as resulting from the
projection of maximally entangled ancilla shared between
neighbouring physical sites. This can be generalised to any graph:

@) = == >0 )]d)




(& Building networks

This then projects to a tensor network with tensors associated to
each physical site following the geometry of the graph:

internal legs

physical legs

S




{ff' + Building networks

Graphs with loops in them present difficulties. First, the association of
Schmidt decompositions to internal legs only holds for trees.

All correlations for this

bisection pass through
this bond

We can’t
orthonormalise
by “regauging”
locally anymore.

Two bonds connect here /%



{1 » Building networks

Second, unless the graph has a bounded “tree-width”, it cannot be
contracted efficiently like we had for MPS ...

Can turn into a tree by
“bagging” together these

edges: \\\\s




Wi+ PEPS generalisation to 2D

Nonetheless this construction is worth considering for a 2D lattice
(which has an infinite tree width) because it has desirable
entanglement properties:




: ++ PEPS generalisation to 2D

8-t

For any contiguous region we cut through a number of entangled
pairs which scales with the boundary so we automatically have:

Like MPS does in 1D
the PEPS construction
immediately obeys
the boundary-law of
entanglement in 2D.




PEPS generalisation to 2D

Each on-site projector now maps CX Q CX Q CX ® CX — ¢
from which we identify a rank-5 A tensor:

internal legs —— . !
. —>
dim =X <— physical leg dim = d

Tensor network composed of a grid of these tensors contracted in a
pattern mimicking the underlying lattice (i.e. shared ancilla pairs):

As “obvious” as it seems PEPS is
a different beast from MPS in a
number of ways ...




G+ Key PEPS example 5; = +1
Take a classical Ising spin model: H(sy, $2,...,8y) = —J Z(@ SiS;
Its partition functionis Z(f3) = Z e PH(51:52,,8N)

. $1,824...,. SN
Encode into a quantum state:

‘\Ij> — Z 6_%BH(81’S27.‘.78N)‘817827°"7SN>

$1,824...,SN
This state has identical z-z correlations as the classical model:
A A . —BH(Sl S2 ...,SN) . .
(Yl|o7o: W) = E e 52 SiS;
S$1482,...3SN

The 2D classical Ising model (solved by Onsager in the 40’s) has
algebraically decaying correlations at the critical temperature:

B = % log(1 4 +/2)



-+ Key PEPS example

This “classical thermal” quantum stateisa y = 2 PEPS. We can see
this easily by using a rank-5 “copy” tensor or “diagonal” tensor: 7TL
All legs identical in dimension —only non-

1 0
A
zero when all legs have identical values: 1 ) 0 )

o—JB/2  LIB/2 )

Using the matrix M = ( = —O—

eJB/2 e—JB/2
We get a PEPS network immediately by joining up copy dots with M:

Can write down A tensor for this
" PEPS by square-rooting M and

splitting it between sites.

So when [ = (3. this PEPS has algebraic correlations with at finite X,
unlike MPS which only ever has exponentially decaying correlations.



+ Computing expectation values

Let’s consider the simplest calculation — the norm of a state:

W> form a. transfer
ensor:

/

: combined 5
e leg dim =X

We are still left with a grid tensor network of [, /to contract down:

Will encounter an intermediate tensor with
O(v/L) open legs, and is thus (y2)VZL =
exponential in size. Exact contraction totally
infeasible.




++ Approximate contraction

DB

With open boundaries the contraction takes the form of a sequence
of MPO x MPS calculations — can apply algorithms from earlier:

We use the truncation/compression in MPO x MPS steps to reduce
the X4 exact MPS dimension down to X2, repeatedly.

Cost scales as O (x®). Truncation error is known at each step and
in practice very small. Expectation values can therefore be found.
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A+ Variational minimisation

Using approximate contraction techniques we can evaluate effective
Hamiltonians and norms for tensor-by-tensor variational minimisation:

We cannot avoid a generalised eigenvalue problem Hx = Nz
and so we can encounter problems if IN is badly conditioned.
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1+ 4: Conclusions
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H:1+ Computational physics

It is worth reflecting on what we are trying to achieve. Not long ago
numerical calculations were considered distinctly 2nd rate:

= ~ 1

Qualitative Analysis of the Cohesion LOCAL MOMENTS AND LOCALIZED STATES

in Metals’
Me e Nobel Lecture, 8 December, 1977

by

PHILIP W. ANDERSON

Bell Telephone Laboratories, Inc, Murray Hill, New Jersey, and Princeton
University, Princeton, New Jersey, USA

EvGeNeE P. WiGNErR AND FrEDERICK SEITZ
Princeton Universily and the University of Illinsis

Lo IDARO0MORI0N: i s v i e e e v G s e &% o aY o o a7 a'm 4k Ay i it g . m P 97
I1. Preliminary ODServVAtions. .. . ..o n e 99 Localization was a different matter: very few believed it at the time, and
1. Allotropic Modifications. . .........vvnrr e 100 even fewer saw its importance; among those who failed to fully understand it
2. Periodic Functions; the Boundary Correction. .. .. 5 &7 % 2 e a3 T G S 100 at first was certainly its author. It has vet to receive adequate mathematical
3. Co.rrelnti?n Eﬂ'ects‘. .............................................. 103 treatment, and one has to resort to the indignity of numerical simulations to
HIL The Strceur and Width of Soparaied 7 and 4 Bands, ..., jo7  ille-suen the simolest queskons about & Only now, and thiough primarily
IV. Overlapping Bands. ... ... ... .iiiiiiininnnnnnrennnrennaeonnnsennans 118 Sir Navill Mott's efforls; is it beginning to gain genaral acceptance,
V. Interpretation of the Coheswe Encrgiesof Metals....................... 119 .
R B T 123 :
Appendix: Caleulation of the Hole Energies.................cccvuuunn.. 123

discuss. Very often such, a simplified model throws more light on the real
I. Introduction workings of nature than any number of “ab initio” calculations of individual

iIf ong ha na.u | a_gr ..-:-.P;’:'Qim"m machine, one might apply it to the situations, which even where correct often contain so much detail as to conceal
problem of solvmg the Schrodinger equation for each metal and obtain rather than reveal reality. It can be a disadvantage rather than an advantage
thereby the interesting physmal quantities, such as the cohesive energy, to_be able to compute or to measure too accurately, since often what one
the lattice constant, and similar parameters. measures_or computes is irrelevant in terms of mechanism. After all,_the perfect

that a great deal would be gamed by this. P computation simply reproduces Nature, does not explain her.
-EE"@ wipﬁ_ ;Ee experime _‘ﬁ'ﬂy aet,emuqe{fg,uanut;es F ngghmg vgs ly.

MWWM It would be preferabie instead
1 10

i
to have a vivid nistn hehaviaor of the wave funnhnno 2 sir

descmntmn of the essence of the factors which determine cohesmn and an
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G Third cornerstone of physics?

Yet, nowadays Computational Physics is considered an important
branch of physics, complementary to experiment and theory:

Perform “in-silica experiments g
”
onad mOdeI cfﬂiﬂllﬂclg Hﬁlﬂ'llllﬂﬂ

* Metropolis Algorithm for Monte Carlo

* Simplex Method for Linear Programming

* Krylov Subspace Iteration Methods

* The Decompositional Approach to Matrix
Computations

* The Fortran Optimizing Compiler

Simulation * QR Algorithm for Computing Eigenvalues

* Quicksort Algorithm for Sorting

* Fast Fourier Transform

* Integer Relation Detection

* Fast Multipole Method

Much has been learnt about strongly correlated physics precisely
by attacking/approximating the many-body problem numerically.



{1l » What have we learnt here?

® \We have seen ways of encoding the physically relevant “corner” of
Hilbert space using networks of tensors.

® [n 1D MPS are both well motivated and possess many useful
properties like being exactly and efficiently contractible.

® \We formulated efficient algorithms for variationally finding ground
states and computing time-evolution.

® Extensions to finite temperatures re-used these algorithms.

® \We looked at generalising this success with TTN and MERA
motivated from a renormalisation perspective.

® Using PEPS we constructed networks for 2D systems.



{ffii + Code for doing TNT?

You could write your own, but our group is developing an open-
access TNT library (in C) which does a lot of the hard work for you:

www.tensornetworktheory.org

Available:
® DMRG and td-DMRG available now.
® U(1) guantum number symmetry.

Coming soon:
® Finite-temperature calculation

® Master equation evolution.
® Quantum trajectory code.
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Coming later:

® Parallelised versions of codes.
® I[mpurity solvers for DMFT.
® Tensor tree, PEPS and MERA.




