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The 3D incompressible Euler equaƟons

8<
:@tu+ (u � r)u+rp = 0 inR3 � (0; T );

div u = 0 inR3 � (0; T );

with the iniƟal datau(t = 0) = u0;wherep is pressure,u = (u1; u2; u3)

is velocity Įelds. (u � r)umeans that
3P

i=1
ui@xiuj ; j = 1; � � � ; 3:

Global existence and uniqueness of soluƟons to Euler equaƟons is sƟll
open!



One physically relevant dynamic variable for incompressible Ňow is
! := curl u(t; x), the vorƟcity, which saƟsĮes the evoluƟon equa-
Ɵon

@t! + (u � r)! = (! � r)u: (0.1)

Note that ru is formally of the same order as !. Thus the vortex
stretching term (! � r)u � !2.

| For 2D case, the vorƟcity ! = @xu2 � @yu1 is a scalar funcƟon and
the vortex stretching term (! � r)u in (0.1) vanishes.



Known results

▶ 2D case (not comprehensive nor state-of-the-art)
▶ Global existence and uniqueness of strong soluƟons when !0 2

L1 (Yudovich 1963);
▶ Global existence of weak soluƟons when !0 2 Lp

\ L1; p > 1

(Diperna-Majda 1987);
▶ Global existence of weak soluƟons when !0 is a Radon measure

with one sign. (Delort 1991; Majda, Evans, Muler, Wu, Schochet,
Xin, M. Lopes, L. Lopes, etc);

▶ Global existence and uniquenss of soluƟons in Hölder spaces or
Soblolev or Besov spaces (Wolibner, Bourgains, Temam, Kato, Vishik,
Chae, Park, etc);

▶ 3D case (not comprehensive nor state-of-the-art)
▶ Local results (Majda-Bertozzi 2002)
▶ Global existence of the weak/admissible weak soluƟon emanat-

ing from aL2/vortex sheet iniƟal data in periodic domain (Wiede-
mann 2011; Szekelyhidi 2011 )



Axi-symmetric Flow

u(x; t) = ur(r; z; t)er + u�(r; z; t)e� + uz(r; z; t)ez; (0.2)

p(x; t) = p(r; z; t): (0.3)

The vorƟcity ! = curl u = �@zu
�er + !�e� + 1

r@r(ru
�)ez; where

!� = @ruz � @zur. Furthermore,

@t(
!�

r
) + u � ~r(

!�

r
) = �

@z(ru
�)2

r4
; (0.4)

where

~r = vr@r + vz@z:



Known results

CASE I No Swirl (u� = 0)(not comprehensive nor state-of-the-art)

▶ 9! Strong soluƟons to inviscid axisymmetrical Ňows with the as-
sumpƟon of !0

r 2 L1 (Ukhovsky, Yudovich 1968; Danchin 2007
weaken with !0

r 2 L3;1 and !0 2 L1 \ L3;1)

▶ Globalwell-posedness of smooth soluƟons of Euler equaƟons (Saint
Raymond 1994)

▶ Global existence of weak soluƟons with iniƟal vorƟcity in L
6

5 \

Lp; p > 3 (Chae-Kim 1997; Extended to L1 \ Lp; p > 1 by Jiu-
Wu-Yang 2013)

▶ Global existence in Besov space with u0 2 B
1+ 3

p

p;1 and !0
r 2 L3;1:

(Abidi-Hmidi-Keraani 2010)

▶ � � �



Known results

CASE II Swirl (u� , 0) (not comprehensive nor state-of-the-art)

▶ Well-posedness sƟll Open

▶ Lower bound of lifespan (Danchin 2013)

▶ Blowup criteria (Chae et al; Jiu-Xin 2001; Kubica-Porkorny-Zajaczkowski
2012; Wang-Zhang 2012)

▶ Liouville theorem (Z. Xin, Q. Jiu, 2015)

▶ Global regularity under some assumpƟons (Chen-Strain-Tsai-Yau
2008, 2009; Koch-Nadirashvili-Seregin-Sverak 2009; Z. Lei, Q.S.
Zhang 2011)

▶ Singular formaƟon in special domain (Elgindi, Jeong 2018)

▶ � � �



Helically Symmetrical Flows:

▶ Invariant under rotaƟon and simultaneous translaƟon along axis
of rotaƟon.

▶ This invariance (helical symmetry) preserved by Ňuid Ňow.

Figure: Helically symmetric vector Įelds u



Helical flows

DeĮniƟon

▶ Vector Įeld u is helical symmetry if u(S�(x)) = R�u(x);

▶ A scalar funcƟon f is helical symmetry if f(S�(x)) = f(x):

S�(X) := R�X +

0
BB@

0

0
�
2��

1
CCA =

0
BB@

cos � sin � 0

� sin � cos � 0

0 0 1

1
CCAX +

0
BB@

0

0
�
2��

1
CCA

(0.5)

� > 0 is called step, which is deĮned as the translaƟon displacement
along the symmetry axis aŌer one full clockwise turn around the axis.



Figure: Picture of tornada & simulaƟon in Purdue vortex chamber in 1988



Observations

▶ Helical Ňow is periodic in term of x3 variable with � period

▶ � = 0 () axisymmetric Ňow ? Radial Ňows (Lopes-N.-Lopes-
TiƟ, Preprint, 2010)

▶ � =1() the helix becomes straight line ? 2.5D Ňows (Lopes-
Mazzucato-N.-Lopes-TiƟ, 2014)
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Beltrami flow (Helical flow)

DeĮniƟon (Gromeka (1881); Beltrami (1889); Dritschel (1991))
A steady 3D Ňuid Ňow is called a Beltrami Ňow if the vorƟcity
! = curlv saƟsĮes the Beltrami condiƟon

!(x) = �(x)v(x) for some �(x) , 0 (0.6)

for all x.

Results: Any steady, divergence-free velocity Įeld v(x) in R3 that sat-
isĮes Beltrami condiƟon (0.6), is a soluƟon to the 3D Euler equaƟon.

Experiments show that Ňows in which the vorƟcity ! is locally roughly
parallel to the velocity generate interesƟng 3D instabiliƟes. This can
result from the self-induced velocity of vortex lines deforming the vor-
tex lines into very unstable horseshoes.



Figure: The Įgure on the leŌ shows vortex lines at Ɵme t = 0. The Įgure
on the right shows what can happen to these lines if the vorƟcity is roughly
aligned with the velocity Įeld as in the case of a Beltrami Ňow



Known results

1) No helical swirl (i.e., u0 � � = 0):

▶ Well-posedness for smooth data (A. Dutrifoy 1999).

▶ 9! strong soluƟon if (curlu0)3 2 L1c (B. Eƫnger and E. S. TiƟ
2008).

▶ 9 weak soluƟon with (curlu0)3 2 L
p
c ; p > 4

3 : (A. Bronzi, M.
Lopes, H. Lopes 2015).

▶ 9! strong soluƟons with iniƟal data lying in criƟcal spaces, e.g.,
!0 2 �B0

1;1 with addiƟonal assumpƟons. (H. Abidi,S. Sakrani
2016)



▶ The limits of the 3D viscous and inviscid incompressible Ňows
respecƟvely approach the Ňow, the dynamic of which are two-
dimensional when the step � goes to1. (Mazzucato, M. Lopes,
N., H. Lopes, TiƟ 2014)

▶ Vanishing viscosity limit problem of 3D Navier-Stokes equaƟons
(Jiu, M. Lopes, N., H. Lopes 2018)

2) With helical swirl (i.e., u0 � � , 0) : Open!



Properties of Helical Flow

▶ The helical symmetry reduces the periodicity of u with � with
respect to the x3 variable. Thus, the eīecƟve domain is R2 �

(0; �) instead ofR3:

▶ DeĮne � := u � ξ , called helical swirl, which saƟsĮes

@t� + u � r� = 0;

where ξ = (�y; x; 1)t is the tangenƟal direcƟon of the Ňows
along the helical line.

▶ If u is helical, then the vorƟcity

! = curlu = !3
~�

�
+

1

�
(
@�

@y
;�

@�

@x
; 0);



▶ The vorƟcity equaƟon

D!

Dt
+

1

�
!3(u2;�u1; 0)

t +
1

�
(@x�@yu� @y�@xu) = 0:

▶ when � = 0, ! = !3
~�
� and

@!3
@t

+ (u � r)!3 = 0:

▶ Two-dimensional property of helical Ňows. The following propo-
siƟon shows that suĸciently smooth funcƟons and vector Įelds
with helical symmetry are essenƟally two-dimensional.



Letu = u(x) be a smooth helical vector Įeld and let p = p(x)

be a smooth helical funcƟon. Then there exist unique w =

(w1; w2; w3)(y1; y2) and q = q(y1; y2) such that

u(x) = R2�x3=�w(y(x)); p = p(x) = q(y(x)); (0.7)

Conversely, if u and p are deĮned through (0.7) for somew =

w(y1; y2), q = q(y1; y2), then u is a helical vector Įeld and p
is a helical scalar funcƟon,

Mazzucato-Lopes-N.-Lopes-Titi,2014

where

y(x) =

2
664
y1

y2

3
775 =

2
664

cos(2�x3=�) � sin(2�x3=�)

sin(2�x3=�) cos(2�x3=�)

3
775
2
664
x1

x2

3
775 :



Questions

▶ Can we prove the global existence of soluƟons to 3D incompress-
ible Euler equaƟons with helical symmetry WITHOUT/WITH heli-
cal swirl?

▶ Can we prove the global existence of weak soluƟons in the Crit-
ical space without helical swirl compared with Bronzi, M. Lopes,
H. Lopes’s result, i.e., (curl u0)3 2 Lp; p > 4

3 with compact sup-
port?

▶ Can we prove the global existence of soluƟon with helical swirl in
any regular space?



Motivation

▶ Helical Ňow seems more close to two-dimensional Ňow instead
of three-dimensional Ňow (without helical swirl case).

▶ There exists Sobolev embeddingW 1;p ,!,! L2; p > 1 without
helical swirl in some sense.

▶ The case with helical swirl is very Diīerent!



Case I: Without helical swirl

We look at the global existence ofweak soluƟons to 3DEuler equaƟons
with helical symmetry WITHOUT helical swirl.

Given a scalar helical funcƟon !0 2 L1per\L
p
per(R2� [��; �])

with some p > 1, for any T > 0, there exist weak soluƟons
u = u(t; x) 2 L1([0; T ];W

1;p
loc (R

2 � [��; �])) to the three-
dimensional Euler equaƟons with helical symmetry with the
iniƟal vorƟcity ω0 = !0ξ in the sense of distribuƟon. More-
over, u � ξ = 0:

Jiu-Li-N., 2017



Difficulties

I.We should prove that the following inequality by virtue of Biot-Savart
law

krukLp(RN ) � c(p)kωkLp(RN ); 1 < p <1:

Compared with the classical case:

u(t; x) =

Z
RN
KN (x� y)ω(t; y)dy; x 2 RN :

Singular Integral Operator theory tells us that

krukLp(RN ) � c(p)kωkLp(RN ); 1 < p <1:



In fact, Biot-Savart Law with helical symmetry has the addiƟonal re-
quirement

8>>>>>>>><
>>>>>>>>:

curlu = ω = !3ξ; in R2 � [��; �];

divu = 0; in R2 � [��; �];

u � ξ = 0; in R2 � [��; �];

u(x) = O(jx0j); as jx0j ! 1;

u periodic in x3; in R2:

▶ We express the form of u = rG � ω, where G is the Green
funcƟon with the complicated form as

G(x) = �
1

2�
ln jx0j+

1

�

1X
n=1

K0(njx
0j) cos(nx3):



Bounded domain case

Using the condiƟon of vanishing helical swirl, the divergence free con-
diƟon can be rewriƩen as

@xu1 + @yu2 + @z(yu1 � xu2) = 0;

@�u1 = (�y@x + x@y + @z)u1 = �u2;

@�u2 = (�y@x + x@y + @z)u2 = u1:

Then we introduce the stream funcƟon  similar to 2D case, i.e.,8>><
>>:
�
@ 

@y
= (1 + y2)u1 � xyu2;

@ 

@x
= (1 + x2)u2 � xyu1:



The stream funcƟon  saƟsĮes the second-order ellipƟc equaƟons
with variable coeĸcients, i.e.,

8<
:
LH =: r � (Kr ) = !;

 j@
= 0;

whereK(x; y) = 1
1+x2+y2

 
1 + y2 � xy

�xy 1 + y2

!
:

Then the regularity theory of second-order ellipƟc equaƟons shows
that

k kw2;p � ckωkLp ;

which implies that

krukLp(RN ) � c(p)kωkLp(RN ); 1 < p <1:



Difficulties

II. We lose the L2 integrability of velocity Įeld, i.e., we DONOT haveR
R2�[��;�] juj

2dx <1.

▶ For two-dimensional Ňow, the velocity must saƟsfy the strong re-
stricƟon that

R
R2 !dx = 0 because the decay behavior of the

two-dimensional kernel at inĮnity is like 1
r , which is not square

integrable.

▶ The standard strategy to decompose the velocity Įelds into an ex-
plicit and steady soluƟon, and the other part, which is recovered
from the vorƟcity with the zero average by classical Biot-Savart
law.

▶ L2loc esƟmate instead (which helps us to remove the assumpƟon
of compact support).



Case II: With helical swirl

We look at the global existence of 3D Euler equaƟons WITH helical
swirl.

Letu0 be a helical divergence free vector Įelds withu0 2 L
2\

L1(R2 � [��; �]) and its iniƟal vorƟcity xω0 2 �B0
1;1(R

2 �

[��; �]): In addiƟon, weassume that (rh�0;u0) 2 �B0
1;1(R

2�

[��; �]): Then the Euler system with helical symmetry has a
local existence of strong soluƟons. Morever, the lifespan T ?

saƟsĮes that

T ? �

log(1 + 1
2 log(1 +

kω0k�B0
1;1

\L1
+kxhω0k�B0

1;1
\L1

krh�0k�B0
1;1

+ku0kL1
))

kω0k�B0
1;1\L

1 + kxhω0k�B0
1;1\L

1

:

N.& Swierczewska-Gwiazda, 2018



Besov space

DeĮniƟon
Let u be a mean free funcƟon in S 0(R2 � (��; �)); 2�-periodic with
respect the third variable (p; r) 2 [1;+1]2 and s 2 R be given real
numbers. Then u belongs to the Besov space �Bsp;r if and only if

kuk�Bsp;r :=
X
n2Z

kunk�Bs
p;r
<1; (0.8)

where un is the Fourier coeĸcient, is computed as follows

un =
1

2�

Z �

��
u(�; �; z)e�inzdz;

andwe recall the deĮnƟƟonof standard homogenousBesov type spaces
with

kuk�Bs
p;r

:= (2jsk��jukLp)lr :



The sketch of the proof

The main DIFFICULTY lies in the a priori esƟmates involved with � and
ω:

STEP 1: UƟlizing the helical property that @�u = u?, we rewrite the
equaƟons of � as

▶

@t� + (~uh � rh)� = 0;

where ~uh = (u1 + yu3; u2 � xu3)
t saƟsfying divh~uh = 0.

▶ From the propogaƟon of Besov norm for transport equaƟons, we
know that

k�(t)k�B1
1;1
≲ k�0k�B1

1;1
e

Z t

0
krh~uh(s)k�B0

1;1

ds
(0.9)



STEP 2: The equaƟon of ω saƟsĮes that

▶ @tω + (~uh � rh)ω = @y�@xu � @x�@yu + (!3u
? � u3ω

?) =:

G1(t; x);

▶ with the esƟmate ofG1(t; x) as

kG1(t; x)k�B0
1;1
≲ krh�k�B0

1;1
krhuk�B0

1;1
+ krhuk�B0

1;1
kukL1 :

▶ Then we similarly prove that

kω(t)k�B0
1;1

� (kω0k�B0
1;1

+

Z t

0
kG1(t; x)k�B0

1;1
)(1 +

Z t

0
krh~uhkL1ds):



STEP 3: To close the above esƟmates, we need to look for the esƟmate
of krh~uhkL1 : Indeed, we have the following lemma

Let v = (v1; v2; v3)
t be a divergence free helical vector Įeld,

2�-periodic with respect the third variable, then

krvk�B0
1;1
≲ kcurlvk�B0

1;1
:

lemma

Moreover,

krh(xhv)k�B0
1;1
≲ kcurlvk�B0

1;1
+ kxhcurlvk�B0

1;1
+ kvkL2 :

It implies that

krh~uhkL1 � C(kωk�B0
1;1

+ kxhωk�B0
1;1

+ kukL2):



STEP 4: Then we need to prove the esƟmate of kxhωk�B0
1;1

.

▶

@t(xhω) + (~uh � rh)(xhω)

= @y�@x(xhu)� @x�@y(xhu) + (xh!3u
? � u3xhω

?)

+ ~u1;hω� @y�u

=: G2(t; x)

▶ with

kG2(t; x)k�B0
1;1\L

1

≲ krh�k�B0
1;1

(krh(xhu)k�B0
1;1\L

1 + krhuk�B0
1;1\L

1)

+ (krhuk�B0
1;1

+ kuk�B0
1;1\L

1)kxhωk�B0
1;1\L

1 :

▶

kxhω(t)k�B0
1;1

� (kω0k�B0
1;1

+

Z t

0
kG2(t; x)k�B0

1;1
)(1 +

Z t

0
krh~uhkL1ds):



STEP 5:

▶ DeĮne A(t) := kω(t)k�B0
1;1\L

1 ; Z(t) := kxhω(t)k�B0
1;1\L

1 ;

▶ B(t) := k�(t)k�B1
1;1

+ kukL1

▶ Then

B(t) � B(0)e
C

Z t

0
krh~uh(s)kL1ds;

A(t) � (A(0) +

Z t

0
B(s)A(s)ds)(1 +

Z t

0
(A(s) + Z(s))ds);

Z(t) � (Z(0) +

Z t

0
B(s)Z(s)ds)(1 +

Z t

0
(A(s) + Z(s))ds):

▶ DeĮneM(t) := A(t) + Z(t), then

M(t) ≲ (M(0) +B(0)

Z t

0
M(s)ds expf

Z t

0
M(s)dsg)(1 +

Z t

0
M(s)ds):



▶ We assume that for some T 0 > 0

B(0)

Z T 0

0
M(s)ds expf

Z T 0

0
M(s)dsg �M(0): (0.10)

▶ Gronwall inequality implies that

M(t) � 2M(0)e2tM(0) for all t 2 [0; T 0]: (0.11)

Therefore, for (0.10) is valid, it suĸces that

expf2(e2T
0M(0) � 1)g � 1 �M(0):

▶ The lifespan T � saƟsĮes

T � �
1

2M(0)
log(1 +

1

2
log(1 +

M(0)

B(0)
)); (0.12)

which is the desired inequality.



Thank you


