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The 3D incompressible Euler equations

Su+ (u-V)u+Vp=0 inR3x(0,T),
divu=10 inR3 x (0,7T),

with the initial data (¢t = 0) = ug, where pis pressure, u = (u1, U2, u3)

3
is velocity fields. (u - V)u means that ) u;0;,u;,7 =1,---,3.
~

1
Global existence and uniqueness of solutions to Euler equations is still
open!



One physically relevant dynamic variable for incompressible flow is
w := curl u(t, ), the vorticity, which satisfies the evolution equa-

tion

[ Ow+ (u- Viw = (w- V)u. ] (0.2)

Note that Vu is formally of the same order as w. Thus the vortex

stretching term (w - V)u ~ w?.

& For 2D case, the vorticity w = 8, us — 9yuy is a scalar function and

the vortex stretching term (w - V)u in (0.1) vanishes.



Known results

» 2D case (not comprehensive nor state-of-the-art)
» Global existence and uniqueness of strong solutions when wg €
L (Yudovich 1963);
> Global existence of weak solutions when wg € LP N L1,p > 1
(Diperna-Majda 1987);
» Global existence of weak solutions when wg is a Radon measure
with one sign. (Delort 1991; Majda, Evans, Muler, Wu, Schochet,
Xin, M. Lopes, L. Lopes, etc);
» Global existence and uniquenss of solutions in Holder spaces or
Soblolev or Besov spaces (Wolibner, Bourgains, Temam, Kato, Vishik,
Chae, Park, etc);
» 3D case (not comprehensive nor state-of-the-art)
» Local results (Majda-Bertozzi 2002)
» Global existence of the weak/admissible weak solution emanat-
ing from a L?/vortex sheet initial data in periodic domain (Wiede-
mann 2011; Szekelyhidi 2011 )



Axi-symmetric Flow

u(z,t) =u"(r,z,t)e, + ue('r, z,t)eg + u*(r, 2,t)e,, (0.2)
p(z,t) = p(r, 2,1). (0.3)
The vorticity w = curl u = —8,u’e, + wlep + %Br(rue)ez, where

w® = 8,u, — 8,u,. Furthermore,

8 P 8. (ruf)?
8(%) +u- V(%) = —Z(:ff), (0.4)

where

V = 4"8, + v%8,.



Known results

CASE | No Swirl (u® = 0)(not comprehensive nor state-of-the-art)

» ! Strong solutions to inviscid axisymmetrical flows with the as-
sumption of % € L* (Ukhovsky, Yudovich 1968; Danchin 2007
weaken with 2 € L>! and wo € L™ N L3?)

» Global well-posedness of smooth solutions of Euler equations (Saint
Raymond 1994)

> Global existence of weak solutions with initial vorticity in L n
LP,p > 3 (Chae-Kim 1997; Extended to L' N LP,p > 1 by Jiu-
Wu-Yang 2013)

142
> Global existence in Besov space with ug € B, ;* and “2 € L31,

(Abidi-Hmidi-Keraani 2010)



Known results

CASE 11 Swirl (u® # 0) (not comprehensive nor state-of-the-art)

»

| 2

>

Well-posedness still Open
Lower bound of lifespan (Danchin 2013)

Blow up criteria (Chae et al; Jiu-Xin 2001; Kubica-Porkorny-Zajaczkowski
2012; Wang-Zhang 2012)

Liouville theorem (Z. Xin, Q. Jiu, 2015)

Global regularity under some assumptions (Chen-Strain-Tsai-Yau
2008, 2009; Koch-Nadirashvili-Seregin-Sverak 2009; Z. Lei, Q.S.
Zhang 2011)

Singular formation in special domain (Elgindi, Jeong 2018)



Helically Symmetrical Flows:

> Invariant under rotation and simultaneous translation along axis
of rotation.

» This invariance (helical symmetry) preserved by fluid flow.

Figure: Helically symmetric vector fields u



Helical flows

Definition
» Vector field u is helical symmetry if u(Sg(z)) = Rou(z),
> A scalar function f is helical symmetry if f(Sp(z)) = f(z).

0 cosf@ sinf O 0

Se(X):=RgX+ | 0O =| —sinf cosd 0 | X+ | O
=) 0 0 1 ()
(0.5)

o > 0 is called step, which is defined as the translation displacement
along the symmetry axis after one full clockwise turn around the axis.



Figure: Picture of tornada & simulation in Purdue vortex chamber in 1988
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Observations

» Helical flow is periodic in term of z3 variable with ¢ period

» 0 = 0 <= axisymmetric flow ?



Observations

» Helical flow is periodic in term of z3 variable with ¢ period

» o0 = 0 <= axisymmetric flow ? Radial flows (Lopes-N.-Lopes-
Titi, Preprint, 2010)



Observations

» Helical flow is periodic in term of z3 variable with ¢ period
» o0 = 0 <= axisymmetric flow ? Radial flows (Lopes-N.-Lopes-
Titi, Preprint, 2010)

» 0 = oo <= the helix becomes straight line ?



Observations

» Helical flow is periodic in term of z3 variable with ¢ period

» o0 = 0 <= axisymmetric flow ? Radial flows (Lopes-N.-Lopes-
Titi, Preprint, 2010)

» 0 = oo <= the helix becomes straight line ? 2.5D flows (Lopes-
Mazzucato-N.-Lopes-Titi, 2014)



Beltrami flow (Helical flow)

Definition (Gromeka (1881); Beltrami (1889); Dritschel (1991))

A steady 3D fluid flow is called a Beltrami flow if the vorticity
w = curlv satisfies the Beltrami condition

w(z) = A(z)v(z) for some A(z) # 0 (0.6)

for all z.

Results: Any steady, divergence-free velocity field v(z) in R? that sat-
isfies Beltrami condition (0.6), is a solution to the 3D Euler equation.

Experiments show that flows in which the vorticity w is locally roughly
parallel to the velocity generate interesting 3D instabilities. This can
result from the self-induced velocity of vortex lines deforming the vor-
tex lines into very unstable horseshoes.
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Figure: The figure on the left shows vortex lines at time ¢ = 0. The figure
on the right shows what can happen to these lines if the vorticity is roughly
aligned with the velocity field as in the case of a Beltrami flow



Known results

1) No helical swirl (i.e., ug - £ = 0):

» Well-posedness for smooth data (A. Dutrifoy 1999).

» 3! strong solution if (curlug)s € L (B. Ettinger and E. S. Titi
2008).

> 3 weak solution with (curiug)s € Lp > %. (A. Bronzi, M.
Lopes, H. Lopes 2015).

» ! strong solutions with initial data lying in critical spaces, e.g.,

wyp € 5’2071 with additional assumptions. (H. Abidi,S. Sakrani
2016)



» The limits of the 3D viscous and inviscid incompressible flows
respectively approach the flow, the dynamic of which are two-
dimensional when the step o goes to 0o. (Mazzucato, M. Lopes,
N., H. Lopes, Titi 2014)

> Vanishing viscosity limit problem of 3D Navier-Stokes equations
(Jiu, M. Lopes, N., H. Lopes 2018)

2) With helical swirl (i.e., ug - £ # 0) : Open!



Properties of Helical Flow

» The helical symmetry reduces the periodicity of u with o with
respect to the z3 variable. Thus, the effective domain is R? x
(0, o) instead of R3.

» Definen :=u- &, called helical swirl, which satisfies
Btn +u-Vn=0,

where § = (—y,z,1)! is the tangential direction of the flows
along the helical line.

» If uis helical, then the vorticity

£ 1,0n 8
w:curlu:ng,g—ka(a?;,—(;;:’,O),



» The vorticity equation

Dw 1 1
Dt + gw3(u2, —u1,0)" + ;(axﬂayu — 8ynyu) = 0.

> whennzO,w:wggand

o
(90.}3

W—I—(u-V)wg:O.

» Two-dimensional property of helical flows. The following propo-
sition shows that sufficiently smooth functions and vector fields
with helical symmetry are essentially two-dimensional.



r%Mazzucato-Lopes-N.-Lopes-1'|ti,20 14

Let u = u(z) be a smooth helical vector field and let p = p(z)
be a smooth helical function. Then there exist unique w =

(w!, w?, w3)(y1,y2) and ¢ = g(y1, ¥2) such that
u(z) = Rorzy/ow(y(2)), p=p(z)=14q(y(z)), (0.7)

Conversely, if u and p are defined through (0.7) for some w =

w(y1,¥2), ¢ = q(y1,y=2), then uis a helical vector field and p

L is a helical scalar function, )

where

Y1 cos(2mz3/0) —sin(2mzs/0) z1
y(z) = =
Yo sin(2mzs/o) cos(2mz3/0) Zo



Questions

» Can we prove the global existence of solutions to 3D incompress-
ible Euler equations with helical symmetry WITHOUT/WITH heli-

cal swirl?

» Can we prove the global existence of weak solutions in the Crit-
ical space without helical swirl compared with Bronzi, M. Lopes,
H. Lopes’s result, i.e., (curl ug)s € LP,p > % with compact sup-
port?

» Can we prove the global existence of solution with helical swirl in
any regular space?



Motivation

» Helical flow seems more close to two-dimensional flow instead
of three-dimensional flow (without helical swirl case).

> There exists Sobolev embedding WP << L2 p > 1 without

helical swirl in some sense.

» The case with helical swirl is very Different!



Case I: Without helical swirl

We look at the global existence of weak solutions to 3D Euler equations
with helical symmetry WITHOUT helical swirl.

~\

(Q Jiu-Li-N., 2017

Given a scalar helical function wo € L}, N Lper (R? X [—7, 7])

with some p > 1, for any T" > 0, there exist weak solutions
u = u(t,z) € L2([0, T); WLP(R2 x [—m, 7])) to the three-

oc
dimensional Euler equations with helical symmetry with the

initial vorticity wg = wpé in the sense of distribution. More-

over,u-& = 0.
q ! £ J




Difficulties

I. We should prove that the following inequality by virtue of Biot-Savart

law
VUl Lpeny < e(p)l|@||Le@ny, 1 <p < oo.

Compared with the classical case:
ut,e) = [ Kn(e - y)o(t,y)dy, o € BY.
RN
Singular Integral Operator theory tells us that

VUl r@ny < c(p)||w||Le@ny, 1 <p < 0.



In fact, Biot-Savart Law with helical symmetry has the additional re-

quirement
curlu = w = w3€, in R% x [, 7],
divu = 0, in R? x [—m, 7],
u-¢=0, in R? x [~m, 7],
u(z) = O(|z']), as [z'| — oo,
u periodic in z3, inR2.

> We express the form of u = VG x w, where G is the Green
function with the complicated form as

1 1 &
G(z) = —gln |z'| + - > Ko(nlz'|) cos(nzs).

n=1




Bounded domain case

Using the condition of vanishing helical swirl, the divergence free con-
dition can be rewritten as

Ozu1 + Oyuz + 6, (yuy — zug) =0,
Otur = (—y0g + 8y + 8, )u1 = —uy,
O¢up = (—y0z + 20y + 8, )uz = u1.

Then we introduce the stream function 9 similar to 2D case, i.e.,

e
o _

B (1 + z?)uy — zyu,.



The stream function ¥ satisfies the second-order elliptic equations
with variable coefficients, i.e.,

{ Ly =V - (KVY) = w,

Y lag=0,
h K _ 1 1+ y2 —TY
where K(z,y) = T _zy 1442 .

Then the regularity theory of second-order elliptic equations shows
that

[%[lw2r < clle]l e,

which implies that

VUl Lr@ny < c(p)||w||Le@ny, 1 <p < 0.



Difficulties

Il. We lose the L? integrability of velocity field, i.e., we DONOT have

fsz[—ﬂ',ﬂ'] ‘ll|2d.'12 < o0.

> For two-dimensional flow, the velocity must satisfy the strong re-
striction that [p» wdz = 0 because the decay behavior of the
two-dimensional kernel at infinity is like %, which is not square
integrable.

» The standard strategy to decompose the velocity fields into an ex-
plicit and steady solution, and the other part, which is recovered
from the vorticity with the zero average by classical Biot-Savart

law.

> L? estimate instead (which helps us to remove the assumption

of compact support).



Case lI: With helical swirl

We look at the global existence of 3D Euler equations WITH helical
swirl.

~\

[ N.& Swierczewska-Gwiazda, 2018

Let ug be a helical divergence free vector fields with ug € LN
L*°(R? x [—m,m]) and its initial vorticity zwo € B, ;(R? x
[—m, ]). Inaddition, we assume that (V70, ug) € égo’l(R2 X
[—m,7]). Then the Euler system with helical symmetry has a
local existence of strong solutions. Morever, the lifespan T
satisfies that

llwollgo rpootllzrwollgo  Apoco
0,1 00,1

log(1 + % log(1+

Vumolzo Fluolzee )
co,1

P >

lwollge,  nre + llZnwollge | Are




Besov space
Definition
Let u be a mean free function in S'(R? x (—m, m)), 2m-periodic with

respect the third variable (p,7) € [1, +00]2 and s € R be given real
numbers. Then u belongs to the Besov space é;,,, if and only if

lallgs, = > llunllzs, < oo, (0.8)
nez

where u., is the Fourier coefficient, is computed as follows

Un = i /W ’LL(', '1z)e_inzdz1
21 J_x

and we recall the defintition of standard homogenous Besov type spaces
with
lull g5 , = (2710l o)



The sketch of the proof

The main DIFFICULTY lies in the a priori estimates involved with 7 and
w.

STEP 1: Utilizing the helical property that ;u = u’, we rewrite the
equations of 7 as

>
8t77 -+ (flh 0 Vh)n = 0,
where 1y, = (u1 + yus, us — zu3)® satisfying div, iy, = 0.

» From the propogation of Besov norm for transport equations, we
know that

t
[ 198ta(s)l s
In®)lss,, < limollsy e 9



STEP 2: The equation of w satisfies that

J_) —o

> Siw + (Tip - Vp)w = 8yndu — 0;n0,u + (w3ut — uzw
G]_(t,.'B),

> with the estimate of G1(t, z) as
1G1(¢,2)llgo, | < IVanllgo, IVaullge  + [ Vaullg  [lullze.

» Then we similarly prove that

t t
le®lss., < Ulwnllsy, + [ 1G1(E2)lsg, )1+ [ 17 fn Ll



STEP 3: To close the above estimates, we need to look for the estimate

of || Vp x| e - Indeed, we have the following lemma

r%Iemma

Let v = (v1,ve, v3)t be a divergence free helical vector field,

~

2m-periodic with respect the third variable, then

IVVlige | < llewrtvllge -
L J

Moreover,
IValenvllgs,, < leurtviige |+ llzncurtvlle | + IVlzs.
It implies that

IVaGnllze < Cllwllgo | +llznwllg |+ [lullz2).



STEP 4: Then we need to prove the estimate of ||z w|| 50 E

>

Bt(:z:hw) =F (flh ° Vh)(:z:ha))

= OynOz(zru) — 8;m0y(Tru) + (:L'hwguL = u;;:z:th)

+ 141 pw — Gynu

=: Ga(t, z)
> with
1G2(t, 2)ll0, e
s IVallse, (IVa(znw)llge, e + 1 VAullge o)

+([[Vrullge | +llullge nreo)llznwllge qre

t t
leno(®llgs,, < (loollgs,, + [ 1G(t,2)llsg, )1+ [ [Vatallzs



STEP 5:

> Define A(¢) := [[w(®)llgo, ,nree» Z(2) := [[Zn0()lige,  Areos

> B(t) = In(t)llge , + ullze

» Then

N ALANCIE

t
+/B dsl+/
—I-/B d51+/

> Define M(t) := A(t) + Z(t), then

B(t) < B

M(t) < (M(0) + B(0) /0 " M(s)ds exp{ /0 " M(s)dsh(1 + /0 * M(s)d



» We assume that for some T" > 0
a7 T
B(0) M(s)ds ezp{ M(s)ds} < M(0). (0.10)
0 0

» Gronwall inequality implies that

M(t) < 2M(0)e*MO) forallt € [0,T]. (0.11)

Therefore, for (0.10) is valid, it suffices that
exp{2(e*T M) _ 1)} — 1 < M(0).

» The lifespan T'* satisfies

T™ > 2]‘;(0) log(1 + %log(l + A;(((;))))), (0.12)

which is the desired inequality.



Thank you



