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The Original Problem

det D*u = F(z,u) in Q,

Ay uw =0 on 0f)

where €2 is a bounded convex domain in R, and F’ satisfies
the assumption (H ):
F(x,t) € C(Q) x (—o0,0)) is non-decreasing in t for any x € )
and

0 < Fla,t) < AdY "M, Y(a,t) € Q x (—o0,0)

for some constants A > 0, 8 > n+ 1 and o« > 0, where
dy = dist(x, 0)).



Motivations (1)

When F(z,t) = [t|~" 2 and u is a solution to problem
(M A), then

) (—u)_luxixjda:idxj is a Hilbert metric in ¢
—[Loewner-Nirenberg: 1974]

e The Legendre transform

y = Du(z), vw(y)=12 y—u@).

The graph of «* defines an Affine hyperbolic spheres

— [Calabi: Symp Math, 1972] and [Cheng-Yau: CPAM,
1977]

e Affine hyperbolic sphere 1s a well-known important model
in Affine geometry as well as a fundamental model in Affine
Sphere Relativity

— [Minguzzi: CMP, 2017]



Motivations (2)

e When F' = f(x)|t| P, Problem (M A) is the Projection of
the equation

det D*u = f(z)u™P in S" ¢ R""!

on the plane {z,.; = —1} from the unit sphere S”, which

1S Ly,-Minkowski problem in the affine geometry

—[Lutwak: JDG, 1993; Chou-Wang: Adv Math, 2006; Jian-Lu-Zhu: Calculus PDE,
2016; Jian-Lu-Wang: JFA, 2018]

—[Lutwak etc: JAMS, 2013; Huang etc: Acta Math, 2016; Jian-Lu-Wang: Adv
Math, 2015; Jian-Lu: Adv Math, 2019 ]

e Also, for general F', Problem (M A) may be obtained from the constructing non-
homogeneous complete Einstein-Kahler metrics on a tubular domain

— [Cheng-Yau: CPAM, 1986].



Cheng-Yau’s Results

Cheng and Yau in [Cheng-Yau: CPAM, 1977] proved that if
() is a strictly convex C?-domain and F € CF (k > 3) sat-

isfies (H ), then the problem (M A) admits an unique convex
solution u € C*1E(Q) N C(Q) for any € € (0,1)



Questions

e ) 1: For the Affine Hyperbolic Sphere
(AHS) det D*u = |u]™" *in 2, u=0on 0,

what 1s the (optimal) boundary regularity of the
Aftfine Hyperbolic Sphere? —-(mentioned a few
times by S. T. Yau)

e Q 2: What 1s the existence, uniqueness and
the optimal boundary regularity for the problem

(MA) even if F is not in C°, or O5) is not in C*, or
() is not strictly convex?



Answer to Q1 (Yau’s Question)

Theorem 1 [J-Wang: JDG, 2013] Suppose
() is a bounded, uniformly convex domain in R"
with C'%:° boundary, where 3 < k < n + 2 and
o € (0,1). Then the graph M, is C*“ up to its
boundary.

Theorem 2 [J-Wang-Zhao: JDE, 2017] If n is
even, then the graph M, is C*° up to its boundary
if0€2 € C*°. Butifn is odd, the result in Theorem
1 1s optimal.



Regularity results for uniformly elliptic case

det D%y = f(x)in 2, u = ¢ on 0f),

where () 1s bounded and strictly convex.

e Assume 0 < ¢ < f(x) < g and f € Cck (k > 2), and
0€1, ¢ are sufficiently smooth. The Ck+1—regularity for the
solution was obtained by

— Clabi (1958)

— Pogorelov (1971) —Cheng-Yau (1976, 1977)
—Caffarelli-Nirenberg-Spruck (1983)

—Tian (1983), Trudinger-Urbas (1983), - - -, etc



Assume 0 < ¢ < f(x) < cgand f € C°

e The interior C%%-regularity for the solution was obtained
by

— [Caffarelli: Ann Math, 1990] for a € (0, 1), which was
re-proved by [J-Wang: Siam J Math Anal, 2007] for a €
0, 1]

e The boundary CQ’O‘—regularity was obtained by
—[Trudinger-Wang: Ann Math, 2008] when and 0f), ¢ €
03

— [Savin: JAMS, 2012] when 99, ¢ € C%2.



Regularity results for degenerate elliptic case

oIf f > 0and fl/m_1> e C11 then u € L1
— [Guan P.F,, Trudinger N.S., Wang X.J.: Acta Math, 1999]

oIf f(1) = x{fél .- xy," , the regularity of the solution and its

asymptotic expansion near the origin was studied by
—[Rios C., Sawyer E.T., Wheeden R.L: Adv Math, 2006]
—[Savin: CPAM, 2010]

e Assume 0 < ¢; < f(z) < cpand f € C (a € (0, 1]). The
global C%“-regularity for the problem

det D’u = f(2)(dy)" in§, u= ¢ on I,

was obtained by
— [Savin: Invent Math, 2017].



e The C'°“({2) solution to the Eigenvalue Problem
det D*u = (= u)") in Q, u = 0 on 9,

was obtained by
— [Hong-Huang-Wang: CPDE, 2011] when n = 2
— [Savin: Invent Math, 2017] whenn > 2.

e Suppose that p(u) > 0 is nondecreasing in u, p > n + 1,
a € [0,2(p —n —1)), and 8Q € CLL. The C%(Q) (N CO(Q)
(for some ¢ € (0, 1) ) solution for the problem

det D*u = p(w)(de)¥(1 + |Dul)P in Q, u = ¢ on O

was obtained by
—[ Chen: Lecture Notes Math, No 1306, 1986]
— [ Urbas: Invent Math, 1986]



Question 2
Q2: How are about the existence, uniqueness and the opti-
mal boundary regularity of the solution to the

det D*u = F(z,u) in €,

a2 uw =0 on 0f)

when F is not in C°>, or 9 is not in C?, or §) is not strictly
convex? Here, F' satisfies the assumption (H ):
F(x,t) € C(Q) x (—o0,0)) is non-decreasing in t for any x € ()
and

0 < Fla,t) < AdY "M%, Y(a,t) € Q x (—o0,0)

for some constants A > 0, 8 > n+ 1 and o« > 0, where
dy = dist(x, 05)).



Answer to Question 2
Theorem 3 [J-Li-Tu: Preprint, 2018] Supposed

that €) is a bounded convex domain in R" and
F(x,t) satisfies (H). Let

o 5;3;_1, iff <a+2n—1,
U7\ any number in(0, 1), if3 > a + 2n — 1.

Then problem (M A) admits an unique convex

(Alexandrov) generalized solution u € C™7(()).
Furthermore, u € C*"(Q) if F(x,t) € C"HQ x

(—00,0)).



Improved the Regularity for (a, n) type domain

Denote
/ /
r=(x1,29,...,2n) = (&', 2n), * =(21,...,Tpn_1)
Definition . Supposed that () is a bounded convex domain in

R"™, and x( € 0S). We say x is (a,n) type if there are num-
bers a € |1,+00) and np > 0, after translation and rotation
transforms, we have

z90=0 and Q C {z € R"|x, > n|z’|"}.

() is called (a,n) type domain if every point of 052 is (a,n)
type.



Remarks on (a, n) type domain

Remark 1. The convexity requires that the number a should
be no less than 1. The less 1s a, the more convex 1s the do-
main. There is no (a, n) type domain for a € |1, 2), although
part of €2 may be (a,n) type for a € [1,2).

Remark 2. (2,n) type domain is equivalent to the domain
satisfies exterior sphere condition.



Holder exponent can be described by the convexity for €).

Theorem 4 [J-Li-Tu: Preprint, 2018 | Supposed that €} is
(a,n) type domain in R" with a € |2, +00), and I satisfies
(H). Let

{ Pt g Ol e g By — L — 2
Y2 =

n-+o a(n+a)’ a

any number in (0, 1), if3 > a+2n — 1 — 2”6:2.

Then the convex generalized solution obtained in Theorem
3 satisfies

u € C12(Q).
Furthermore u € C?72(Q) if F(z,t) € CV(Q x (=00, 0)).

Remark This result was obtained by J-Li in JDE, 2018 for
F=tn72



The boundary regularity of Theorems 3 and 4 is optimal

Consider the equation for affine hyperbolic sphere

1

2, _
det Du = ]u\””

in {2, u = 0 on 0f)

The v = - +1 for general convex domain, and vy = % for
(2,m) type domain, any of which can not be improved. In
fact,

(D) IfQ = B?_I(O) X R, then the solution is

1
1)2 1 n
u(m) = — V2T ) by AT
n2(n+1)




The sketch of the proof of Theorem 3-(1)

e [.emma: Let {) be a bounded convex domain and u be a
convex tunction with u|gn = 0. If there is a~y € (0,1] and a
M > 0 such that

u(y)| < Mdy", Yy €
where dy, = dist(y, 0S1), then

diam(2)
2

)]

ul oy < ML+ (
e For any point y € (), letting z € 0f) be the nearest bound-
ary point to y. Since problem (MA) 1s invariant under trans-

lation and rotation transforms, we assume z = 0, {2 C Rﬁ
and the line yz 1s the x,, — ax1s.



The sketch of the proof of Theorem 3-(2)
o [ct

W(z) = —Mz,, - v N2[2 — y2

where | = diam(€)) and r = \/$% + ...+ 5’7721—1' Choosing
positive constants v, M, N and after tedious calculation we
find that 1V 1s an sub-solution to problem (MA).
e By comparison principle for generalized solutions, we
have

B—n+1 B—n+1

lu(y)| < |W(y)| < MNly,”™™ = MNId,"* ,

which, together with the Lemma, implies the following



The sketch of the proof of Theorem 3-(3)

e A Priori Estimate: Under the assumptions of Theorem 3,

if u € C(Q) is a convex generalized solution to problem
(MA), then uw € C7(S2) and

‘u‘071(ﬁ> S C<&7 57 A7 d/[’am<Q)7 n)

e The above method can be used to prove Theorem 4, but
constructing the sub-solution to problem (MA) 1s much more
complicated. Its form 1s

Tn. 2 1
Wz, ..., 2n) = —[(2)a —xf — ... —x2_,]b

where b and € need to be chosen according three cases

20042 20042 20042
a = 2; a>6 +1,2<a<—5 n+1lf—6 1>2



The sketch of the proof of Theorem 3-(4)
e Suppose that () is bounded convex but F(z,t) € C¥(Q) x
(—00,0)) (k > 3) satisfies (H).
Choose a sequence of bounded and strictly convex domains
{€2;} such that

(; € C° and Q; C Qypq,i = UQ_Q

Then by Cheng-Yau’s result, there exists a convex general-
ized solution u; to problem (MA) in the domain §2; for each
i. Setu; = 0in R™ \ ); and extend » in R". By the a priori
estimate, we have the uniform estimations

|Ui’(ﬂ1<) |u2’071< ) Cla, 8, A, diam(§2), n),



The sketch of the proof of Theorem 3-(5)

which implies that there 1s a subsequence, still denoted by

itself, convergent to a u in the space C'(2) and
Holder estimate  |u| -y, @ < Cla, B, A, diam(£2), n).

By the well-known convergence result for convex general-
1zed solutions, we see that u 1s a convex generalized solution
to problem (MA).

e Drop the restriction on the smoothness for F'.

Suppose F; € CF(Q x (—00,0)) (k > 3) satisfy satisfies
(H) as above, and F; locally uniform convergence to F' in as
9 — oo. Then by the above result, for each j, there exists a

convex generalized solution u; € C71(£) to problem (M A)
with [/ replaced by Fj;.



The sketch of the proof of Theorem 3-(6)

Moreover, by the Holder estimate we have
‘uj‘Cﬂ(Q) < Cla, 8, A, diam(Q), n)

for all 7. Using this estimate, we obtain a generalized solu-
tion u to problem (M A), which is the limit of a subsequence
of u; in the space space C((2). Furthermore, the solution u
still satisfies the Holder estimate. The uniqueness for (M A)

1s directly from the comparison principle.

e It remains to prove u € C% M1(Q) if F(z,t) € CV1(Q x
(—00,0)).  The Holder estimate implies F'(z,u(z)) €
C71(Q)). Hence we can use the Caffarelli’s local C%® regu-
larity to obtain v € C% 71(Q). [Caffarelli: Ann Math, 1990;
Jian-Wang: Siam J Math Anna, 2007 ]



Application to proper affine hyperspheres-1

Finding proper affine hyperspheres with mean curvature
which is asymptotic to a cone in R"T**! is reduced to solve

_ [z Vu(z) —u(@)] "
(PAS) det D*u = [Hu(x)]nth+2
u =0 on oS}

where () is a bounded convex domain containing the origin,
H < 0and £ > 0 are constants.

inQQ C R",

e Haodi Chen and Genggeng Huang in [ JDE: 267 (2019)]

proved that (PAS) admits a unique convex solution u €
C(Q)C° ().



Application to proper affine hyperspheres-2

Since () contains the origin, u is convex and u = 0 on 0,
then

r - Vu(x) —u(x) > —u(0) > 0.

Therefore f(z,u) : [z [Z[(g)] (;H)]g
(—

satisfies

—k
( )) ’ ( )|—n—k—2.

0 < f(a: u) < < H)n+k+2

By Theorem 4, we have
Theorem 5 Supposed that ) is (a, n) type domain in R"

with a € [2,+00). Let 3 = a<§i?+_k1/2>- Then the convex

solution to (AF'S) satisfies u € C73(1)).




Our method can be applied to Chaplygin gas and minimal graph

Au — .- = ——1n )
YT \VU\QUZ] w
(CM) u = 0 ondf)
u > 01n €,

Where €2 is a bounded domain in R".

e n = 2: two dimensional Riemann problem with four-shock data (the vortex and the

saddle) for Chaplygin gas
—[D. Serre: Arch Rational Mech Anal, 191(2009)]

e nn > 2: the graph of u defines a minimal graph in hyperbolic space

—[Anderson, Invent Math 1982; Hardt and Lin, Invent Math 1987; Lin, Invent Math
1989]



The Existence and Uniqueness

e There is a unique solution u € C*°(Q2) N C'(Q)
if ) € C*? and the mean curvature H |5 > 0.
—[Lin, Invent Math 1989]

e There is a unique solution u € C*°(Q2) N CV()
if n = 2 and () is piecewise C*-convex domain

and the curvature K |y > 0.
—[D. Serre: Arch Rational Mech Anal,

191(2009)]



Questions

e Q 3: Is the solution u Holder continuous up to
the boundary?

e Answered by [ Lin: Invent Math 1989] if ) €
C? and curvature H |5 > 0;

e Answered by [ Han-Shen and Yue Wang: Car
Var PDE, 2016] if {2 is piecewise C? and curvature
H ’8@ > ();



Concave Solutions

Assume that €2 1s a bounded convex domain.
Then the problem admits a unique solution u €

C(Q) (N C>(Q), and u is concave. Moreover,
U € C%H(Q)

This result was proved by Qing Han, Weiming
Shen and Yue Wang in Car Var PDE, 2016



The regularity depends on the convexity

Applying our method and constructing the super-solution in

the form
Tny2 9 2\

Wi(xq,...,xTn) = ((?)5 —x]— ... —x,_1)b

where b > 2 and € > 0 are to be determined, we obtain

Theorem 6 [J-You Li: Preprint, 2018)] Let ) be (a,n) type
domain with a € |2, +00). Then

u € C%(ﬁ)

where a = ma:z:{a, n+1}



Thank You!



