Optimal global regularity for elliptic equations which is degenerate or singular on the boundary

Huai-Yu Jian

Tsinghua University

Presented at NUS

The Original Problem

$$\frac{\mathrm{det}\,D^2 u = F(x,u) \quad \mathrm{in}\ \Omega,}{u = 0 \quad \mathrm{on}\ \partial\Omega}$$

where Ω is a bounded convex domain in \mathbb{R}^n , and F satisfies the assumption (H):

 $F(x,t)\in C(\Omega\times(-\infty,0)) \text{ is non-decreasing in }t \text{ for any }x\in\Omega$ and

$$0 < F(x,t) \le A d_x^{\beta-n-1} |t|^{-\alpha}, \ \forall (x,t) \in \Omega \times (-\infty,0)$$

for some constants A > 0, $\beta \ge n + 1$ and $\alpha \ge 0$, where $d_x = dist(x, \partial \Omega)$.

Motivations (1)

When $F(x,t) = |t|^{-n-2}$ and u is a solution to problem (MA), then

- $(-u)^{-1}u_{x_ix_j}dx_idx_j$ is a Hilbert metric in Ω —[Loewner-Nirenberg: 1974]
- The Legendre transform

$$y = Du(x), \quad u^*(y) = x \cdot y - u(x).$$

The graph of u^* defines an Affine hyperbolic spheres — [Calabi: Symp Math, 1972] and [Cheng-Yau: CPAM, 1977]

• Affine hyperbolic sphere is a well-known important model in Affine geometry as well as a fundamental model in Affine Sphere Relativity

— [Minguzzi: CMP, 2017]

Motivations (2)

• When $F = f(x)|t|^{-p}$, Problem (MA) is the Projection of the equation

$$\det D^2 u = f(x)u^{-p} \text{ in } S^n \subset R^{n+1}$$

on the plane $\{x_{n+1} = -1\}$ from the unit sphere S^n , which is L_p -Minkowski problem in the affine geometry —[Lutwak: JDG, 1993; Chou-Wang: Adv Math, 2006; Jian-Lu-Zhu: Calculus PDE, 2016; Jian-Lu-Wang: JFA, 2018] —[Lutwak etc: JAMS, 2013; Huang etc: Acta Math, 2016; Jian-Lu-Wang: Adv Math, 2015; Jian-Lu: Adv Math, 2019]

- Also, for general F, Problem (MA) may be obtained from the constructing nonhomogeneous complete Einstein-Kähler metrics on a tubular domain
- [Cheng-Yau: CPAM, 1986].

Cheng-Yau's Results

Cheng and Yau in [Cheng-Yau: CPAM, 1977] proved that if Ω is a strictly convex C^2 -domain and $F \in C^k$ $(k \ge 3)$ satisfies (H), then the problem (MA) admits an unique convex solution $u \in C^{k+1,\varepsilon}(\Omega) \bigcap C(\overline{\Omega})$ for any $\varepsilon \in (0,1)$

Questions

• **Q** 1: For the Affine Hyperbolic Sphere

(AHS) det $D^2 u = |u|^{-n-2}$ in Ω , u = 0 on $\partial \Omega$,

what is the (optimal) boundary regularity of the Affine Hyperbolic Sphere? —-(mentioned a few times by S. T. Yau)

• Q 2: What is the existence, uniqueness and the optimal boundary regularity for the problem (MA) even if F is not in C^3 , or $\partial\Omega$ is not in C^2 , or Ω is not strictly convex?

Answer to Q1 (Yau's Question)

Theorem 1 [J-Wang: JDG, 2013] Suppose Ω is a bounded, uniformly convex domain in \mathbb{R}^n with $C^{k,\alpha}$ boundary, where $3 \leq k \leq n+2$ and $\alpha \in (0,1)$. Then the graph M_v is $C^{k,\alpha}$ up to its boundary.

Theorem 2 [J-Wang-Zhao: JDE, 2017] If n is even, then the graph M_v is C^{∞} up to its boundary if $\partial \Omega \in C^{\infty}$. But if n is odd, the result in Theorem 1 is optimal. Regularity results for uniformly elliptic case

$$\det D^2 u = f(x) \text{ in } \Omega, \ u = \phi \text{ on } \partial \Omega,$$

where Ω is bounded and strictly convex.

- Assume $0 < c_1 \leq f(x) \leq c_2$ and $f \in C^k$ ($k \geq 2$), and $\partial\Omega, \phi$ are sufficiently smooth. The C^{k+1} -regularity for the solution was obtained by
- Clabi (1958)
- --- Pogorelov (1971) --- Cheng-Yau (1976, 1977)
- —Caffarelli-Nirenberg-Spruck (1983)
- —Tian (1983), Trudinger-Urbas (1983), · · · , etc

Assume $0 < c_1 \leq f(x) \leq c_2$ and $f \in C^{\alpha}$

- The interior $C^{2,\alpha}$ -regularity for the solution was obtained by
- [Caffarelli: Ann Math, 1990] for $\alpha \in (0, 1)$, which was re-proved by [J-Wang: Siam J Math Anal, 2007] for $\alpha \in [0, 1]$
- The boundary $C^{2,\alpha}$ -regularity was obtained by —[Trudinger-Wang: Ann Math, 2008] when and $\partial\Omega, \phi \in C^3$
- [Savin: JAMS, 2012] when $\partial \Omega, \phi \in C^{2,\alpha}$.

Regularity results for degenerate elliptic case

• If $f \ge 0$ and $f^{1/(n-1)} \in C^{1,1}$, then $u \in C^{1,1}$. — [Guan P.F., Trudinger N.S., Wang X.J.: Acta Math, 1999]

• If $f(x) = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, the regularity of the solution and its asymptotic expansion near the origin was studied by —[Rios C., Sawyer E.T., Wheeden R.L: Adv Math, 2006] —[Savin: CPAM, 2010]

• Assume $0 < c_1 \le f(x) \le c_2$ and $f \in C^{\alpha}$ ($\alpha \in (0, 1]$). The global $C^{2,\alpha}$ -regularity for the problem

det $D^2 u = f(x)(d_x)^{\alpha}$ in Ω , $u = \phi$ on $\partial \Omega$,

was obtained by

— [Savin: Invent Math, 2017].

• The $C^{\infty}(\overline{\Omega})$ solution to the Eigenvalue Problem det $D^2 u = (-\lambda u)^n$ in Ω , u = 0 on $\partial \Omega$,

was obtained by

- [Hong-Huang-Wang: CPDE, 2011] when n = 2
- [Savin: Invent Math, 2017] when $n \ge 2$.

• Suppose that $\mu(u) > 0$ is nondecreasing in u, p > n + 1, $\alpha \in [0, 2(p - n - 1))$, and $\partial \Omega \in C^{1,1}$. The $C^2(\Omega) \bigcap C^{\delta}(\overline{\Omega})$ (for some $\delta \in (0, 1)$) solution for the problem

 $\det D^2 u = \mu(u)(d_x)^{\alpha}(1+|Du|^2)^p \text{ in } \Omega, \ u = \phi \text{ on } \partial\Omega$

was obtained by

- -[Chen: Lecture Notes Math, No 1306, 1986]
- [Urbas: Invent Math, 1986]

Question 2

Q2: How are about the existence, uniqueness and the optimal boundary regularity of the solution to the

(MA)
$$\det D^2 u = F(x, u) \text{ in } \Omega,$$
$$u = 0 \text{ on } \partial \Omega$$

when F is not in C^3 , or $\partial \Omega$ is not in C^2 , or Ω is not strictly convex? Here, F satisfies the assumption (H):

 $F(x,t) \in C(\Omega \times (-\infty,0))$ is non-decreasing in t for any $x \in \Omega$ and

$$0 < F(x,t) \le A d_x^{\beta-n-1} |t|^{-\alpha}, \ \forall (x,t) \in \Omega \times (-\infty,0)$$

for some constants A > 0, $\beta \ge n + 1$ and $\alpha \ge 0$, where $d_x = dist(x, \partial \Omega)$.

Answer to Question 2

Theorem 3 [J-Li-Tu: Preprint, 2018] Supposed that Ω is a bounded convex domain in \mathbb{R}^n and F(x,t) satisfies (H). Let

$$\gamma_1 := \begin{cases} \frac{\beta - n + 1}{n + \alpha}, & \text{if } \beta < \alpha + 2n - 1, \\ \text{any number in}(0, 1), & \text{if } \beta \ge \alpha + 2n - 1. \end{cases}$$

Then problem (MA) admits an unique convex (Alexandrov) generalized solution $u \in C^{\gamma_1}(\overline{\Omega})$. Furthermore, $u \in C^{2,\gamma_1}(\Omega)$ if $F(x,t) \in C^{0,1}(\Omega \times (-\infty,0))$.

Improved the Regularity for (a, η) type domain

Denote

$$x = (x_1, x_2, \dots, x_n) = (x', x_n), \ x' = (x_1, \dots, x_{n-1})$$

Definition . Supposed that Ω is a bounded convex domain in

 R^n , and $x_0 \in \partial \Omega$. We say x_0 is (a, η) type if there are numbers $a \in [1, +\infty)$ and $\eta > 0$, after translation and rotation transforms, we have

$$x_0 = 0$$
 and $\Omega \subseteq \{x \in \mathbb{R}^n | x_n \ge \eta | x' |^a\}.$

 Ω is called (a, η) type domain if every point of $\partial \Omega$ is (a, η) type.

Remarks on (a, η) type domain

Remark 1. The convexity requires that the number a should be no less than 1. The less is a, the more convex is the domain. There is no (a, η) type domain for $a \in [1, 2)$, although part of $\partial \Omega$ may be (a, η) type for $a \in [1, 2)$.

Remark 2. $(2, \eta)$ type domain is equivalent to the domain satisfies exterior sphere condition.

Hölder exponent can be described by the convexity for Ω .

Theorem 4 [J-Li-Tu: Preprint, 2018] Supposed that Ω is (a, η) type domain in \mathbb{R}^n with $a \in [2, +\infty)$, and F satisfies (H). Let

$$\gamma_2 := \begin{cases} \frac{\beta - n + 1}{n + \alpha} + \frac{2n - 2}{a(n + \alpha)}, & \text{if } \beta < \alpha + 2n - 1 - \frac{2n - 2}{a}, \\ \text{any number in } (0, 1), & \text{if } \beta \ge \alpha + 2n - 1 - \frac{2n - 2}{a}. \end{cases}$$

Then the convex generalized solution obtained in Theorem 3 satisfies

 $u \in C^{\gamma_2}(\overline{\Omega}).$

Furthermore $u \in C^{2,\gamma_2}(\Omega)$ if $F(x,t) \in C^{0,1}(\Omega \times (-\infty,0))$.

Remark This result was obtained by J-Li in JDE, 2018 for $F \equiv t^{-n-2}$

The boundary regularity of Theorems 3 and 4 is optimal Consider the equation for affine hyperbolic sphere

det
$$D^2 u = \frac{1}{|u|^{n+2}}$$
 in Ω , $u = 0$ on $\partial \Omega$

The $\gamma_1 = \frac{1}{n+1}$ for general convex domain, and $\gamma_2 = \frac{1}{2}$ for $(2, \eta)$ type domain, any of which can not be improved. In fact,

(1) If $\Omega = B_1^{n-1}(0) \times R^+$, then the solution is

$$u(x) = -\frac{(n+1)^{\frac{1}{2}}}{n^{\frac{n}{2(n+1)}}} x_n^{\frac{1}{n+1}} [1 - (x_1 + \dots + x_{n-1})^2]^{\frac{n}{2(n+1)}};$$

(2) If $\Omega = B_1(0)$, then $u(x) = -\sqrt{1 - |x|^2}$.

The sketch of the proof of Theorem 3-(1)

• Lemma: Let Ω be a bounded convex domain and u be a convex function with $u|_{\partial\Omega} = 0$. If there is a $\gamma \in (0, 1]$ and a M > 0 such that

$$\begin{split} |u(y)| &\leq M d_y^{\gamma}, \ \forall y \in \Omega \\ \text{where } d_y = dist(y, \partial \Omega), \text{ then} \\ |u|_{C^{\gamma}(\overline{\Omega})} &\leq M [1 + (\frac{diam(\Omega)}{2})^{\gamma}]. \end{split}$$

• For any point $y \in \Omega$, letting $z \in \partial \Omega$ be the nearest boundary point to y. Since problem (MA) is invariant under translation and rotation transforms, we assume z = 0, $\Omega \subseteq R_+^n$ and the line yz is the $x_n - axis$.

The sketch of the proof of Theorem 3-(2)

• Let

$$W(x) = -Mx_n^\gamma \cdot \sqrt{N^2 l^2 - r^2}$$

where $l = diam(\Omega)$ and $r = \sqrt{x_1^2 + ... + x_{n-1}^2}$. Choosing positive constants γ , M, N and after tedious calculation we find that W is an sub-solution to problem (MA).

• By comparison principle for generalized solutions, we have

$$|u(y)| \le |W(y)| \le MNly_n^{\frac{\beta - n + 1}{n + \alpha}} = MNld_y^{\frac{\beta - n + 1}{n + \alpha}},$$

which, together with the Lemma, implies the following

The sketch of the proof of Theorem 3-(3)

• A Priori Estimate: Under the assumptions of Theorem 3, if $u \in C(\overline{\Omega})$ is a convex generalized solution to problem (MA), then $u \in C^{\gamma_1}(\overline{\Omega})$ and

$$|u|_{C^{\gamma_1}(\overline{\Omega})} \leq C(\alpha, \ \beta, \ A, \ diam(\Omega), \ n).$$

• The above method can be used to prove Theorem 4, but constructing the sub-solution to problem (MA) is much more complicated. Its form is

$$W(x_1, \dots, x_n) = -\left[\left(\frac{x_n}{\varepsilon}\right)^{\frac{2}{a}} - x_1^2 - \dots - x_{n-1}^2\right]^{\frac{1}{b}}$$

where b and ε need to be chosen according three cases $a = 2; \ a \ge \frac{2\alpha+2}{\beta-n+1}; \ 2 < a < \frac{2\alpha+2}{\beta-n+1} \text{ if } \frac{2\alpha+2}{\beta-n+1} > 2.$

The sketch of the proof of Theorem 3-(4)

• Suppose that Ω is bounded convex but $F(x,t) \in C^k(\Omega \times (-\infty,0))$ $(k \ge 3)$ satisfies (H).

Choose a sequence of bounded and strictly convex domains $\{\Omega_i\}$ such that

$$\Omega_i \in C^2 \text{ and } \Omega_i \subseteq \Omega_{i+1}, i = 1, 2, \cdots, \quad \bigcup_{i=1}^{\infty} \Omega_i = \Omega.$$

Then by Cheng-Yau's result, there exists a convex generalized solution u_i to problem (MA) in the domain Ω_i for each *i*. Set $u_i \equiv 0$ in $\mathbb{R}^n \setminus \Omega_i$ and extend *u* in \mathbb{R}^n . By the a priori estimate, we have the uniform estimations

$$|u_i|_{C^{\gamma_1}(\overline{\Omega})} = |u_i|_{C^{\gamma_1}(\overline{\Omega_i})} \le C(\alpha, \ \beta, \ A, \ diam(\Omega), \ n),$$

The sketch of the proof of Theorem 3-(5)

which implies that there is a subsequence, still denoted by itself, convergent to a u in the space $C(\overline{\Omega})$ and

 $\begin{array}{ll} \textit{H\"older estimate} & |u|_{C^{\gamma_1}(\overline{\Omega})} \leq C(\alpha, \ \beta, \ A, \ diam(\Omega), \ n). \end{array}$

By the well-known convergence result for convex generalized solutions, we see that u is a convex generalized solution to problem (MA).

• Drop the restriction on the smoothness for F. Suppose $F_j \in C^k(\Omega \times (-\infty, 0))$ $(k \ge 3)$ satisfy satisfies (H) as above, and F_j locally uniform convergence to F in as $j \to \infty$. Then by the above result, for each j, there exists a convex generalized solution $u_j \in C^{\gamma_1}(\overline{\Omega})$ to problem (MA) with F replaced by F_j . The sketch of the proof of Theorem 3-(6) Moreover, by the Hölder estimate we have

$$|u_j|_{C^{\gamma_1}(\overline{\Omega})} \leq C(\alpha, \ \beta, \ A, \ diam(\Omega), \ n)$$

for all j. Using this estimate, we obtain a generalized solution u to problem (MA), which is the limit of a subsequence of u_j in the space space $C(\overline{\Omega})$. Furthermore, the solution u still satisfies the Hölder estimate. The uniqueness for (MA) is directly from the comparison principle.

• It remains to prove $u \in C^{2, \gamma_1}(\Omega)$ if $F(x,t) \in C^{0,1}(\Omega \times (-\infty,0))$. The Hölder estimate implies $F(x,u(x)) \in C^{\gamma_1}(\overline{\Omega})$. Hence we can use the Caffarelli's local $C^{2,\alpha}$ regularity to obtain $u \in C^{2, \gamma_1}(\Omega)$. [Caffarelli: Ann Math, 1990; Jian-Wang: Siam J Math Anna, 2007]

Application to proper affine hyperspheres-1

Finding proper affine hyperspheres with mean curvature H which is asymptotic to a cone in R^{n+k+1} is reduced to solve

(PAS)
$$\det D^2 u = \frac{[x \cdot \nabla u(x) - u(x)]^{-k}}{[Hu(x)]^{n+k+2}} \text{ in } \Omega \subset \mathbb{R}^n,$$
$$u = 0 \text{ on } \partial\Omega$$

where Ω is a bounded convex domain containing the origin, H < 0 and $k \ge 0$ are constants.

• Haodi Chen and Genggeng Huang in [JDE: 267 (2019)] proved that (PAS) admits a unique convex solution $u \in C(\overline{\Omega}) \bigcap C^{\infty}(\Omega)$. Application to proper affine hyperspheres-2 Since Ω contains the origin, u is convex and u = 0 on $\partial \Omega$, then

$$x \cdot \nabla u(x) - u(x) \ge -u(0) > 0.$$

Therefore $f(x, u) := \frac{[x \cdot \nabla u(x) - u(x)]^{-k}}{[Hu(x)]^{n+k+2}}$ satisfies

$$0 < f(x, u) \le \frac{(-u(0))^{-k}}{(-H)^{n+k+2}} |u(x)|^{-n-k-2}$$

By Theorem 4, we have Theorem 5 Supposed that Ω is (a, η) type domain in \mathbb{R}^n with $a \in [2, +\infty)$. Let $\gamma_3 = \frac{a+n-1}{a(n+1+k/2)}$. Then the convex solution to (AFS) satisfies $u \in C^{\gamma_3}(\overline{\Omega})$.

Our method can be applied to Chaplygin gas and minimal graph

$$\Delta u - \frac{u_i u_j}{1 + |\nabla u|^2} u_{ij} = -\frac{n}{u} \text{ in } \Omega$$

$$(CM) \qquad \qquad u = 0 \text{ on} \partial \Omega$$

$$u > 0 \text{ in } \Omega,$$

Where Ω is a bounded domain in \mathbb{R}^n .

• n = 2: two dimensional Riemann problem with four-shock data (the vortex and the saddle) for Chaplygin gas

-[D. Serre: Arch Rational Mech Anal, 191(2009)]

• $n \ge 2$: the graph of u defines a minimal graph in hyperbolic space

--[Anderson, Invent Math 1982; Hardt and Lin, Invent Math 1987; Lin, Invent Math 1989]

The Existence and Uniqueness

• There is a unique solution $u \in C^{\infty}(\Omega) \cap C^{0}(\overline{\Omega})$ if $\Omega \in C^{2}$ and the mean curvature $H|_{\partial\Omega} \geq 0$. —[Lin, Invent Math 1989]

There is a unique solution u ∈ C[∞](Ω) ∩ C⁰(Ω) if n = 2 and Ω is piecewise C²-convex domain and the curvature K|_{∂Ω} > 0.
[D. Serre: Arch Rational Mech Anal,

191(2009)]

Questions

• Q 3: Is the solution *u Hölder* continuous up to the boundary?

• Answered by [Lin: Invent Math 1989] if $\Omega \in C^2$ and curvature $H|_{\partial\Omega} > 0$;

• Answered by [Han-Shen and Yue Wang: Car Var PDE, 2016] if Ω is piecewise C^2 and curvature $H|_{\partial\Omega} > 0$;

Concave Solutions

Assume that Ω is a bounded convex domain. Then the problem admits a unique solution $u \in C(\overline{\Omega}) \bigcap C^{\infty}(\Omega)$, and u is concave. Moreover,

$$u \in C^{\frac{1}{n+1}}(\overline{\Omega})$$

This result was proved by Qing Han, Weiming Shen and Yue Wang in Car Var PDE, 2016

The regularity depends on the convexity

Applying our method and constructing the super-solution in the form

$$W(x_1, \dots, x_n) = \left(\left(\frac{x_n}{\varepsilon}\right)^{\frac{2}{a}} - x_1^2 - \dots - x_{n-1}^2 \right)^{\frac{1}{b}}$$

where $b \ge 2$ and $\varepsilon > 0$ are to be determined, we obtain Theorem 6 [J-You Li: Preprint, 2018)] Let Ω be (a, η) type domain with $a \in [2, +\infty)$. Then

$$u \in C^{\frac{1}{\bar{a}}}(\overline{\Omega})$$

where $\bar{a} = max\{\frac{1}{a}, \frac{1}{n+1}\}.$

Thank You!