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Abstract

This paper concerns the existence of global weak solutions to the barotropic
compressible Navier-Stokes equations with degenerate viscosity coefficients. We
construct suitable approximate system which has smooth solutions satisfying the
energy inequality, the BD entropy one, and the Mellet-Vasseur type estimate.
Then, after adapting the compactness results due to Mellet-Vasseur [Comm. Par-
tial Differential Equations 32 (2007)], we obtain the global existence of weak so-
lutions to the barotropic compressible Navier-Stokes equations with degenerate
viscosity coefficients in two or three dimensional periodic domains or whole space
for large initial data. This, in particular, solved an open problem in [P. L. Lions.
Mathematical topics in fluid mechanics. Vol. 2. Compressible models. Oxford
University Press, 1998].
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Abstract

This paper concerns the existence of global weak solutions to the barotropic
compressible Navier-Stokes equations with degenerate viscosity coefficients. We
construct suitable approximate system which has smooth solutions satisfying the
energy inequality, the BD entropy one, and the Mellet-Vasseur type estimate.
Then, after adapting the compactness results due to Bresch-Desjardins (2002, 2003)
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data. This, in particular, solved an open problem proposed by Lions (1998).
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@ Part I: Introduction
@ Part Il: Main Theorems

o Part Ill: Sketch of Proof



Introduction

The barotropic compressible Navier-Stokes equations read:

+ div(pu) = 0,
pe (pu) (L.1)
(pu)t + div(pu @ u) — divS + VP(p) = 0,

where z € Q C RN(N =2,3),t > 0,
p : density,
u= (ug, - ,upn) : velocity,

P(p) = p7(y > 1) : pressure,



Introduction

S : viscous stress tensor with either
S =S; £ hVu + gdivul, (1.2)

or

S =Sy £ hDu + gdivul, (1.3)

1
where Du = i(Vu + (Vu)™) : deformation tensor,
I : the identical matrix,

h, g satisfy the physical restrictions

h>0, h+Ng>0. (1.4)
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@ Global existence of classical solutions away from vacuum

(h and g are both constants):

e 1D case:

Kanel (1968): isentropic case, large initial data;

Kazhikhov & Shelukhin (1977): full NS case, large initial data.
o Multi-D case:

e Matsumura& Nishida (1980): initial data close to a

non-vacuum equilibrium
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@ Global existence of weak solutions containing vacuum
states (3D, % and g are both constants):
o Lions (1993,1998): large initial data, when v > 9/5;
Feireis|(2001): large initial data, when v > 3/2;
Jiang-Zhang(2001): ~ > 1, for spherically symmetric solutions.
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Theorem (Lions-Feireisl (1993,1998,2001))
If v > 3/2 and the initial energy

1 1

THEN 3 a global weak solution (p,u).

| A

Remark
In particular, for the whole space case, the density vanishes (in

some weak sense).
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Variable viscosities degenerate at vacuum

® h=nh(p),g=9(p)

o Liu-Xin-Yang (1998)
derived the compressible Navier-Stokes equations from the
Boltzmann equation by the Chapman-Enskog expansions.

o Gerbeau-Perthame (2001), Marche (2007), Bresch-Noble
(2007) (2011)
a friction shallow-water system used in Oceanography can be
written in a two-dimensional space domain 2 with
h(p) = g(p) = p.

e Geophysical flow models etc.
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Open Problem (Lions (1998))

For N = 2,3, the Cauchy problem is completely open with
S = pVu and v = 2.
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Known results
e 1D with h = g = p*(a > 0) (free boundaries) :
Jiang, Kanel, Makino, Okada, Qin, Xin, Yang, Yao, Zhang,
Zhu, et al.
e Weigant & Kazhikhov model(h = const.,g = g(p)):
Weigant & Kazhikhov (1995), Huang-Li (2012),
Jiu-Wang-Xin (2012): 2D, large initial data.
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Multi-dimensional case:

e BD entropy
Bresch-Desjardins (2003) obtained a new a priori estimate on
the spatial derivatives of the density (BD entropy) under the

condition that
g(p) = h'(p)p — h(p)

for the periodic boundary conditions and the Cauchy problem.
They used the BD entropy to obtain the the global existence
of weak solutions to (1.1) (1.2) and (1.1) (1.3) with some

additional drag terms.
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@ Log-type energy estimate
Mellet-Vasseur (2007) obtained a new a priori Log-type
energy estimate and study the stability of (1.1) (1.2) and
(1.1) (1.3) without any additional drag term under the
assumption of existence of smooth approximate approximation

solutions satisfying energy estimate and BD entropy.
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RENEILS

For the cases that h, g are both constants (non-degenerate
viscosity), the construction of the approximation solutions can be
achieved by using standard Galerkin methods (Lions (1998),
Feireisl et al(2001)). However, the constructions of the smooth
approximation solutions remain to be challenge, which does not

seem standard in the case of appearance of vacuum due to the

degeneracy of viscosities.
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RENEILS

For the cases that h, g are both constants (non-degenerate
viscosity), the construction of the approximation solutions can be
achieved by using standard Galerkin methods (Lions (1998),
Feireisl et al(2001)). However, the constructions of the smooth
approximation solutions remain to be challenge, which does not

seem standard in the case of appearance of vacuum due to the

degeneracy of viscosities.




Introduction

@ Part results for special cases are available :
o 1D: Li-Li-Xin (2008)
o Multi-D with the spherical initial data: Guo-Jiu-Xin (2008),
Guo-Li-Xin (2012)
@ The truly multidimensional case seems much more
complicated. It has been an open problem mentioned by many

researchers in the area.
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Open Problem

For general initial data, the problem proposed by Lions is essentially
reduced to the constructions of the smooth approximation
solutions satisfying the BD entropy inequality since the a priori

energy estimate and Log-type one are relatively easy to be verified.
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For the sake of simplicity, it is assumed that for o > 0,

h(p) = p®,  g(p) = (a —1)p™. (1.21)

For Q = RN(N =2,3) or Q = TV(N =2,3).

The initial conditions are imposed as

plx,t =0)=po, pu(z,t=0)=myp. (1.22)
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Definition (weak solutions)
(p,u) is said to be a weak solution to (1.1) (1.3) (1.21) (1.22) if

0<peL>®0,T;LY(Q)NL(Q),

Vpl+e=b/2 e L2(0,T; (L2(Q))N),

Vpe=l2, Jpu € L0, T; (LA(Q)V),

h(p)Vu, h(p)(Vu)*™ € L2(0, T; (Wi ()N ),

loc

gp)divu € L2(0,T; Wy, (Q)),

loc
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Definition (weak solutions (Continued))

with (p, \/pu) satisfying

pt + div(\/py/pu) = 0,

p(z,t =0) = po(x),

. /
in D",

and if the following equality holds for all smooth test function

o(x,t) with compact support such that ¢p(x,T) =0:

[ mo-t@0)da+ [T (VA + v Vs Vo) dud

L (h(p)(V), V)

o0 1
+/ p divedzdt — §<h(p)Vu, Vo) — 5
0

— (9(p)divy, divg) = 0,
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Definition (weak solutions (Continued))

where

(h(p)Vu,Veo) =— /OO POV Jpu - Apdadt
0

20 ° o
— 2a_1/0 VPu;0ip® Y20, dxdt,

(h(p)(Vu)*, Vo) = — /000 P2 Jpu - Vdivedadt

2@_1/ Vpuidjp®~ 1/28i¢jdxdt,

(9(p)divu, dive) = — (o — 1)/ pa_l/Q\fpu - Vdivodzdt
0

— M(Q_l)/ Vpu - VY2 divedadt.
200 — 1 0




Condition (Conditions on the initial data)

For some ng > 0,

0<po€ LNQ)NLQ), Vi /2 e L),

mo € L2/0FD(Q), p5 7™ |mo|> € LY(Q).




Main Theorems

Theorem 1

Let Q = R? or T?. Suppose that o and ~ satisfy
a>1/2, v>1, ~v>2a-1 (2.1)

Moreover, assume that the initial data (po, mo) satisfies (1.23).
Then there exists a global weak solution (p,u) to the problem
(1.1) (1.3) (1.21) (1.22).

Similar result holds for the problem (1.1) (1.2) (1.21) (1.22).




Main Theorems

As for the three-dimensional case, it holds that

Let Q = R3 or T3. Suppose that o € [3/4,2) and v € (1,3) satisfy

1,6 —3), for o € [3/4,1],

e ( ) [3/4,1] (2.3)
2a—1,3a—1], forae(1,2).

Assume that the initial data (pg, mo) satisfies (2.1). Then there

exists a global weak solution (p,u) to the problem (1.1) (1.2) (1.6)

(1.7).

In particular, v € (1,3) for a = 1.




Let @ = R> or T3. Suppose that o = 1 and y € (1,3). Assume that

the initial data (po, mo) satisfies (1.23). Then there exists a global
weak solution (p,u) to the problem (1.1) (1.3) (1.21) (1.22).




If « =1 and v = 2, our results give a positive answer to the open

problem proposed by Lions (1998).




Main Theorems

Remark
Recently, for a particular case: & = 1 and Q = T®, Vasseur-Yu
[Invent. math. (2016) 206:935-974] tried to give another proof of

our result (Theorem 3), that is, they used the weak solutions of

pe + div(pu) =0,
(pu)t + div(pu @ u) + Vo7 — div(pD(u)) (2.3)
A/p )

\/ﬁ )
whose existence is shown in Vasseur-Yu [SIAM J. MATH. ANAL.
48 (2016) 1489-1511].

= —ru — roplul®u — kpV(
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Remark (Cont.)
However, as indicated by [Lacroix-Violet & Vasseur JMPA (2018)],
those a priori estimates are not sufficient to define Vu as a
function. In fact, in the proof of the key Lemma 4.2 of
[Vasseur-Yu: Invent. math. (2016) 206:935-974], it seems to us

that their need the assumption that Vu is a function essentially.

v
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Hence, p; g(ve?) converges to p* g(Ju|?) almost everywhere. Since g is
bounded and (4.1), p¢ g(|vK|2) is uniformly bounded in L" ((0, T) x 2) for
some r > 1. Hence,

p2g(Ivie|?) = p%g(uf®) in L'((0, T) x Q).

By the uniqueness of the limit, the convergence holds for the whole sequence.
Applying this result with « = 1 and g(|v, 12) = ©n(V), we deduce (4.2).
Since y > 11in 2D, we can take « = 2y — 1 < 2y; and take y < 3 in 3D,

we have 2y — 1 < 5—)/ Thus we use the above result with « = 2y — 1 and

gveH=1+¢ (|vK|2) to obtain (4.3). O

With the lemma in hand, we are ready to recover the limitsin (3.2) ask — 0
and K — oo. We have the following lemma.

Lemma4.2|Let K = K_%, and k — 0, for any ¥ > 0 and ' < 0, we have

T
—/ /W’(t)pwn(u)dxdt
0 Q
<8||w||Loo(/( )dx—i-ZEo)

+C(||w||Loo)/ /(1+¢3,/,(|U|2)),02y_1dxdf+1ﬂ(0)/g/00<ﬂn(uo)dx
4.5)
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For the term S, = ¢« (o) ox (Due + A\/‘%’?H) = S1 + Sy, we calculate as

follows

T
/ /‘//(f)Sl V(@ (Vo)) dx di
0 Ja
T
_ /0 /Q FObx (o) peDuy : V(g (ve)) dx dr

T
:/0 /Q‘//(t)[Vu,(tpﬁ,’(vK)pK]:ID)uK((pK(pK))zdxdt

966 A. F. Vasseur, C. Yu

T
" /0 /g ¥ (0pc0k () (8]0, v)) DUV Gk () dx i
= A~1 + ;42. @21

For Ay, by part a. of Lemma 2.2, we have

T
A= /0 /ﬂ YOIV () pel : Du (b (po))* d di

T
=2 /0 /Q Y(OF, (Ve ) @k (0)* peDu, : Vu dxdt

T
+ 4/0 /QW(I)PK (¢K (PK))2¢;(|VK|2)(VUKV,( ® VK) . ]D)ll,( dx dt
=An+An. (4.22)

Notice that

Du, : Vu, = ”D)UK\Z,
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GLOBAL WEAK SOLUTIONS TO THE COMPRESSIBLE QUANTUM
NAVIER-STOKES EQUATION AND ITS SEMI-CLASSICAL LIMIT

INGRID LACROIX-VIOLET AND ALEXIS F. VASSEUR

ABSTRACT. This paper is dedicated to the construction of global weak solutions to the
quantum Navier-Stokes equation, for any initial value with bounded energy and entropy.
The construction is uniform with respect to the Planck constant. This allows to perform
the semi-classical limit to the associated compressible Navier-Stokes equation. One of
the difficulty of the problem is to deal with the degenerate viscosity, together with the
lack of integrability on the velocity. Our method is based on the construction of weak
solutions that are renormalized in the velocity variable. The existence, and stability of
these solutions do not need the Mellet-Vasseur inequality.

1. INTRODUCTION

Quantum models can be used to describe superfluids [12], quantum semiconductors [6],
weakly interacting Bose gases [§] and quantum trajectories of Bohmian mechanics [16].
They have attracted considerable attention in the last decades due, for example, to the
development of nanotechnology applications.

In this paper, we consider the barotropic compressible quantum Navier-Stokes equa-
tions, which has been derived in [5], under some assumptions, using a Chapman-Enskog
expansion in Wigner equation. In particular, we are interested in the existence of global
weak solutions together with the associated semi-classical limit. The quantum Navier-
Stokes equation that we are considering read as:

Pt + dlv(pu) = 07
(pu)s + div(pu @ u) + Vo7 — 2div(\7pS, + /RDS) = /S + v/idiv(y/pM),
where
AV

VVPS, = pDu, div(y/kpSi) = kpV <7> , (1.2)

(1.1)

and with initial data

p(0,2) = po(x), (pu)(0,2) = (pouo)(xz) in Q, (1.3)
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2. PRELIMINARY RESULTS AND MAIN IDEAS

We are first working on the System (L)) with drag forces. The definitions will be valid
for all the range of parameter, rg > 0,71 > 0, > 0,v > 0. The energy and the BD
entropy on solutions to (9] provide controls on

Juf?

() = | (pT+<2n+4v2>|wﬁ\2+m+ro<p—1np>) dar,
Q
DE(v/, /pu) =
/ (v 22 4+ v (IVO A + V2 /2) + 1T 2 + roful? + riplul*) da.
Q

From these quantities, we can obtain the following a priori estimates. For the sake of
completeness we show how to obtain them in the appendix.

VP ELXRTIAQ),  VypeL®RYLAQ),  Vp? e X(RYLA(Q)
Vou € LRV I2(Q), T, e PRYLA(Q), VeV /pe LR L7(Q),
KAV e AR L), p e e LARY L)),

re2ue AR LAQ),  relnpe LO(RY;LY(Q)).

INote that those a priori estimates are not sufficient to define Vu as a function.l The state-
ment that /pVu is bounded in L? means that there exists a function T, € L*(R*; L*(12))
such that:

(2.1)

VBT, = divipu) — Vpu - V7,
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Remark 1.1 It should be nofed tat the arguments in the work of Vasseur-Yu rely crucially on heassump for that the gradient of
velocity field Vi is & well-defuned function, which indeed does ot make sense fn the presence of vacuum, In parficular, in the proof of Ref.
Lemima 4.2, which is crucial fo deduce the key Mellet-Vasseur type estimate in Ref -, if requires essenfially that Va5 o well-defined function.

Very recently, Lacroir- Violet and Vasseur  so studid the QNS equations and considered g new function T, € [*(Q x (0,T)) satifyng

L= 9w -2 pu @ 7,/ (Lo)

More precicly, they - use the function Ty to give a niew understunding of . /D7, However, as mentioned in Ref ", i sl does ot allow one
fo define the gradient of velocity V1 as a function,

25, Lacrofx-Violet and A. Vasseur, "Global weak selutions to the compressible quantumn Navier-Stokes equation and its semi-classical limit,” |. kath. Pures Appl. 114,
151-210 (201 8).

¥4 5. Vasseur and C. Yu, “Global weak salutions to the compressible quantumANavier»Stokes equations with dampiﬁg," SIAM ], Math, Anal. 48, 1489-1511 {2016).
*5 A, Vasseur and C. Y, “Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations,” Invent, Math, 206, 335-574 (2016),



Main Theorems

Remark

For 3D case, our Theorems 2 & 3 are valid for « = 1 and all

v € (1,3), which are in sharp contrast to the case that h and g are
both constants, where the condition -y > 3/2 is essential in the
analysis of Lions (1998) and Feireisl et al (2001). In fact, for h and
g being both constants and v € (1,3/2], it remains completely
open to obtain the global existence of weak solutions to (1.1) (1.2)
for general initial data except for the spherically symmetric case
(Jiang-Zhang (2001)).




Sketch of Proof

GOAL: To construct an approximate system which has smooth
solutions satisfying

1) Standard and Log-type energy estimates

2) BD entropy

@ Observation: Standard and Log-type energy estimates hold for

parabolized system.

o Key issue is to derive BD entropy independent of perturbation
parameters

@ Main technical difficulty is to obtain the positive lower bound
and upper one for the density (which may depend on the

parameters)



Sketch of Proof

Our constructions: Consider the following approximate system

pr +div(pu) = G,
put + pu - Vu — div(he (p)Du) — V(ge(p)divu) + VP (3.1)
-,
where

he(p) = p* + 3 (p" 4+ p7),  g=(p) = phl(p) — he(p),

0<e<en = (2a—1)(16(a+7))71° F&y+1/6.



Sketch of Proof

o G 2 ep'2div(p~'/2n.(p)Vp) parabolization
KEY for BD entropy and lower and upper bounds of the
density
o H2 Hy + Hy
Hy £ VEldiv(he (0)Vu) + V(g-(p)divu)]
= /pu|2+€dm
Hy = —ff""_f;(,zf_2 +p u
= /(pp + p P)dz, Vp > 1.

° /p|u2+€d.cc + /(p” + p P)dx +De Giorgi type method
= C () < p<Cle).



Sketch of Proof (2D Case)

Step 2: BD entropy inequality

3C independent of ¢ and T s.t.

_ _~—3 -2, 5_ _—2_
sup [ (o7 (HLp)PIVAI? + 1300 (T 1 o

0<t<T

T T
4 / / he(p)[Vul2dadt + / / P 2h(p)|Vp|2dzdt < C.
0 0
(4.2)

v




Sketch of Proof (2D Case)

Proof. Set
G £ ep'?div(p™*hL(p)Vp), ¢L(p) £ p~ hL(p) > 0.
Direct computations give
o[ oIVelo)Pds)et [ Vhile) Vu- Vipu(p)da
/Vh V(peL(p)divu)dz (4.3)

+ [ 016 (Aelo) = ST ) do =



Sketch of Proof (2D Case)

Multiplying (3.1)2 by Ve (p) leads to

1_:\[(/u-VhE(p)d:L‘)t—/hE(p)Vdivu-V(ps(p)dx
/Vh Vu~Vgog(p)drr—i—/gg(p)divuAgoe(p)dx
]' / /
+ 5T [ heIVulde - e [ P ) Vol

1+\[/ P Yu - Voe(p)do

w/dlvuh; p)Gdx
<C / (p)|Dul?dz,




Sketch of Proof (2D Case)

(4.3)+(4.4)
¢L(p) =p 'hl(p), g:(p) = phL(p) — he(p) =
)

/ Vhe(p) - V(pil(p)divu)da — / he(p)Vdivu - Voo (p)da
" / g-(p)divulg.(p)da
— [ (Fhelo)- T(petlo) = Vaelo) - Tiulp) divud
+ / (pp2(p)Vhe(p) = he(p)Vee(p) — 9:(p)Vipe(p)) - Vdivudz = 0

THEN (4.3)+(4.4)=



Sketch of Proof (2D Case)

([ Ao+

(/ pu - Ve (p)de):
— [ POV

1
1++/e
he(p)|Vul*dx + :

*M/

1+\f P Yu- Ve(p)dz

+/q<m<wu> LIV +

1 .
1T /e /)leLL> dx
<C [ he(pIDufiz,
(4.5)



Sketch of Proof (2D Case)

By the definition of G

. |
G £ ep!2div(p™V2hL(p)Vp) = e(Ahe(p) = S¢l(p)|VoP).

We have the following KEY observation (Since ¢.(p)>0):

1 1
A . - / 2
=>/s06 G (Ahelp) = GOV + 152
13 .
> oo [eocian =5 [ et v as
1
> 8/goé(p)G2d:c—Cs/hg(p)|Du|2dm.

pdivu) dx



Sketch of Proof (2D Case)

Step 3: Log-type energy estimate

Lemma
Assume that «y > 1 satisfies v > (1 + «)/2 in addition. Then there

exists some generic constant C' but independent of € such that

sup /p(e + |u|?) In(e + |u|?)dz < C. (4.7)
0<t<T

v




Sketch of Proof (2D Case)

Step 4: Lower and upper bounds of the density

Lemma

There exists some positive constant C depending on € and T such

that for all (z,t) € Q x (0,T)

C™! < p(z,t) < C. (4.8)

v



Sketch of Proof (2D Case)

Proof. 1) It is easy to show that

sup /p]u|2+ad:n+\f/ / p)|ulf|Vul?dzdt < C. (4.9)

0<t<T



Sketch of Proof (2D Case)

2) v £ |/p satisfies
20y — 2ediv(hL(v?) Vo) 4 div(uv) +u - Vo = 0. (4.10)
1/2
For k> [[u(, 0) | z() = lleoll 2 gy, (410) x(v— k)4 =

d
il AChe k) dx + 2a€/v2a2|V(v — k)4 [Pda
(4.11)

<C o172 )2 da + ae/vzo‘_2|V(v — k)4 |d,
Ap(t)

where A(t) £ {x € Qlv(z,t) > k}.



Sketch of Proof (2D Case)

/ 0172 |2 dx
Ag(t)
2/@te) e/ (2+e)
<C </ U2’u2+5dl‘> (/ U(4+4£—2(2+5)a)/adx>
A (t) Ay (t)
£/(2+¢)
(/ (p4(04+1)6 +p—4(a+1)a )dil?)
Ag(t)

c(4-2)/(6(2+<))
C / (pE_2 + p_€_2)d:c
Ay (t)

< ClADI,

IN
Q

IN

|Ag(t)[*/®

(4.12)



Sketch of Proof (2D Case)

(4.12)+(4.11) =
IL(t) + as/po‘_1|V(v — k)4 [Pz < CZ/Z/6, (4.13)
where

)2 [k e, n swp 40

0<t<T



Sketch of Proof (2D Case)

Let

Ii(o) = sup Ii(t).

(4.13) = Tu(0) + /pa—lva k)L 0)de < O,

= Ii(o) + V(v - k)+(')0)”i24/(12+s)(9)

<00+ [ 9= 0Pl [ 205w, 0)ie

< CZ/Z/G.

e/12



Sketch of Proof (2D Case)

Then, for any h >k > [[v(-,0)|| Lo (0,

[An(®)I(h = 12
<(w=k)+ ()72
<0 = K4 0) s
< Cll(w = 1)+ (02 a1y oy An() 12

9 2 1-¢/12
< € (0 = K+, 0) 32y + IV = K)o (02 ausaa0y) V2

S CV]};+E/127



Sketch of Proof (2D Case)

= v, < C(h— k) 2 12

De Giorgi-type lemma = sup ||pl|r=(q) < C. (4.14)
0<t<T

1

3) Applying similar arguments to the equation of p~~ shows

sup p M t) < C,
(2,£)€Q% (0,T)

for some positive constant C' > C.



Sketch of Proof (2D Case)

Step 5: Higher order estimates

Lemma

For any p > 2, there exists some constant C' depending on &, p,

and T such that

T
| (0l + 10 n) dt < 0. (415)

<



Sketch of Proof (3D Case)

For constants pg and ¢ satisfying
po="50, 0<e<e £min{10710 nl,
with 79 as in (1.23), we consider the following approximate system

pi + div(pu) = evAv + evdiv(| Vo[> Vo) +ep 0,
pui + pu - Vu — div(pDu) + VP

= Vediv(pVu) + ev|Vo*Vu - Vu — ep Pou — eplulu,
(5.1)

where v £ p1/2.



Sketch of Proof (3D Case)

Lemma
There exists some generic constant C' independent of € such that
T
sup /(p|u|2 +p+p" +ep P)dx + / /p[Du]Zd:cdt
0<t<T 0

T
+8/ / (IVo* + [VolPlul® + Vo |u® + p7P[ul? + plul®) dzdi
0

T
2 / / p~ o~ Ldgdt < C.
0

(5.2)




Sketch of Proof (3D Case)

Lemma (BD entropy)

3 C independent of € such that

T
S0 / (’V’U|2 + 5|V”|4) dz + / / (p|Vu]2 + pW*Z\Vp\Q) dzdt
0

0<t<T

T T
—I—a/ /((Av)2—|—|Vv|2|V2v]2)dxdt+52/ /|Vv|4\V2v|2d:cd
0 0

<C.

S

(5.3)

v




Sketch of Proof (3D Case)

Observation:
/ div(|Vv|*Vv) Avdz
=— / Vo>V - VAvdz (5.4)

1
:/\Vv]2|v2v|2dx+2/]V|Vu|2]2d:v.



Open Problems:

@ Shallow water models;

@ Full compressible Navier-Stokes system with viscosity and heat

conduction depending on temperature;



Thank You!
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