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Problem setting and background



Interacting particle system

Particle model
A two-dimensional interacting particle system with position x; € R?
and velocity v; € R?,

dxi
dt

dv; 1
dt /\/_1; Fxi =, vi = vj) + G(xi, i),

@ F(x,v), the total interaction force,
@ G(x,v) the desired velocity and direction acceleration.

Background: mean field interacting particle models for material flow,
pedestrian flow, group behavior for small animals (for example,
Cucker-Smale).



Total interaction force and acceleration force

based on the material flow and pedestrian flow model proposed by Gottlich
and her collaborators.

@ F(x,v) consists of the interaction force F,:(x) and the dissipative force
Fdiss(xa V),
F(x,v) = (Fint(x) + Faiss(x, v))H(x, v)
where H(x, v) is a smooth cut-off function with compact support Bag.

2
o Interaction force, Fi,r(x) = =V V/(|x]) = =Vk,(2R|x| — ‘X7|)

o Dissipative force, Fgiss = Fiss + Fjiss With

X X
Faiss = —7n(v, m>m
X X
ngss = _7t<v - <V7 m>m>

where ,,; are suitable positive friction constants.

@ Velocity and direction acceleration is given by

G(x,v) :=g(x) —v.



Mesoscopic and Macroscopic Models

Kinetic equation (mesoscopic level)
After taking the mean field limit, one obtains the evolution of the
(effective one particle) density f(t, x, v)

Hydrodynamic model (macroscopic level)
e Ansatz f(t,x,v) = p(t,x)d,(t,x)(v)

atp+v(pu)zo7

Dru+ u-Vu = / Flx — y. u(x) — u(y))p(y)dy + G(x, u)

v—u(t,x 2
o Ansatz f(t,x,v) = p(t,x) 1 i e*%
(2m)2
Otp + V- (pu) =0,
v
O+ u-Vu+ 7p — / F(x —y,u(x) — u(y))p(y)dy + G(x, u)



Rigorous derivation of the kinetic model (mean field limit)



Rigorous derivation of the kinetic model—mean field limit

Particle model with position x; € R? and velocity
vieR?i=1,...,N.

dx;
= Vi,
t
4 1
G T W12 Tl ) Gl )

i#j

1
Particle model with cut-off of order N~ with 0 < § < n

( X Vv, X
(2Rkn7 — knx + < >(7t - 'Yn)X

x| |x|2

FN(x,v) = _%V>H(X’ V).

((2Rk,,/\/9 — kn)x 4+ N? (v, x)(7¢ — yn)x
—fytv>7-[(x, v),

x| > N*O,

x| < N9



Cut-off interaction

The interaction force FV(x, v) with cut-off has the following
properties,

(a) FN(x,v) is bounded, i.e., |FN(x,v)| < C.
(b) FN(x,v) satisfies the following property

[FY(x,v) = FY(y, V) < ¢"(x, v)lx — v,

where g" has compact support in Byg x B,z with

1
C7+C> |X|2N_07

)= I

C- N, x| < N7°.

(c) FN(x,v) is Lipschitz continuous in v.



Particle model with cut-off interaction

%X’V =V,
EVN WN(Xth VtN) + r(Xth VtN)v

WN(XN VN denotes the total interaction force with

(WX V), = e ST N .
i#j

F(XN, VN stands for the desired velocity and direction acceleration
with
(F(x, vi)), = 60" ).

I7I



An intermediate particle model

d _
xN =V

i’f
YA <N =N <N =N
t_w (Xt7vt)+r(Xt7vt)’

where the total interaction force

( xY, v ) //FN —y, N —w)N(t,y, w) dydw

and the desired velocity and direction acceleration

(F(Xt, V), =GN, 7).

I ’ I

: . N Ny . . .
It is obvious that (X, , V ); is the trajectory on R* which evolves
according to the Vlasov equation

0N+ v VN4 v, [(FN < FN N+ v, - (GFV) =0,



Mean Field Limit

Theorem 1

1 1 11—« —a—40
F0r9€(071), 046(0,5), ﬂE(OgT),’yE(O,f) Let

fV(t,x,v) be the solution to the cut-offed Vlasov equation, with

[1£Y]|x + ||fV|| =~ bounded uniformly in N. If G(x, v) is Lipschitz
continuous, then 3C > 0, it holds with a f#-independent convergence rate
that

1

(XN, vy — (X! VD)

Py ( sup > /Va> < e“-r(N),
0<s<t o

where the convergence rate
r(N) = max{ N~(—a=48) yo—f N=(-a=49) |2 N},

Remark The assumption that ||f"||;1 + ||f"||.~ bounded uniformly in N
can be obtained in studying the vlasov equation separately (will be presented
in the next section).



Mean Field Limit

Idea of the proof. (Inspired by Pickl's work on the derivation of
Vlasov-Poission system)
We consider a stochastic process given by

St = min {17 N sup (XsNa VSN) - (YLV’VLV)

0<s<t

.

The proof for the result in the first theorem is actually based on the
control of Eq [S;] if one observes the following Markov inequality

(XN, vy - (x) vl

Po < sup > Na> = Po(st = 1) < Eg [St] .
0<s<t e’}



Mean Field Limit

The cut-off particle system and the intermediate cut-off particle
system are

N N N N N N N N N N
(Xerder Verae) = (X, Ve )+ (Ve WX, V) + T(X,, Ve ))dt + o(dt),

Khpaes Vera) = XV + (Ve WY, V) + (XY, V) de + o(de).
Taking the difference gives

N N ~N N N N ~N N
‘(Xt+dt* Vt+dt) - (Xt+dt’ Vt+dr)|ec < |(Xt ’ Vt ) - (Xt ) Vt )|

oo

N

t

N N/ N N N N N N ~N 7N ~N 7N
+| (Mo v e Vi) = (VNG V) T XYL V) | de+ o(de),

which is
Sevae = St < | (VWO V) 4T, V) -

(VW V) + e V) | e+ ofde)



Mean Field Limit

The set, where |S;| = 1, is defined as N,, i.e.,
> N‘a}.
o0

In order to handle the difference from the right hand side, we define

> N‘ﬁ},
o0

~N —N
(X5N7 VsN) - (Xs ) Vs )

Ny = {(X, V): sup

0<s<t

N = {(x, V) X V) - BN R V)

Ny = {6V Ve V) - @V V)

> N*V}

Key estimates
o Po(Nj3) < CN~(=49),
o Po(N,) < C- N~ p2 .,



Mean Field Limit

Taking the expectation over both sides yields

Eo [ Sttar — St] Eo [Sevar — St | Na | +Eo [ Seyar — St NG ]

IA I

Eo [Serdr — St | (Ng UNY) \ Na ] +Eo [ Serae — St | (Na UNG UNY)]
< ]EOHVN—V ‘ ‘N,;uN)\N ]No‘dt
+]E0Hlll (XN, vy — NN, v )‘ ‘(NﬁUNW)\Na}NO‘dt

+Eo er! V] )7r(xr,vt)‘oo ((/\/B u/\fn,)\/\/a} N dt

+Eo [ Serde — St | (Na UNG UNL) ] + o(dt)
= S+ o+ 3+ Jy+ o(dt),

Finally,

%]Eo[st] < C-Eo[Si] + C - max{ N~ |n? yyo N~(—a—48) ya=hy,

Gronwall’s inequality yields

Eo [Se] < e - max{F(N)N, N~(A-a=48) ya=Fy,



Mean Field Limit

The convergence from cut-off vlasov to non-cut-off vlasov The
trajectory of the non-cut-off vlasov equation is

Xt Vta

%
Evt = W(Xn Vt) + r(Xn Vt)a
where the total interaction force

(V(X¢, Vy)) // -y, Vi — w)f(t,y,w) dydw

and the desired velocity and direction acceleration ([(X:, V¢)), = G(xi, V).
Theorem 2

If additionally the initial condition fy has the property that Vfj is integrable,
then there holds

(XsNa VsN) - (YS,VS)

lim Py ( sup

< > Na> 0.
N—oo 0<s<t )



Existence of Weak Solution



Weak Solution (Existence of weak solution)

The mean field kinetic equation is
Of +v-Vif +V, - [(F*f)f]+V,(Gf)=0.

Definition Let fo(x,v) € L}(R? x R?) N L®(R? x R?). A function
f = f(t,x,v) is said to be a weak solution to the kinetic mean field equation
(1) with initial data fo, if

// f(t,x, v)e(x,v) dxdv = // fo(x, v)e(x, v) dxdv
R2xR? R2xR?
t
—|—/ // vi(s, x,v) - Vxo(x, v) dxdvds
0 JJRexR2
t
—|—/ // (F(x,v) xf(s,x,v))f(s,x,v)  V,p(x,v) dxdvds
0 JJRexR2

t
+/ // G(x, v)f(s,x,v) - Vyp(x, v) dxdvds
0 R2xR?

for all p(x,v) € Cg°(R? x R?) and t € R,.



Weak Solution (Existence)

Theorem 3 Let fy(x, v) be a nonnegative function in L* N L> and

1
// = v| fo(x, v) dxdv =: &, // ~|xfo(x, v) dxdv =: M.
R2xR2 2 R2xR2 2

Then, there exists a weak solution f € L°(R,; L*(R? x R?)) to the mean
field equation (1) with initial data f,. Moreover this solution satisfies

0 < f(t,x,v) < HfE)HLoo(RZXRZ)eCt, for a.e.(x,v) ER> xR? t >0

together with the mass conservation

// f(t, x,v) dxdv = // fo(x, v) dxdv =: Mg
R? xR? R? xR?

and the kinetic energy and second moment bounds

1 1
// §|v\2f(t,x, v) dxdv < C, // §|x\2f(t,x, v) dxdv < Mye®.
R? xR? R? xR?



Weak Solution (Existence)

Lemma (Golse, Lecture notes, 2013) Assume that
K(z,Z') € C(R* x R*; R*) is Lipschitz continuous in z, uniformly in z’ (and
conversely), i.e., there exists a constant L > 0 such that

sup |K(z1,7") — K(22,7)| < L|z1 — 2|,
Z/E]RA

sup |K(z,z1) — K(z, )| < L|z1 — z)|.
zER4

For any given z5 = (xo, vo) € R? x R? and Borel probability measure
o € P1(R*), there exists a unique C'-solution Z(t, o, 110) to the problem

diZ(t,zo,uo) :/ K (Z(t,20),2") u(t, dz’),
t R4

Z(Oa 20, /U‘O) = 2,

where u(t,-) is the push-forward of po, i.e., u(t,-) = Z(t,-, po)#o-



Weak Solution (Existence)

Idea of the proof By taking the interaction kernel K as
KN(z,2') = KN(x,v,x', V') := (v, FN(x = X', v = V') + G(x,V)),

the mean field cut-off equation can be put into the form
o fN(t, z) + divz(fN(Lz) // KN(Z,Z/)fN(t,Z/)dZ/) =0.
R2xR2

For the given initial data fON, we have
fN(t,z) == £ (ZV(t,-)"1(2)) J(0,t,2), Vt>0,

where J(0, t, z) is the Jacobian, i.e.,

J(0,t,z) = exp (/todivv (FN « fN(s,ZN(s,2)) + GN(Z"(s,2))) ds).



Weak Solution (Existence)

Conservation of mass ||fN||x = Mo

L° estimate comes from the boundedness of the force

V(e 2)] < 1Y (ZV(t,)7H(2)) J(0, 1, 2)|

t
1] exp ( / VN s V)] ds+Ct>
0

IN

IN

t
1 e exp ( / I3 FY e | 7Y ds + cr) < [V

Kinetic energy estimate comes from the contribution from damping

// thxv)dxdv<C // va(txv)dxdv
R2 xR? 2 ]R2><]R2

@ Bound for second moment

d // Ix|2FN(t, x, v) dxdv = // Ix[20:FN(t, x, v) dxdv
dt J Jrzxwe R? X R?

= // x - vfN(t, x, v)dxdvg// Ix|2FN(t, x, v) dxdv + C.
R2 X R? R2 X R2



Weak Solution (Existence)

To take the limit in the approximated problem for the existence of weak
solution, we need to care about the nonlinear term

VU[(FN s FNYFN]

Instead of trying to get a strong convergence of ", we obtain additional
estimates for FV x fV in the following

IFY s £ ooy < C (|[F 11, Mo, R)

[FY s £ oo 10y < C([|F 12, Mo)

IV, (FY % £Y) || ey < C (IVFlx, Mo, R)

19y (F* 5 £) lli sy < CIVoFllie, Mo)

1
IV, (F% 5 £Y) iy < € | <x,§ : |X> cfM SN e Ve > 1

Loo(12)

Further estimates shows that

||at(FN * fN)HLOC([O,T];W*I,2(R2><R2)) S C.



Weak Solution (Existence)

Therefore, for any test function ¢ € C5° with Q = suppyp, according to

Aubin-Lions compact embedding theorem there exists a subsequence such
that

FNsfN — Fxf inL>([0, T]; L2(Q)).
We then get V¢ € (0, T) the following estimates:
‘ /t//]RZXR2 (FN * fN)fN) (5, %, VIVyvo(x,v) — ((F = f)f) (s, x, v)Vyo(x, v)) dxdvds‘
< ‘ /// FN * fN fN (s, %, V)Vye(x,v) — ((F = f)fN)(s,x, V)V p(x, v)) dxdvds)

|/// ((F % £)FY) (s, x, v)Vyp(x, v) — ((F % £)f) (s, x, v)Vo(x, v)) dxdvds‘
= S+

For the first term J;, we have
l < dim [FV s N — F ok f|| e FN oo (100 =
Jim < lim [[FT # Fl oo (@) 1 e (1) [ Vviplli2 = 0
while for the second term J, we use the fact that FN = f in
L®(Ry; L°(R? x R?)) for Fxf-V,p € LY(L'), namely
lim J =0.

N—oco



Global classical solution of compressible Euler system
with velocity alignment



Formal Understanding of the Model

After taking the mean field limit, one obtains the evolution of the
(effective one particle) density f(t,x, v)

Of +v-Vxf+V, - [(Fxf)f]+V, (Gf)=0.

Hydrodynamic model (macroscopic level)
Ansatz f(t,x,v) =1 (x, v).
2

This is the minimizer of the kinetic energy V?f(t,x7 v)dxdv

2
|V—u(t,X)|2§pd (t,X)

under the constraint ||f(t, x, v)|lco < 1.

atp+V-( ):0
Oe(pu) + V - (pu® u) —i—V,od

= p) [ Flx = ,ux) = u)ply)dy + pGi(x. )

In particular, F(x,u) = m ® MUH(X u).



General Cauchy Problem

We consider the following general system

Oep+ V- (pu) =0,
O(pu) +V - (pu @ u) + Vp(p)

= Zpu— a0 [Tl N0 - u)olr)dy.
ple=o = po(x), ule=o = uo(x), x € RM.

where the pressure P(p) = p? The matrix is [(x) € L*(R"). The constants
v2>1,7>0,a> 0 are given.
Known results (for the case that ['(x) = &(|x|)lnxn, ¢(]x]) > ¢ > 0)

@ 1-D, weak entropy solution, Ha,Huang and Wang, 2014
@ 1-D, regular solution, Kieselev, Tan, 2018

@ M-D, global smooth solution, Carrillo, Choi, Tadmor, Tan, Kang,
Kwon, Kiselev... 2014-2018

@ M-D, infinite global weak solution, Carrillo, Feireisl, Gwiazda,
Swierczewska-Gwiazda, 2017



Reformulation into a symmetric system

Idea comes from Sideris, Thomases, and Wang's work in 2003.

Let k(p) = v/ P'(p), & = k(p) the sound speed at a background density

p > 0.

The symmetrization in the case of v =1 can be done similarly with a new
variable In p.

2
Defineo(p) = v(k(p) — k) with v = oy then the system is transformed

into
- 1
0o +REV-u=—-u-Vo— ;aV-u,
_ 1 1
ou+kKVo+ —-u=—-u-Vu— -0V -0
T v
1 =\
~a [ (e =)0 — uly)Goly) + R)"dy.
where the constants are a = fy_l/('y_l) > 0. The initial condition becomes

(0, u)|t=0 = (00(x), to(x)) = (v(k(po) — K), o)-



Main results

I . N I
Theorem (Local-in-time existence) For s > > + 1, assume the initial values

(o0(x), uo(x)) € H*(RY). Then there exist a unique classical solution (o, u)
satisfying (o, u) € C([0, T], H*(R")) n ([0, T], H*~*(RN)) for some finite
T>0.

Theorem(Global-in-time existence) Suppose background sound speed &

1 .

satisfying 2ar”||F||;x < =. If ||oo||ws + ||tol|ws < do with sufficiently small
T

dg > 0, then the Cauchy problem has a unique global classical solution.

Theorem(Decay convergence in torus) Assume that I € L>(TV x TV),
F(x,y) =T(y,x), then the following estimate holds,

/ (oluf?+ (o~ mo)?)ax < €. / (ot + (00 — mo)?)dxe™ .
TN TN

Remark Since the matrix I'(x) is not positive definite, the damping
coefficient needs to be large enough to make the damping term restrain the
self-acceleration effect caused by velocity alignment to get the global
well-posedness.
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