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Introduction

Nash’s C' isometric embedding

In 1954, Nash introduced an iterative scheme for the proof of his
famous C' isometric embedding.

Let Q@ c R" and g(x) is a given n x n positive matrix.
u: Q— R™?2is a short embedding, if (Vu)(Vu) < g(x).

Question: How to increase metric such that g(x) — (Vu)T(Vu)
became more smaller and smaller, and get an isometric embedding
finally ?
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Introduction

Nash’s C' isometric embedding
Nash’s method: (Using geometric information of codimension 2).
Since u(Q2) C R" is an n-dimensional submanifold with codimension

2, there exist two normal vectors £(x), n(x) such that |{| = 5] = 1,
&-n=0and

(Vu)'¢ = (Vu)'n=0.

Set

v(x) = u(x) + a()\x)(sin(/\x -€)E 4+ cos(Ax - &)n)
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Introduction

Nash’s C' isometric embedding

A direct computation gives

VV(x) = Vu(x) + a(x)(cos(\x - )€ © € — sin(Ax - @ €) + O(3),
(VYT = (Vu(x)) +a(x)(0os(\x €6 &6 — sin(Ax- €)1 &) + O( ).
where £ ® ¢ = £¢7. Hence

(YY) IV(x) = (Vu(0) Vi + (P o € + O,

the metric induced by v is increased (low frequency part increase
metric).

Zhang Liqun (Institute of Math. Amss.)



Introduction

Nash’s C' isometric embedding

Based on this computation, we may decompose the error. In fact, by
some convex analysis (geometric lemma), we know that there exist &,
and ax, k=0,1,---M—1,forany x € Q,

g(x) - (vu)’ Zak(X) €k ® k-

k=1
Thus, we can increase metric by iterations
V1 —dak(x)

Ak
where k=0,1,---M — 1.

Uk+1(X) = uk(x) + (sin(Agx - &x)éx + cos(A — kx - Ex)nk),
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Euler equation

Incompressible Euler equation

Incompressible Euler equation

vt +div(v®@ v) + Vp =0, in A% x[0,1]
) (1)
divv =0,
where v is the velocity vector, p is the pressure,
¢ One of the famous problem is the Onsager conjecture on Euler
equation as following:

@ C%“ solutions are energy conservative when o > %
@ Foranya < % there exist dissipative solutions in C%.

Zhang Liqun (Institute of Math. Amss.)



Euler equation

Incompressible Euler equation
For Onsager conjecture

e The part (1) was proved by Gregory L. Eyink., and P. Constantin, E
Weinan and E. Titi in 1994.

e Slightly weak assumption for energy conservation proved by
Constantin etc, in 2008.

¢ P. Isett and Sung-jin Oh (2015) proved for the Euler equations on
manifolds by heat flow method.
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Euler equation

Incompressible Euler equation
For Onsager conjecture

e P. Isett (2016) proved Onsager’s conjecture, that is for any a < %
there exist dissipative solutions.

e C. De Lellis, L. Székelyhidy, T. Buckmaster and V.Vicol (2017) give
another short proof. They make use of the Mikado flow to construct
weak solutions.
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Euler equation

Incompressible Euler equation

The part (2) has been treated by many authors.
e For weak solutions, V. Scheffer in 1993, A. Shnirelman in 1997 and
Camillo De Lellis, Laszl6 Székelyhidi (2009).

e The construction of continuous and Hélder solution was made by
Camillo De Lellis, Laszlo Székelyhidi in 2013,

e T. Buckmaster. Camillo De Lellis and Laszl6 Székelyhidi (2015)
developed an iterative scheme (some kind of convex integration).

e The solution is a superposition of infinitely many (perturbed) and
weakly interacting Beltrami flows.
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Euler equation

Incompressible Euler equation
For the Onsager critical spatial regularity (H6lder exponent 6 = %),

o T. Buckmaster (2015) constructed Hoélder continuous (with exponent
0 < % — ¢ in time-space) periodic solutions which for almost every time
belongs to CY, for any 6 < 1.

e T. Buckmaster, Camillo De Lellis and Laszlé Székelyhidi (2015)
constructed Holder continuous periodic solution which belongs to
L} CY, forany 6 < % and has compact support in time.
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Navier-Stokes equation

Incompressible Navier-Stokes equation

e Buckmaster and Vicol (2017) established the non-uniqueness of
weak solution to the 3D incompressible Navier-Stokes.

e T.Luo and E.S.Titi (2018) construct weak solution with compact
support in time for hyperviscous Navier-Stokes equation.

e X. Luo (2018) proved the non-uniqueness of weak solution for high
dimension (d > 4) stationary Navier-Stokes equation.
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Camillo De Lellis and Laszl6 Székelyhidi’'s main idea

Incompressible Euler equation

Let SgX3 denotes the vector space of symmetric trace-free 3 x 3

matrices. .
Assume v, p, R, f are smooth functions on T2 x [0, 1] taking

values, respectively, in A%, R, S3*3, RS.
They solve the Euler-Reynolds system if

v +div(v ® v) + Vp = divR
. (2)
divv = 0.

Beltrami flows are the stationary solutions to the 3D Euler equations
satisfying curl v = v, for some constant p.
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Camillo De Lellis and Laszl6 Székelyhidi’'s main idea

Incompressible Euler equation
Let \p > 1 and let A, € R® be such that

’
Ak k=0, \/‘MZE, A_k = Ak

for some k € Z3 with |k| = \g. Put

Bk:Ak+i|:|><AkeC3.

For ax € Cwith @k = a_k, v(§) = X k=, aBre™ ¢ solves

divive v) - V(L) =0 @)
divv = 0.
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Camillo De Lellis and Laszl6 Székelyhidi’'s main idea

Incompressible Euler equation

Moreover,
VRV = Z akajBk ® Bjei)‘(k+j)'§ = Z akéjBk & gjei)‘(kfj)'é.
k,j K.j
VRV = Z |ak|?Bx ® By + \ oscillate terms.
k
Notice that
— k K
By ® B = 2(Ax ® A + (m x Ax) ® (m x Ag)).

And the triple v2A, \@ﬁ x Ak, ﬁ forms an orthonormal basis of R2.

Thus P P
Bk®Bk:Id—m®m.
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Geometric Lemma

Camillo De Lellis and Laszl6 Székelyhidi's Geometric Lemma

For every N € N/, we can choose ry > 0 and X > 1 such that the
following property holds:
There exist disjoint subsets

/\jg{keZS|k\:/_\}, j€{17"'aN}7
smooth positive functions

VD e C=(By(ld)),j € {1,--- ,N}, ke,

where B, (Id) is a small neighborhood of the identity matrix.
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Camillo De Lellis and Laszl6 Székelyhidi’'s Geometric

Lemma

And there exist vectors
AR, (A= % k A, =0, je {1, N}, keh
such that
@ k e A;implies —k € A; and ’yl((j) = 7(_13(;
@ for every R € By, (/d), the following identity holds:

_ L D) (R))2 k Kk
R_Eg(yk (R) (Id—m®|—k’).
J
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Boussinesq equations

We consider the following Boussinesq equations

vt +div(v ®@ v) + Vp = fes, in T3 x[0,1]
divv =0, (4)
0; + div(ve) = h, in T3 x][0,1],

where T3 = S'" x S x S' and e3 = (0,0,1)7. And v is the velocity
vector, p is the pressure, 6 is a scalar function denoting the
temperature and h is the heat sources.
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Boussinesq equations

We also consider the following Boussinesq equations

vt +div(v ®@ v) + Vp = fey, in T2 x[0,1]
divv =0, (5)
0; + div(ve) — AO =0, in T2 x[0,1],

where T2 = S' x S' and e, = (0,1)”. And v is the velocity vector, p is
the pressure, 6 is a scalar function denoting the temperature and h is
the heat sources.
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Boussinesq equations

Boussinesq equations
¢ The Boussingesq equations was introduced in understanding the
coupling nature of the thermodynamics and the fluid dynamics.

e The Boussinesq equations model many geophysical flows, such as
atmospheric fronts and ocean circulations.
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Boussinesq equations

Boussinesq equations

The pair (v,6) on T3 x [0, 1] is called a weak solution of (1) if they
solve (1) in the following sense:

/ / (Orp-v+Ve:vev+pdivp —fes - p)dxdt =0,
0o J13
forall o € C(T3 x (0,1); R%),

]
/ / (010 + v - Vb + he)dxdt =
0 JT3

forall ¢ € C°(T3 x (0,1); R) and

/ /7'3 v - Vydxdt =

forall ¢y € C(T3 x (0,1); R
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Boussinesq equations

Motivation and difficulty

Motivated by Onsager’s conjecture of Euler equation and the above
earlier works, we consider the Boussinesq equations and want to know
if the similar phenomena can also happen when considering the
temperature effects.

¢ The difference is that there are conversions between internal energy
and mechanical energy.

¢ The difficulty of interactions between velocity and temperature.
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Our main results

Some notations
© = {0(x) € C=(T3): 0 only dependenton x3, i.e. 6(x)=0(x3)},

and

={a(t)b(xz) : ac C>([0,1]) and b e C>([0,27])}.
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Our main results

Main results

Theorem 1 (Tao tao, ~)

Assume that e(t) : [0,1] — R is a given positive smooth function and
0o € ©. Then there exist

(v,p,0) € C(T® x[0,1]; R®* x R x R)

and a positive number M = M(e) such that they solve the system (4)
with h = 0 in the sense of distribution and

e(t):/ VRO, tydx, 10— ollo < 4M,
73

where [8]lo = sup, 0(x, )]
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Our main results

In our Theorem 1, if6 = 0, then it’s the continuous Euler flow with
prescribed kinetic energy and have been constructed by Camillo De
Lellis and Laszlo Székelyhidl.

In general, for example, if we take 6y = 10Mcosxs € ©, then we must
have 6 # 0.
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Our main results

Consider the Boussinesq equations (5).

Theorem 2 (Luo, Tianwen, Tao tao, ~)(2018)
Assume that e(t) : [0,1] — [1, +0o0). Then there exist

v e C([0,1]L3(T?)), 6 € Np=2C([0,1]LP(T?)) N L3([0,1]H'(T?)).
such that they solve the system (5) in the sense of distribution and
o(t) = / IV2(x, )dx.
T3

and .
16(t, )| 2 + 2 /0 196(s, )12 0 = 16(0, ||
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Our main results

Consider the effect of temperature on the velocity field.

Theorem 3 (Tao tao, ~)

For a given positive constant M and any positive number )\, there exist
(v,p,0) € C(T® x[0,1]; R®* x R x R)

such that they solve the system (4) in the sense of distribution and

1
[v(x,0)llo <4M, / / 02(x, t)dxalt > 22,
0 T3

. 1
SUP,eT3|V(X, )] >A, infyers|v(x, t)| < 4M, Vt e [E’ 1].
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Our main results

Consider the effect of temperature on the velocity field.

Theorem 4 (Tao tao, ~)

Assume that e(t) : [0, T] — R is a given positive smooth function. For
any positive number « < 1, there exist

(v,0) € C*(T2 x[0,1]; R® x R)

such that they solve the system (4) in the sense of distribution and

o(t) = /Ts IV[2(x, )dx.
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Our main results

Remark

For the Boussinesq system on T3, even the initial velocity is small, the
oscillation of velocity after sometime could be as large as possible if
we have enough thermos in the systems.

Remark

The above theorems also hold for the two-dimensional Boussinesq
system on T2.

| \
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Proof of main result

Theorems will be proved through an iteration procedure. S3*® denotes
the vector space of symmetric trace-free 3 x 3 matrices.

Assume v, p, 0, F‘:’, f are smooth functions on T3 x [0, 1] taking
values, respectively, in A%, R, R, S3*3, R®. We say that they solve the
Boussinesg-Reynolds system (with or without heat source) if

OV + div(v ®@ v) + Vp = fe3 + divR
divv =0 (6)
0t + div(vl) = h + divf.
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Proof of the main result

The main proposition

Proposition 1

Let e(t) be as in Theorem 1 and Theorem 2. Then we can choose two
positive constants » and M only dependent of e(t), such that the
following properties hold:

Forany 0 <& <1,if (v. p, 0, R, f) e C>([0,1] x T3) solve
Boussinesg-Reynolds system (6) and

3oty < et) - / VRO o <2e(r), vte 1], ()
4 - 4
sup |R(x, t)| <nd, (8)
X,t
sup [f(x, 1) <, ©)
X, t
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Proof of the main result

then we can construct new functions (¥, p, 6, ﬁ?, f) € C>=([0,1] x T3),
they also solve Boussinesg-Reynolds system (6) and satisfy
3 e(t) < e(t) - / VR(x, thdx <Xe(t), Vie[0,4], (10)
8 73 8
sup A(x, 1) <2, (1)
X,t 2
sup [F(x, )l <2, (12)
X,t
SUp|\7(X,t)—V(X,t)’ SM\/S7 (13)
X,t
SUp|§(X, t)—@(x, t)| SM\/& (14)
X,t
x,t
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Proof of the main result

Proposition 2

There exist two absolute constants M and n such that
Forany 0 < ¢ < 1,if (v. p, 8, R, f) € C>([0,1] x T3) solve
Boussinesg-Reynolds system (6) and

sup |R(x, t)| <nd, (16)
X,t
sup |f(x, t)| <né, (17)
X,t
then we can construct new functions (¥, p, 6 F , ) e ([0, 1] x T3)
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Proof of the main result

they also solve (6) and satisfy
sup [R(x, t)| <5, (18)
X,t 2
sup |F(x, t)| <15, (19)
X,t 2
sup ’V(Xa t) - V(X7 t)| SM\/S, (20)
X,t
sup [0(x, t) — 6(x, )] <MV/5, (21)
X,t
sup [B(x, ) — p(x, )] <MV/3. (22)
X,t
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Proof of the main result

Proof of Theorem 1. In this case, h = 0. We first set
X3 o
Vo =0, th €O, po ;:/ fo(y)dy, Ro:=0, fo:=0
0

and § = 1. Obviously, they solve Boussinesqg-Reynolds system (6) and
satisfy the following estimates

:ife(t)ge(t)—/ﬁ\vo\z(x, )dx g%e(t), vt € [0,1]

sutp |Ro(x,8)] =0 (<nd),
X7

sup fo(x, )] = 0 (<no).
X,
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Proof of the main result

By using Proposition 1, we can construct a sequence
(Vn, Pn, 9,,, R,,, fn), which solve (6) and satisfy

/|vn| (tidx < 240 vre(o1]  (23)

4 2n =
sup|An(x. )| < o (24)
Xx,t
supf(x. 1) < 2& (25)
sup|vn+1(x t) — va(x, t)| < M\/ (26)
sup |0n1(x,t) — On(x, t)| < M\/ (27)
X,t
SUIP|Pn+1(X, t) —pa(x, )| <M 2n (28)
X7
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Proof of the main result

Therefore from (24)-(28), we know that (v,, pn, 0, ﬁn, fn) are Cauchy
sequence in C(T2 x [0, 1]), therefore there exist

(v,p,0) € C(T® x [0,1])
such that
Vh =V, Pn — P, 0n— 0, ﬁn—>0, f, — 0.

in C(T® x [0,1]) as n — oc. Moreover, by (23) and (27),

e(t) = /T3 VR(x, f)dx Vi€ [0,1].

= /1
160 — Bollo < MZV? < 4M.
n=0

Passing into the limit in (6), we conclude that v, p, 6 solve (5) in the
sense of distribution.
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Proof of the main result

Proof of Theorem 3. We set

tNsin(N2x,) ﬂ 0 —coshexe)
Vo = ( 0 ) . Ro=| _cosihoe) 0 0 |-
0 0 0 0
(29)
0
fo = ( 0 ) ;
cos(N?x3)
N
po=—(1- t)ws(NNZXS), 0o = (1 — t)Nsin(N?x3),

and 6 = 1.
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Proof of the main result

Then they solve (6). If we take N > % then they satisfy the following
estimates

sup |’E{0(X7 t)| ST]&?
X,t

sup [fo(x, )] <nd.

X,t

By Proposition 2, we can construct (v, pn, 0,,, F?,,, fn) satisfying

sup | Fr(x, )] <55, (30)
n

SUp 1(x, ) <35 (31)
sup|v,,+1(x t) — va(x, 1)] <M\/ (32)
X,t

1

Sutpwrﬂﬂ(xv t)_en(xa t)| SM\/ ﬁa (33)
X7
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Proof of the main result

Then we know that (v, pn, n, ﬁn, fn) are Cauchy sequence in
C(T3 x [0, 1]), there exist

(v,p,0) € C(T® x [0,1])
such that
Vh— V, Pn — P, 0n — 0, F;’,,—>O, fn— 0,

in C(T2 x [0,1]) as n — oo.
By (32) and (33), we have

/1
Iv—vollo <MY/ 55 < 4M.
n=0
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Proof of the main result

and

= 1
16— bollo < MZVE < 4M.
n=0

Finally, let A be as in Theorem 3 and take N = max{%, 4,16 M}, then
for t € [3,1]

N

sup|v(x, t)| > supycrs|vo(X, t)] — 4M >
xeT3 4

infycrs|v(x, t)| <infyers|vo(x, t)| +4M < 4M.

> ),

Moreover, since vp(x,0) = 0, we have

Iv(x; 0)[lo < 4M.
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Proof of the main result

A direct calculation gives,

//]6?0\ (x, t)dxdt = N2
73 3

/1 /Ta 0]2(x, t)dxdt
_2/ / 10[2(x, t)dxdlt — //\9—90|2(x,t)dxdt

273
> SN2 — (2m)°(4M)?

therefore

>)\2.

Passing into the limit in (6) we conclude that v, p, 8 solve (5) in the
sense of distribution.
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Outline of the proof of propositions

The constructions of the functions 7, § consist of several steps.
e Adding perturbations to vy, 8y and functions vy1, 091 as
Vo1 =Vo + Wi + Wigc = Vo + W4,
o1 =bo + Xx1-
where wi,, Wioc, X1 are highly oscillated functions. Let parameters
11, A1 inthe construction satisfy 11, A1, 2—: € N.

¢ Finding functions Ry, pg1 and fpyy which satisfies the desired
estimate and solves the system (6).
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Outline of the proof of propositions
The stress becomes smaller in the sense, if

L
. k;: ki
Hid—FRo =) a(ld— - ® ),
A i '( [Kil |ki|)

3
fo= Z biAx;,
P

then
L kK k
Ryt = &(ld— — ® ——) + §Rp1,
; '< il |ki|> "

3

for =Y biA + 0fy.
i=2

where §Ry1, 6fy can be small by the appropriatq choice on p1 and \y.
We can obtain the needed functions (¥, p, 4, R, f).
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Geometric Lemma

Geometric Lemma

For every N € N/, we can choose ry > 0 and X > 1 such that the
following property holds:
There exist disjoint subsets

NClkeZ: |kl=X}, je{l,--,N},
smooth positive functions

W) e C2(B,(Id)),j € {1,--- N}, k€N,
vectors

AecR, |Al=—= k- A =0 je{l,-- N}, kel

1
V2
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Geometric Lemma

and smooth functions
gV e Co(R¥),je {1, - N}, ke
k ) ) ) ) )
such that
@ k e A;implies —k € A; and 'yl((j) = 79(;
@ for every R € By, (/d), the following identity holds:
1 (B2 k Kk
R=— v:.’(R d— — & —);

© for every f € C*(R®), we have the identity

F=3 gl (nA.,.

kE/\j
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The main construction

By Geometric Lemma, there exist A > 1,y > 0, subset
N = {£kq, ..., £k} and vectors {Aikj,j =1,.--, L} together with
corresponding functions

W € C(By(ld)), g, € CI(RR),  i=1,-- L

where L is a fixed integer. Thus the result can be restated as following:
For any R € B, (/d), we have the identity

L A o
R=3 2( R)( k’| ® ‘k’|) (35)
i=1 !

and for any f € C(>)(R®), we have

L
f=> ak(HA
i
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The main construction

The proof of the our theorem relies on the following two propositions.
We set

)= s (e0(1-3) = [ Iwlftnax). (@)

and
Ro(x, t) := p(t)ld — Ro(x, 1). (37)
then for any / € Z3, we denote by, by
byi(x, 1) :=+/B(t) v (121 Vo) v, (Rﬁ(();i t)), (38)
and
By, = Ay, + i“I:’ x Ay (39)
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The main construction

Then we let I-perturbation

iNg2 Ky (x— L
IA12 k1 (X T t)

—ixg2l k- (x—-L
Wil = b1/(X, t) (Bk1 e + B—k1 e M2k (x 1 t)) (40)

where we set A_y, = Ag,.
Finally, we let 1-th perturbation

Wio =Y Wig. (41)
lez8

Obviously, wy,, Wy, are all real 3-dimensional vector functions. We
have suppa; Nsuppay = Qif || = I'| > 2.
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The main construction

We denote the /-correction

Wiogl 1= )\11)\0 <Vb1/(xé|€|) Bl g2 (x5 (42)
Vbu(X,z?' x B_y, efiA12“|k1~(xfﬁt))’ (43)
then denote 1-th correction
Wige == Wiog. (44)
lez8
Finally, we denote 1-th perturbation
Wy == Wio + Wioc- (43)
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The main construction

Thus, if we denote wy, by

W1 :=Wio + Wioel

- )\11)\0 url (b1 /();H?Bh e o
bﬂ(xéﬁ')a_k1 e_,-ml'\kf(x—it))’ (47)
then
Wy = Z Wy, divwy; = 0,
1eZ8
and
divwy = 0.
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The main construction

Moreover, if we set

1 Vb1/(X7 t) X Bk1
AMAg 21/ ’

1 Vbﬂ(X, t) X B_k1
Ao 2/ ’

Bik, :=b1/(x, t)By, +

B 1, :=b1)(X, 1)B_g, +

then

ix2ky-(x—-Lt)

—ixy2ll ke (x—-Lt
W1/:B1/k1e M1 +B—1Ik1e ! 1 # )

Thus we complete the construction of perturbation wj.
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The main construction

To construct x4, we first denote 34, by

Bii(x, t) == (11 Vo) 9k (—o(X; 1))

2\/7 (RO(X f)) ’ (48)
then denote the /-perturbation
xu(x, 1) = Builx, 1) (NI g MR g
We set the perturbation
X, 1) = Z X1/- (50)

lez3

Both x4, and x4 are real scalar functions.
Finally, by some estimates, we prove that functions Ry1, pp1 and fy1
satisfy the desired estimate and solve the system (6).
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Thank You !
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