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Introduction

Nash’s C1 isometric embedding
In 1954, Nash introduced an iterative scheme for the proof of his
famous C1 isometric embedding.

Let Ω ⊂ Rn and g(x) is a given n × n positive matrix.

u : Ω 7→ Rn+2 is a short embedding§if (∇u)T (∇u) < g(x).

QuestionµHow to increase metric such that g(x)− (∇u)T (∇u)
became more smaller and smaller§and get an isometric embedding
finallyº
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Introduction

Nash’s C1 isometric embedding

Nash’s methodµ(Using geometric information of codimension 2).

Since u(Ω) ⊂ Rn is an n-dimensional submanifold with codimension
2§ there exist two normal vectors ξ(x), η(x) such that |ξ| = |η| = 1,
ξ · η = 0 and

(∇u)T ξ = (∇u)Tη = 0.

Set

v(x) = u(x) +
a(x)

λ
(sin(λx · ξ)ξ + cos(λx · ξ)η)
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Introduction

Nash’s C1 isometric embedding

A direct computation gives

∇v(x) = ∇u(x) + a(x)(cos(λx · ξ)ξ ⊗ ξ − sin(λx · ξ)η ⊗ ξ) + O(
1
λ

),

(∇v(x))T = (∇u(x))T + a(x)(cos(λx · ξ)ξ⊗ ξ−sin(λx · ξ)η⊗ ξ) + O(
1
λ

),

where ξ ⊗ ξ = ξξT . Hence

(∇v(x))T∇v(x) = (∇u(x))T∇u + a(x)2ξ ⊗ ξ + O(
1
λ

),

the metric induced by v is increased (low frequency part increase
metric).
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Introduction

Nash’s C1 isometric embedding
Based on this computation, we may decompose the error. In fact, by
some convex analysis (geometric lemma)§we know that there exist ξk
and ak , k = 0,1, · · ·M − 1, for any x ∈ Ω,

g(x)− (∇u)T (∇u)) =
M∑

k=1

ak (x)2ξk ⊗ ξk .

Thus, we can increase metric by iterations

uk+1(x) = uk (x) +

√
1− δak (x)

λk
(sin(λkx · ξk )ξk + cos(λ− kx · ξk )ηk ),

where k = 0,1, · · ·M − 1.
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Euler equation

Incompressible Euler equation
Incompressible Euler equation{

vt + div(v ⊗ v) +∇p = 0, in R3 × [0,1]

divv = 0,
(1)

where v is the velocity vector, p is the pressure,

• One of the famous problem is the Onsager conjecture on Euler
equation as following:

1 C0,α solutions are energy conservative when α > 1
3 .

2 For any α < 1
3 , there exist dissipative solutions in C0,α.
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Euler equation

Incompressible Euler equation

For Onsager conjecture

• The part (1) was proved by Gregory L. Eyink., and P. Constantin, E
Weinan and E. Titi in 1994.

• Slightly weak assumption for energy conservation proved by
Constantin etc, in 2008.

• P. Isett and Sung-jin Oh (2015) proved for the Euler equations on
manifolds by heat flow method.
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Euler equation

Incompressible Euler equation

For Onsager conjecture

• P. Isett (2016) proved Onsager’s conjecture, that is for any α < 1
3 ,

there exist dissipative solutions.

• C. De Lellis, L. Székelyhidy, T. Buckmaster and V.Vicol (2017) give
another short proof. They make use of the Mikado flow to construct
weak solutions.
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Euler equation

Incompressible Euler equation

The part (2) has been treated by many authors.
• For weak solutions, V. Scheffer in 1993, A. Shnirelman in 1997 and
Camillo De Lellis, László Székelyhidi (2009).

• The construction of continuous and Hölder solution was made by
Camillo De Lellis, László Székelyhidi in 2013,

• T. Buckmaster. Camillo De Lellis and László Székelyhidi (2015)
developed an iterative scheme (some kind of convex integration).

• The solution is a superposition of infinitely many (perturbed) and
weakly interacting Beltrami flows.
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Euler equation

Incompressible Euler equation

For the Onsager critical spatial regularity (Hölder exponent θ = 1
3 ),

• T. Buckmaster (2015) constructed Hölder continuous (with exponent
θ < 1

5 − ε in time-space) periodic solutions which for almost every time
belongs to Cθ

x , for any θ < 1
3 .

• T. Buckmaster, Camillo De Lellis and László Székelyhidi (2015)
constructed Hölder continuous periodic solution which belongs to
L1

t Cθ
x , for any θ < 1

3 , and has compact support in time.
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Navier-Stokes equation

Incompressible Navier-Stokes equation

• Buckmaster and Vicol (2017) established the non-uniqueness of
weak solution to the 3D incompressible Navier-Stokes.

• T.Luo and E.S.Titi (2018) construct weak solution with compact
support in time for hyperviscous Navier-Stokes equation.

• X. Luo (2018) proved the non-uniqueness of weak solution for high
dimension (d ≥ 4) stationary Navier-Stokes equation.
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Camillo De Lellis and László Székelyhidi’s main idea

Incompressible Euler equation

Let S3×3
0 denotes the vector space of symmetric trace-free 3× 3

matrices.
Assume v ,p, R̊, f are smooth functions on T 3 × [0,1] taking
values, respectively, in R3,R,S3×3

0 ,R3.
They solve the Euler-Reynolds system if{

∂tv + div(v ⊗ v) +∇p = divR̊
divv = 0.

(2)

Beltrami flows are the stationary solutions to the 3D Euler equations
satisfying curl v = µv , for some constant µ.
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Camillo De Lellis and László Székelyhidi’s main idea

Incompressible Euler equation

Let λ0 > 1 and let Ak ∈ R3 be such that

Ak · k = 0, |Ak | =
1√
2
, A−k = Ak

for some k ∈ Z 3 with |k | = λ0. Put

Bk = Ak + i
k
|k |
× Ak ∈ C3.

For ak ∈ C with ak = a−k , v(ξ) =
∑
|k |=λ0

akBkeiλk ·ξ solves{
div(v ⊗ v)−∇( |v |

2

2 ) = 0
divv = 0.

(3)
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Camillo De Lellis and László Székelyhidi’s main idea

Incompressible Euler equation

Moreover,

v ⊗ v =
∑
k ,j

akajBk ⊗ Bjeiλ(k+j)·ξ =
∑
k ,j

akajBk ⊗ Bjeiλ(k−j)·ξ.

v ⊗ v =
∑

k

|ak |2Bk ⊗ Bk + λ oscillate terms.

Notice that

Bk ⊗ Bk = 2(Ak ⊗ Ak + (
k
|k |
× Ak )⊗ (

k
|k |
× Ak )).

And the triple
√

2Ak ,
√

2 k
|k | × Ak , k

|k | forms an orthonormal basis of R3.
Thus

Bk ⊗ Bk = Id − k
|k |
⊗ k
|k |
.
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Geometric Lemma

Camillo De Lellis and László Székelyhidi’s Geometric Lemma
For every N ∈ N , we can choose r0 > 0 and λ̄ > 1 such that the
following property holds:
There exist disjoint subsets

Λj ⊆ {k ∈ Z 3 : |k | = λ̄}, j ∈ {1, · · · ,N},

smooth positive functions

γ
(j)
k ∈ C∞(Br0(Id)), j ∈ {1, · · · ,N}, k ∈ Λj ,

where Br0(Id) is a small neighborhood of the identity matrix.
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Camillo De Lellis and László Székelyhidi’s Geometric
Lemma

And there exist vectors

Aj
k ∈ R3, |Aj

k | =
1√
2
, k · Aj

k = 0, j ∈ {1, · · · ,N}, k ∈ Λj

such that
1 k ∈ Λj implies −k ∈ Λj and γ(j)

k = γ
(j)
−k ;

2 for every R ∈ Br0(Id), the following identity holds:

R =
1
2

∑
k∈Λj

(γ
(j)
k (R))2

(
Id − k

|k |
⊗ k
|k |

)
.
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Boussinesq equations

We consider the following Boussinesq equations
vt + div(v ⊗ v) +∇p = θe3, in T 3 × [0,1]

divv = 0,
θt + div(vθ) = h, in T 3 × [0,1],

(4)

where T 3 = S1 × S1 × S1 and e3 = (0,0,1)T . And v is the velocity
vector, p is the pressure, θ is a scalar function denoting the
temperature and h is the heat sources.

Zhang Liqun (Institute of Math. Amss.)
Continuous Weak Solutions Of Boussinesq Equations 18

/ 54



Boussinesq equations

We also consider the following Boussinesq equations
vt + div(v ⊗ v) +∇p = θe2, in T 2 × [0,1]

divv = 0,
θt + div(vθ)−∆θ = 0, in T 2 × [0,1],

(5)

where T 2 = S1 × S1 and e2 = (0,1)T . And v is the velocity vector, p is
the pressure, θ is a scalar function denoting the temperature and h is
the heat sources.
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Boussinesq equations

Boussinesq equations
• The Boussingesq equations was introduced in understanding the
coupling nature of the thermodynamics and the fluid dynamics.

• The Boussinesq equations model many geophysical flows, such as
atmospheric fronts and ocean circulations.
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Boussinesq equations

Boussinesq equations

The pair (v , θ) on T 3 × [0,1] is called a weak solution of (1) if they
solve (1) in the following sense:∫ 1

0

∫
T 3

(∂tϕ · v +∇ϕ : v ⊗ v + pdivϕ− θe3 · ϕ)dxdt = 0,

for all ϕ ∈ C∞c (T 3 × (0,1); R3),∫ 1

0

∫
T 3

(∂tφθ + v · ∇φθ + hφ)dxdt = 0,

for all φ ∈ C∞c (T 3 × (0,1); R) and∫ 1

0

∫
T 3

v · ∇ψdxdt = 0.

for all ψ ∈ C∞c (T 3 × (0,1); R).
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Boussinesq equations

Motivation and difficulty

Motivated by Onsager’s conjecture of Euler equation and the above
earlier works, we consider the Boussinesq equations and want to know
if the similar phenomena can also happen when considering the
temperature effects.

• The difference is that there are conversions between internal energy
and mechanical energy.

• The difficulty of interactions between velocity and temperature.
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Our main results

Some notations

Θ := {θ(x) ∈ C∞(T 3) : θ only dependent on x3, i .e. θ(x) = θ(x3)},

and

Ξ := {a(t)b(x3) : a ∈ C∞([0,1]) and b ∈ C∞([0,2π])}.
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Our main results

Main results

Theorem 1 (Tao tao§*)
Assume that e(t) : [0,1]→ R is a given positive smooth function and
θ0 ∈ Θ. Then there exist

(v ,p, θ) ∈ C(T 3 × [0,1]; R3 × R × R)

and a positive number M = M(e) such that they solve the system (4)
with h = 0 in the sense of distribution and

e(t) =

∫
T 3
|v |2(x , t)dx , ‖θ − θ0‖0 < 4M,

where ‖θ‖0 = supx ,t |θ(x , t)|.
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Our main results

Remark
In our Theorem 1, if θ = 0, then it’s the continuous Euler flow with
prescribed kinetic energy and have been constructed by Camillo De
Lellis and László Székelyhidi.
In general, for example, if we take θ0 = 10Mcosx3 ∈ Θ, then we must
have θ 6= 0.
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Our main results

Consider the Boussinesq equations (5).

Theorem 2 (Luo, Tianwen, Tao tao§*)(2018)
Assume that e(t) : [0,1]→ [1,+∞). Then there exist

v ∈ C([0,1]L2(T 2)), θ ∈ ∩p>2C([0,1]Lp(T 2)) ∩ L2([0,1]H1(T 2)).

such that they solve the system (5) in the sense of distribution and

e(t) =

∫
T 3
|v |2(x , t)dx .

and

||θ(t , ·)||2L2 + 2
∫ t

0
||∇θ(s, ·)||2L2ds = ||θ(0, ·)||2L2
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Our main results

Consider the effect of temperature on the velocity field.

Theorem 3 (Tao tao§*)
For a given positive constant M and any positive number λ, there exist

(v ,p, θ) ∈ C(T 3 × [0,1]; R3 × R × R)

such that they solve the system (4) in the sense of distribution and

‖v(x ,0)‖0 ≤4M,

∫ 1

0

∫
T 3
|θ|2(x , t)dxdt ≥ λ2,

supx∈T 3 |v(x , t)| ≥λ, infx∈T 3 |v(x , t)| ≤ 4M, ∀t ∈ [
1
2
,1].
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Our main results

Consider the effect of temperature on the velocity field.

Theorem 4 (Tao tao§*)
Assume that e(t) : [0,T ]→ R is a given positive smooth function. For
any positive number α < 1

5 , there exist

(v , θ) ∈ Cα(T 3 × [0,1]; R3 × R)

such that they solve the system (4) in the sense of distribution and

e(t) =

∫
T 3
|v |2(x , t)dx .
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Our main results

Remark
For the Boussinesq system on T 3, even the initial velocity is small, the
oscillation of velocity after sometime could be as large as possible if
we have enough thermos in the systems.

Remark
The above theorems also hold for the two-dimensional Boussinesq
system on T 2.
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Proof of main result

Theorems will be proved through an iteration procedure. S3×3
0 denotes

the vector space of symmetric trace-free 3× 3 matrices.

Definition

Assume v ,p, θ, R̊, f are smooth functions on T 3 × [0,1] taking
values, respectively, in R3,R,R,S3×3

0 ,R3. We say that they solve the
Boussinesq-Reynolds system (with or without heat source) if

∂tv + div(v ⊗ v) +∇p = θe3 + divR̊
divv = 0
θt + div(vθ) = h + divf .

(6)
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Proof of the main result

The main proposition

Proposition 1
Let e(t) be as in Theorem 1 and Theorem 2. Then we can choose two
positive constants η and M only dependent of e(t), such that the
following properties hold:
For any 0 < δ ≤ 1, if (v, p, θ, R̊, f ) ∈ C∞([0,1]× T 3) solve
Boussinesq-Reynolds system (6) and

3δ
4

e(t) ≤ e(t)−
∫

T 3
|v |2(x , t)dx ≤5δ

4
e(t), ∀t ∈ [0,1], (7)

sup
x ,t
|R̊(x , t)| ≤ηδ, (8)

sup
x ,t
|f (x , t)| ≤ηδ, (9)
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Proof of the main result

then we can construct new functions (ṽ , p̃, θ̃, ˚̃R, f̃ ) ∈ C∞([0,1]× T 3),
they also solve Boussinesq-Reynolds system (6) and satisfy

3δ
8

e(t) ≤ e(t)−
∫

T 3
|ṽ |2(x , t)dx ≤5δ

8
e(t), ∀t ∈ [0,1], (10)

sup
x ,t
|˚̃R(x , t)| ≤ηδ

2
, (11)

sup
x ,t
|̃f (x , t)| ≤ηδ

2
, (12)

sup
x ,t
|ṽ(x , t)− v(x , t)| ≤M

√
δ, (13)

sup
x ,t
|θ̃(x , t)− θ(x , t)| ≤M

√
δ, (14)

sup
x ,t
|p̃(x , t)− p(x , t)| ≤M

√
δ. (15)
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Proof of the main result

Proposition 2
There exist two absolute constants M and η such that
For any 0 < δ ≤ 1, if (v, p, θ, R̊, f ) ∈ C∞([0,1]× T 3) solve
Boussinesq-Reynolds system (6) and

sup
x ,t
|R̊(x , t)| ≤ηδ, (16)

sup
x ,t
|f (x , t)| ≤ηδ, (17)

then we can construct new functions (ṽ , p̃, θ̃, ˚̃R, f̃ ) ∈ C∞([0,1]× T 3),
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Proof of the main result

they also solve (6) and satisfy

sup
x ,t
|˚̃R(x , t)| ≤η

2
δ, (18)

sup
x ,t
|̃f (x , t)| ≤η

2
δ, (19)

sup
x ,t
|ṽ(x , t)− v(x , t)| ≤M

√
δ, (20)

sup
x ,t
|θ̃(x , t)− θ(x , t)| ≤M

√
δ, (21)

sup
x ,t
|p̃(x , t)− p(x , t)| ≤M

√
δ. (22)
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Proof of the main result

Proof of Theorem 1. In this case, h = 0. We first set

v0 := 0, θ0 ∈ Θ, p0 :=

∫ x3

0
θ0(y)dy , R̊0 := 0, f0 := 0

and δ = 1. Obviously, they solve Boussinesq-Reynolds system (6) and
satisfy the following estimates

3δ
4

e(t) ≤ e(t)−
∫

T 3
|v0|2(x , t)dx ≤5δ

4
e(t), ∀t ∈ [0,1]

sup
x ,t
|R̊0(x , t)| = 0 (≤ηδ),

sup
x ,t
|f0(x , t)| = 0 (≤ηδ).
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Proof of the main result

By using Proposition 1, we can construct a sequence
(vn, pn, θn, R̊n, fn), which solve (6) and satisfy

3
4

e(t)
2n ≤ e(t)−

∫
T 3
|vn|2(x , t)dx ≤ 5

4
e(t)
2n , ∀t ∈ [0,1] (23)

sup
x ,t
|R̊n(x , t)| ≤ η

2n , (24)

sup
x ,t
|fn(x , t)| ≤ η

2n , (25)

sup
x ,t
|vn+1(x , t)− vn(x , t)| ≤ M

√
1
2n , (26)

sup
x ,t
|θn+1(x , t)− θn(x , t)| ≤ M

√
1
2n , (27)

sup
x ,t
|pn+1(x , t)− pn(x , t)| ≤ M

√
1
2n . (28)
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Proof of the main result

Therefore from (24)-(28), we know that (vn, pn, θn, R̊n, fn) are Cauchy
sequence in C(T 3 × [0,1]), therefore there exist

(v ,p, θ) ∈ C(T 3 × [0,1])

such that

vn → v , pn → p, θn → θ, R̊n → 0, fn → 0.

in C(T 3 × [0,1]) as n→∞. Moreover, by (23) and (27),

e(t) =

∫
T 3
|v |2(x , t)dx ∀t ∈ [0,1].

‖θ − θ0‖0 ≤ M
∞∑

n=0

√
1
2n < 4M.

Passing into the limit in (6), we conclude that v , p, θ solve (5) in the
sense of distribution.
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Proof of the main result

Proof of Theorem 3. We set

v0 =

 tNsin(N2x2)
0
0

 , R̊0 =

 0 −cos(N2x2)
N 0

−cos(N2x2)
N 0 0

0 0 0

 ,

(29)

f0 =

 0
0

cos(N2x3)
N

 ,

p0 = −(1− t)
cos(N2x3)

N
, θ0 = (1− t)Nsin(N2x3),

and δ = 1.
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Proof of the main result

Then they solve (6). If we take N ≥ 2
η , then they satisfy the following

estimates

sup
x ,t
|R̊0(x , t)| ≤ηδ,

sup
x ,t
|f0(x , t)| ≤ηδ.

By Proposition 2, we can construct (vn, pn, θn, R̊n, fn) satisfying

sup
x ,t
|R̊n(x , t)| ≤ η

2n , (30)

sup
x ,t
|fn(x , t)| ≤ η

2n , (31)

sup
x ,t
|vn+1(x , t)− vn(x , t)| ≤M

√
1
2n , (32)

sup
x ,t
|θn+1(x , t)− θn(x , t)| ≤M

√
1
2n , (33)

sup
x ,t
|pn+1(x , t)− pn(x , t)| ≤M

√
1
2n . (34)
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Proof of the main result

Then we know that (vn, pn, θn, R̊n, fn) are Cauchy sequence in
C(T 3 × [0,1]), there exist

(v ,p, θ) ∈ C(T 3 × [0,1])

such that

vn → v , pn → p, θn → θ, R̊n → 0, fn → 0,

in C(T 3 × [0,1]) as n→∞.
By (32) and (33), we have

‖v − v0‖0 ≤ M
∞∑

n=0

√
1
2n < 4M,
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Proof of the main result

and

‖θ − θ0‖0 ≤ M
∞∑

n=0

√
1
2n < 4M.

Finally, let λ be as in Theorem 3 and take N = max{2
η ,4λ,16M}, then

for t ∈ [1
2 ,1]

sup
x∈T 3
|v(x , t)| ≥ supx∈T 3 |v0(x , t)| − 4M ≥ N

4
≥ λ,

infx∈T 3 |v(x , t)| ≤ infx∈T 3 |v0(x , t)|+ 4M ≤ 4M.

Moreover, since v0(x ,0) = 0 , we have

‖v(x ,0)‖0 ≤ 4M.
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Proof of the main result

A direct calculation gives,∫ 1

0

∫
T 3
|θ0|2(x , t)dxdt =

4π3

3
N2,

therefore ∫ 1

0

∫
T 3
|θ|2(x , t)dxdt

≥1
2

∫ 1

0

∫
T 3
|θ0|2(x , t)dxdt −

∫ 1

0

∫
T 3
|θ − θ0|2(x , t)dxdt

≥2π3

3
N2 − (2π)3(4M)2

≥λ2.

Passing into the limit in (6) we conclude that v , p, θ solve (5) in the
sense of distribution.
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Outline of the proof of propositions

The constructions of the functions ṽ , θ̃ consist of several steps.

• Adding perturbations to v0, θ0 and functions v01, θ01 as

v01 =v0 + w1o + w1oc := v0 + w1,

θ01 =θ0 + χ1.

where w1o,w1oc , χ1 are highly oscillated functions. Let parameters
µ1, λ1 in the construction satisfy µ1, λ1,

λ1
µ1
∈ N.

• Finding functions R01,p01 and f01 which satisfies the desired
estimate and solves the system (6).
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Outline of the proof of propositions

The stress becomes smaller in the sense, if

ρ(t)Id − R̊0 =
L∑

i=1

a2
i

(
Id − ki

|ki |
⊗ ki

|ki |

)
,

f0 =
3∑

i=1

biAki ,

then

R01 =
L∑

i=2

a2
i

(
Id − ki

|ki |
⊗ ki

|ki |

)
+ δR01,

f01 =
3∑

i=2

biAki + δf01.

where δR01, δf0 can be small by the appropriate choice on µ1 and λ1.
We can obtain the needed functions (ṽ , p̃, θ̃, ˚̃R, f̃ ).
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Geometric Lemma

Geometric Lemma
For every N ∈ N , we can choose r0 > 0 and λ̄ > 1 such that the
following property holds:
There exist disjoint subsets

Λj ⊆ {k ∈ Z 3 : |k | = λ̄}, j ∈ {1, · · · ,N},

smooth positive functions

γ
(j)
k ∈ C∞(Br0(Id)), j ∈ {1, · · · ,N}, k ∈ Λj ,

vectors

Aj
k ∈ R3, |Aj

k | =
1√
2
, k · Aj

k = 0, j ∈ {1, · · · ,N}, k ∈ Λj

Zhang Liqun (Institute of Math. Amss.)
Continuous Weak Solutions Of Boussinesq Equations 45

/ 54



Geometric Lemma

and smooth functions

g(j)
k ∈ C∞(R3), j ∈ {1, · · · ,N}, k ∈ Λj ,

such that
1 k ∈ Λj implies −k ∈ Λj and γ(j)

k = γ
(j)
−k ;

2 for every R ∈ Br0(Id), the following identity holds:

R =
1
2

∑
k∈Λj

(γ
(j)
k (R))2

(
Id − k

|k |
⊗ k
|k |

)
;

3 for every f ∈ C∞(R3), we have the identity

f =
∑
k∈Λj

g(j)
k (f )Aj

k .
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The main construction

By Geometric Lemma, there exist λ̄ > 1, r0 > 0 , subset
Λ = {±k1, ...,±kL} and vectors {A±kj , j = 1, · · ·,L} together with
corresponding functions

γki ∈ C(∞)(Br0(Id)), gki ∈ C(∞)(R3), i = 1, · · · ,L.

where L is a fixed integer. Thus the result can be restated as following:
For any R ∈ Br0(Id), we have the identity

R =
L∑

i=1

γ2
ki

(R)
(

Id − ki

|ki |
⊗ ki

|ki |

)
. (35)

and for any f ∈ C(∞)(R3), we have

f =
L∑

i=1

gki (f )Aki .
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The main construction

The proof of the our theorem relies on the following two propositions.
We set

ρ̄(t) :=
1

(2π)3

(
e(t)

(
1− δ

2

)
−
∫

T 3
|v0|2(x , t)dx

)
, (36)

and

R0(x , t) := ρ̄(t)Id − R̊0(x , t). (37)

then for any l ∈ Z 3, we denote b1l by

b1l(x , t) :=
√
ρ̄(t)αl(µ1v0)γk1

(R0(x , t)
ρ̄(t)

)
, (38)

and

Bk1 := Ak1 + i
k1

|k1|
× Ak1 . (39)
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The main construction

Then we let l-perturbation

w1ol := b1l(x , t)
(

Bk1eiλ12|l|k1·(x− l
µ1

t)
+ B−k1e−iλ12|l|k1·(x− l

µ1
t)
)
. (40)

where we set A−k1 = Ak1 .
Finally, we let 1-th perturbation

w1o :=
∑
l∈Z 3

w1ol . (41)

Obviously, w1ol ,w1o are all real 3-dimensional vector functions. We
have suppαl ∩ suppαl ′ = ∅ if |l − l ′| ≥ 2.
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The main construction

We denote the l-correction

w1ocl :=
1

λ1λ0

(∇b1l(x , t)× Bk1

2|l|
eiλ12|l|k1·(x− l

µ1
t) (42)

+
∇b1l(x , t)× B−k1

2|l|
e−iλ12|l|k1·(x− l

µ1
t)
)
, (43)

then denote 1-th correction

w1oc :=
∑
l∈Z 3

w1ocl . (44)

Finally, we denote 1-th perturbation

w1 := w1o + w1oc . (45)
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The main construction

Thus, if we denote w1l by

w1l :=w1ol + w1ocl

=
1

λ1λ0
curl

(b1l(x , t)Bk1

2|l|
eiλ12|l|k1·(x− l

µ1
t) (46)

+
b1l(x , t)B−k1

2|l|
e−iλ12|l|k1·(x− l

µ1
t)
)
, (47)

then

w1 =
∑
l∈Z 3

w1l , divw1l = 0,

and

divw1 = 0.
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The main construction

Moreover, if we set

B1lk1 :=b1l(x , t)Bk1 +
1

λ1λ0

∇b1l(x , t)× Bk1

2|l|
,

B−1lk1 :=b1l(x , t)B−k1 +
1

λ1λ0

∇b1l(x , t)× B−k1

2|l|
,

then

w1l = B1lk1eiλ12|l|k1·(x− l
µ1

t)
+ B−1lk1e−iλ12|l|k1·(x− l

µ1
t)
.

Thus we complete the construction of perturbation w1.
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The main construction

To construct χ1, we first denote β1l by

β1l(x , t) :=
αl(µ1v0)

2
√
ρ(t)

gk1(−f0(x , t))

γk1

(R0(x ,t)
ρ(t)

) , (48)

then denote the l-perturbation

χ1l(x , t) := β1l(x , t)
(

eiλ12|l|k1·(x− l
µ1

t)
+ e−iλ12|l|k1·(x− l

µ1
t)
)
. (49)

We set the perturbation

χ1(x , t) :=
∑
l∈Z 3

χ1l . (50)

Both χ1l and χ1 are real scalar functions.
Finally, by some estimates, we prove that functions R01,p01 and f01
satisfy the desired estimate and solve the system (6).
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Thank You !
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