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Tumour angiogenesis and
emergence of fluctuating oxygen levels in tumours

Adapted from Gillies et al., Nature Reviews Cancer, 2018
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In vivo experimental results showing
the emergence of fluctuating oxygen levels in tumours

Adapted from Matsumoto et al., Cancer Research, 2010
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Fluctuations in oxygen levels promote the creation
of distinct fluctuating local environments in tumours
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Underlying biological questions

How do cancer cells adapt to fluctuating oxygen levels?

What is the role played by phenotypic variations
in the adaption of cancer cells to fluctuating oxygen levels?
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Mathematical model
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Mathematical representation of the biological system
• Two competing populations of cancer cells in a well-mixed system
exposed to given oxygen levels

• The two populations undergo phenotypic variations at different rates;
� population with higher rate of phenotypic variations : i =H

� population with lower rate of phenotypic variations : i = L

• Phenotypic state : x ∈R

• Phenotype distribution of population i at time t ≥ 0 : ni (x ,t)

• Given oxygen level at time t : S(t)
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Mathematical representation of the biological system

• Size of population i at time t : ρi (t)=
∫
R
ni (x ,t)dx

• Total number of cells at time t : ρ(t)= ρH(t)+ρL(t)

• Mean phenotypic state of population i at time t :

µi (t)=
1

ρi (t)

∫
R
x ni (x ,t) dx

• Phenotypic variance of population i at time t :

σ2
i (t)=

1
ρi (t)

∫
R
x2 ni (x ,t) dx − µ2i (t)
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Equations for the phenotype distributions

∂nH
∂t

= βH
∂2nH
∂x2︸ ︷︷ ︸

phenotypic variations

+ R
(
x ,S(t),ρ(t)

)
nH ,︸ ︷︷ ︸

cell division & death

∂nL
∂t

=βL
∂2nL
∂x2

+ R
(
x ,S(t),ρ(t)

)
nL,

ρ(t)= ρH(t)+ρL(t), ρi (t)=
∫
R
ni (x ,t)dx , i ∈ {H ,L},

(x ,t) ∈R× (0,∞) (1)

βi : rate of phenotypic variations,

βH >βL

(2)

R
(
x ,S ,ρ

)
: phenotypic fitness landscape,

R
(
x ,S ,ρ

)= p(x ,S)−dρ

(3)

p(x ,S) : net cell-division rate

dρ : rate of death due to intra- and inter-population competition
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Phenotypic fitness landscape

• Oxidative phenotypic variants (i.e. x → 0) have a competitive
advantage when the oxygen concentration is high (i.e. if S(t)→∞)

• Glycolytic phenotypic variants (i.e. x → 1) have a competitive
advantage when the oxygen concentration is low (i.e. if S(t)→ 0)

p
(
x ,S

)= γ S

1+S

(
1−x2

) + ζ

(
1− S

1+S

)[
1− (1−x)2

]
(4)

γ :maximum cell-division rate of oxidative phenotypic variants

ζ :maximum cell-division rate of glycolytic phenotypic variants
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Phenotypic fitness landscape
• After a little algebra, definition (4) can be rewritten as

p
(
x ,S

)= γg(S)−h(S)(x −ϕ(S))2 (5)

with
g(S)= 1

1+S

(
S + ζ

γ

ζ

ζ+γS
)

︸ ︷︷ ︸
rescaled maximum fitness

, ϕ(S)= ζ

ζ+γS︸ ︷︷ ︸
fittest phenotypic state

(6)

and
h(S)= ζ+ (γ−ζ) S

1+S︸ ︷︷ ︸
nonlinear selection gradient

(7)

• Henceforth for simplicity we assume ζ= γ, which implies

g(S)= 1
1+S

(
S + 1

1+S

)
, ϕ(S)= 1

1+S
, h(S)≡ γ (8)
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Main results
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Gaussian phenotype distributions

Proposition

If the initial phenotype distribution ni (x ,0) for i ∈ {H ,L} is of the
Gaussian form

ni (x ,0)= ρ0i

√
v0i
2π

exp

[
−v0i

2
(x −µ0i )2

]
with ρ0i ,v0i ∈R>0, µ0i ∈R, (9)

then the phenotype distribution ni (x ,t) remains of the Gaussian form

ni (x ,t)= ρi (t)
√

vi (t)

2π
exp

[
−vi (t)

2
(x −µi (t))2

]
∀ t > 0. (10)
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Gaussian phenotype distributions

The population size, ρi , the mean phenotypic state, µi , and the inverse of
the phenotypic variance, vi = 1/σ2i , satisfy the Cauchy problem

v ′
i (t)= 2

(
γ−βiv2i (t)

)
,

µ′
i (t)=

2γ
vi (t)

(ϕ(t)−µi (t)),

ρ′i (t)= (Fi (t)−dρ(t))ρi (t),

vi (0)= v0i , µi (0)=µ0i , ρi (0)= ρ0i ,

ρ(t)= ρH(t)+ρL(t),

t ∈ (0,∞), i ∈ {H ,L} , (11)

Fi (t)≡Fi (t,vi (t),µi (t))= γg(t)−
γ

vi (t)
−γ(µi (t)−ϕ(t))2 , (12)

with g(t)≡ g(S(t)) and ϕ(t)≡ϕ(S(t)).
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Evolutionary dynamics under
constant oxygen levels

Theorem

Under assumptions (2)-(4), (8) and the additional assumption

S(t)≡ S ≥ 0, (13)

the solution of the system of PDEs (1) subject to the initial con-
dition (9) is of the Gaussian form (10) and satisfies the following:

(i) if
√
βL ≥p

γg(S) then

ρH(t)→ 0 and ρL(t)→ 0 as t →∞; (14)
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Evolutionary dynamics under
constant oxygen levels

(ii) if
√
βL <p

γg(S) then

ρH(t)→ 0, ρL(t)→
p
γ

d

(p
γg(S)−

√
βL

)
as t →∞ (15)

and

µL(t)→ϕ(S)= 1

1+S
, σ2

L(t)→
√
βL

γ
as t →∞. (16)

T. Lorenzi (University of St Andrews) 18 / 30



Evolutionary dynamics under
periodically fluctuating oxygen levels

Theorem

Assume (2)-(4), (8) and

S ∈ Lip([0,∞)), S(t+T )= S(t) ∀t ≥ 0, for some T > 0. (17)

Define
Λi =

√
βi +

p
γ

T

∫ T

0
(ui (z)−ϕ(S(z)))2 dz for i ∈ {H ,L} , (18)

where ui (t) is the unique real T -periodic solution of the problem{
u′i (t)= 2

√
γβi (ϕ(S(t))−ui (t)) , for t ∈ (0,T ),

ui (0)= ui (T ),
(19)

that is,
ui (t)=

2
√
γβi exp

(−2√γβi t
)

exp
(
2
√
γβi T

)−1

∫ T

0
exp

(
2
√
γβi z

)
ϕ(S(z))dz

+2
√
γβi exp

(
−2

√
γβi t

)∫ t

0
exp

(
2
√
γβi z

)
ϕ(S(z))dz . (20)
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Evolutionary dynamics under
periodically fluctuating oxygen levels

The solution of the system of PDEs (1) subject to the initial con-
dition (9) is of the Gaussian form (10) and satisfies the following:

(i) if min {ΛH ,ΛL} ≥
p
γ

T

∫ T

0
g(S(t))dt then

ρH(t)→ 0 and ρL(t)→ 0 as t →∞; (21)
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Evolutionary dynamics under
periodically fluctuating oxygen levels

(ii) if min {ΛH ,ΛL} <
p
γ

T

∫ T

0
g(S(t))dt and

i = arg min
k∈{H ,L}

Λk , j = arg max
k∈{H ,L}

Λk ,

then
ρi (t)→wi (t), ρj(t)→ 0 as t →∞, (22)

and

µi (t)→ ui (t), σ2
i (t)→

√
βi

γ
as t →∞, (23)
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Evolutionary dynamics under
periodically fluctuating oxygen levels

where wi (t) is the unique real non-negative T -periodic solution of the
problem {

w ′
i (t)= (Qi (t)−dwi (t))wi (t), for t ∈ (0,T ),

wi (0)=wi (T )
(24)

with
Qi (t)= γg(S(t))−

√
γβi −γ(ui (t)−ϕ(S(t)))2 ,
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Evolutionary dynamics under
periodically fluctuating oxygen levels

that is,

wi (t)=
d−1 exp

(∫ t

0
Qi (s)ds

)
∫ T

0
exp

(∫ s

0
Qi (z)dz

)
ds

exp

(∫ T

0
Qi (s)ds

)
−1

+
∫ t

0
exp

(∫ s

0
Qi (z)dz

)
ds

. (25)
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Evolutionary dynamics under
periodically fluctuating oxygen levels
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Evolutionary dynamics under
periodically fluctuating oxygen levels
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Adaptation of cancer cell populations
to fluctuating oxygen levels
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Research perspectives
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• Develop a corresponding stochastic individual-based model → explore
stochastic effects that are relevant in the regime of low cell numbers.

• Model oxygen dynamics explicitly → study the impact of oxygen
consumption on the evolutionary dynamics of cells.

• Include spatial structure → obtain a more detailed representation of
the underlying biological problem.

T. Lorenzi (University of St Andrews) 29 / 30



A mathematical dissection of the adaptation
of cancer cell populations to fluctuating oxygen levels

Tommaso Lorenzi
Aleksandra Ardaševa, Helen Byrne, Philip Maini

Alexander Anderson, Robert Gatenby

Mathematical Biology: Modeling, Analysis and Simulation
IMS, National University of Singapore

21st January 2020


	Main Talk

