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Motivation: simulation of magnetic confinement of plasmas in Tokamaks

In such devices, a very large external magnetic field B confines the plasma
(e.g. gas at very high temperature made of neutral and charged particles) in a
torus and induces a cyclotronic motion.
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Model equations: Vlasov-Poisson (VP)

Vlasov equation describes the time evolution of the distribution function of
the plasma:

∂tf
ε + v · ∇xfε + (Eε + 1

ε
v ×B) · ∇vfε = 0, fε(0, x, v) = fε0 (x, v)

fε(t, x, v): distribution of charge at time t ∈ R, position x ∈ R3, velocity
v ∈ R3.

1
ε
B: external magnetic field assumed to be given and large here.

Eε: self-consistent electric field given by Poisson equation (in resolved form
here):

Eε(t, x) = 1
4π

∫
R3

x−x′
|x−x′|3 ρ

ε(t, x′)dx′, ρε(t, x) =
∫
R3 f

ε(t, x, v)dv.
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Intrinsic difficulties

Main numerical and computational challenges come from

ä the problem dimension (7D = 3D position + 3D velocity +time);

ä the necessity to preserve energy and mass;

ä the occurrence of various time scales when 1
ε
B is large.

Gyrokinetics theory provides a model for plasmas with large 1
ε
B.

The trajectory of particles is a helix composed of

ä a slow motion along the field line;

ä a fast circular motion around the field line, called gyromotion.

For most plasma behavior, gyromotion is irrelevant. Gyrokinetics (Littlejohn
83’ , see also Brizard Lecture Notes 13’) reduces the equations to 4D + t
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Asymptotic models have been derived in the literature by various authors, in
various situations:

1 for Vlasov-Poisson in 2D with constant magnetic field: Bostan,
Frénod, Golse, Miot, Saint-Raymond

2 for Vlasov in 3D: Bostan, Degond, Filbet, Possaner

3 for Vlasov-Poisson with negligible curvature magnetic field lines:
Bostan

4 for Vlasov-Poisson with constant intensity magnetic field: Golse
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Main goals

Our ambition is

1 to derive asymptotic equations in the regime where ε tends to zero. This
work is thus an attempt to (re-)derive rigorously the equations of
gyrokinetics;

2 to design asymptotically preserving or even uniformly accurate methods
for solving fast-oscillating kinetic equations, i.e. methods whose cost and
accuracy do not depend on ε:

error ≤ C (computational cost)−p .

The main tools used to reach this objective are averaging and PDE
techniques. Here, I will focus on the first.
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The Vlasov equation (VE) with an external electric field

Assuming for the time-being that Eε ≡ Eε(t, x) = −∇φε(t, x) is given, we
have

∂tf
ε + v · ∇xfε + (Eε + v

ε
×B) · ∇vfε = ∂tf

ε + F ε · ∇yfε = 0

where y = (x, v)T . Its solution is of the form

fε(t, y) = fε0 (ϕε−t(y))

where t 7→ ϕεt (y) is the flow of the characteristics(
ẋ
v̇

)
=

(
v
1
ε
v ×B + Eε

)
=

(
0 I3
−I3 1

ε
JB

)
∇
(

1

2
|v|2 + φε

)
= Ω∇H

with

JB(x) =

 0 B3(x) −B2(x)
−B3(x) 0 B1(x)
B2(x) −B1(x) 0
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Averaging for the characteristics

Theorem (e.g. C., Murua and Sanz-Serna, FOCM 15’)

Consider a vector field

F ε =
1

ε
G+K

such that the flow associated with G is 2π-periodic, regardless of the specific
trajectory. There exist two formal vector fields Gε and Kε such that

1 both vector fields commute, i.e. [Gε,Kε] = 0;

2 vector field Gε generates a 2π-periodic flow;

3 F ε = 1
ε
Gε +Kε

Note that:

ä the flows associated with Gε and Kε commute

ä if G and K share the same structure, so do Gε and Kε.
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Main statement for Vlasov equation

Corollary

Consider a vector field F ε as in previous theorem and its associated “averaged”
form 1

ε
Gε +Kε. Then the solution of the transport equation

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0

may be obtained as the diagonal value (i.e. for τ = t/ε) of the two-scale
function f̃(t, τ, y), periodic in τ and satisfying f̃(0, 0, y) = f0(y) and the two
equations

(i) ∀(t, τ, y), ∂τ f̃(t, τ, y) +Gε(y) · ∇y f̃(t, τ, y) = 0,

(ii) ∀(t, τ, y), ∂tf̃(t, τ, y) +Kε(y) · ∇y f̃(t, τ, y) = 0.

Equation (ii) is the so-called averaged equation. It is formal.

See Chartier, Crouseilles, Lemou, M., Zhao, for an application of this result for
|B(x)| ≡ B0 and uniformly accurate approximations.
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Change of variables in non-canonical Hamiltonian systems

Some basic properties of non-canonical Hamiltonian systems

ä if Ω(y) is skew-symmetric and satisfies Jacobi identity, then

{H1, H2}Ω = (∇yH1)TΩ(y)∇yH2

generalizes canonical brackets to non-canonical brackets. If B ≡ ∇ ·A
then Ω in the characteristics satisfies Jacobi.

ä from a non-canonical Hamiltonian equation

ẏ = Ω(y)∇yH(y),

y = ϕ(Y ) gives another non-canonical Hamiltonian equation

Ẏ = Ω̃∇Y H̃, Ω̃ = (ϕ′)
−1
(

Ω ◦ ϕ
)

(ϕ′)
−T

, H̃ = H ◦ ϕ.
See Hairer, Lubich, Wanner, Geometric numerical integration
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What about structures? (the case of constant B)

If B is constant, one may consider the equations in 2 dimensions(
ẋ
v̇

)
=

(
0 I2
−I2 1

ε
J2

)(
∇φε(t, x)

v

)
, J2 =

(
0 −1
1 0

)
.

Though the stiff part of the system generates a 2πε-periodic flow, it amounts
to a splitting of the structure matrix(

ẋ
v̇

)
=

(
0 0
0 1

ε
J2

)(
∇φε(t, x)

v

)
+

(
0 I2
−I2 0

)(
∇φε(t, x)

v

)
which is broken by the averaging procedure. Here, an Hamiltonian splitting is
possible(

ẋ
v̇

)
=

(
0 I2
−I2 1

ε
J2

)(
0
v

)
+

(
0 I2
−I2 1

ε
J2

)(
∇φε(t, x)

0

)
and leads to geometric averaging.
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What about structures? (the case of constant B)

Going back to 3D with

J3 =

 0 0 0
0 0 −1
0 1 0

 ,

we have to modify the Hamiltonian splitting accordingly by taking special care
of the component of v that is parallel to B = (1, 0, 0)

(
ẋ
v̇

)
=

(
0 I3
−I3 1

ε
J3

)


0
...
0
v2

v3

+

(
0 I3
−I3 1

ε
J3

)
∇Φε(t, x)

v1

0
0


in order to retain the periodicity of the stiff part solution.
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Characteristics in the Littlejohn’s variables (i)

In order to treat the general case (variable B), Littlejohn introduces the
following changes of variables:

(
x
v

)
ϕ1−→︸︷︷︸

v=v‖b(x)+v⊥c(θ,x)


x
v‖
v⊥
θ

 ϕ2−→︸︷︷︸
v⊥=
√

2|B(x)|µ


x
v‖
µ
θ


where (a(θ, x), b(x), c(θ, x)) is the Littlejohn’s triplet defined as follows:
given two smooth unit vectors (e1(x), e2(x)) in the orthogonal plane to

b(x) = B(x)
|B(x)| , we set

c(θ, x) = − sin(θ)e1(x)− cos(θ)e2(x),

a(θ, x) = c(θ, x)× b(x) = −∂θc(θ, x)

so that (a, b, c) is a direct orthonormal basis.
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Characteristics in the Littlejohn’s variables (ii)

Inserting (ϕ2 ◦ ϕ1)′ in previous formula gives the structure matrix

Ω =

(
0 I3
−I3 1

ε
JB(x)

)
→
(

0 (DQT )−1

−(QD)−1 1
ε
J3 +RT −R

)
= Ω̃

for Q ≡ Q(x, v‖, µ, θ), R ≡ R(x, v‖, µ, θ), D = diag(1, B(x)
v⊥

, 1), while the new
Hamiltonian is now

H = 1
2
|v|2 + φε(t, x) −→ 1

2
v2
‖ + |B(x)|µ+ φε(t, x) = H̃

In these variables, the system is non-canonically Hamiltonian of the form
ẋ
v̇‖
µ̇

θ̇

 = Ω̃


∇xH̃
v‖
|B|
0

 =


0
0
0
|B|
ε

+ k =
1

ε
g + k
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Littlejohn’s reduction (i): elimination of θ

Illustration for |B(x)| = B0 > 0

Normal form theory asserts that there exists a change of variables

(x, v‖, µ, θ) = ϕε(X,V‖,M,Θ) = (X,V‖,M,Θ) +O(ε)

transforming 1
ε
g + k into 1

ε
g + kε such that

[kε, g] =
∂kε

∂(X,V‖,M,Θ)
g − ∂g

∂(X,V‖,M,Θ)
k = B0

∂kε

∂Θ
= 0

Hence, in the new variables (X,V‖,M,Θ), the vector field

1
ε
g + kε =

(
ϕε′
)−1

(
Ω̃ ◦ ϕε

) (
ϕε′
)−T ∇(H̃ ◦ ϕε)

is again non-canonically Hamiltonian and does not depend on Θ.
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Littlejohn’s reduction (ii)

In Littlejohn 83’ the author carries on a transformation of this sort for general
magnetic fields with varying intensity |B(x)|.

More precisely

ä Littlejohn constructs ϕε, the change of variables which eliminates θ, by
working on the Lagrangian formulation of the characteristics for general B.

ä In his construction, the magnetic moment µ becomes an invariant.

ä If one is not interested by the gyro-angle θ, the system has reduced
dimension 4 (this is fundamental for the discretisation of the PDE).
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Averaging of a single particle for varying |B(x)| (i)

Characteristics in Littlejohn’s variable are

(C) :


ẋ
v̇‖
µ̇

θ̇

=


v‖b+ v⊥ c

−v‖v⊥(∂xc)b · b− v2
⊥(∂xc)c · b+ Eε · b

v⊥(Eε·c)
|B| −

v⊥v
2
‖(∂xb)b·c
|B| − µ∇|B|·(v‖b+v⊥c)

|B| − 2µv‖(∂xb)c · c
|B|
ε

+
v2‖(∂xb)b·a

v⊥
− Eε·a

v⊥
+ · · ·


with v⊥ =

√
2|B|µ. With y = (x, v‖, µ), this system is of the form(

ẏ

θ̇

)
=

(
v⊥fθ(t, y) + h(t, y)

B(x)
ε

+ 1
v⊥
gθ(t, y) + kθ(t, y)

)

where the average of µ̇ w.r.t. θ vanishes.
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Averaging of a single particle for varying |B(x)| (ii)

Introducing

〈f〉(t, y) =
1

2π

∫ 2π

0

fτ (t, y)dτ and Fθ(t, y) =

∫ θ

θ0

(
fτ (t, y)− 〈f〉(t, y)

)
dτ

we can write (with θ ≡ θ(t) and y ≡ y(t))

fθ(t, y)− 〈f〉(t, y) = 1

θ̇

(
d
dt
Fθ(t, y)− ∂tFθ(t, y)− ∂yFθ(t, y)ẏ

)
and compute the component y(t) as follows

y(t) =y0 +

∫ t

0

hds+

∫ t

0

v⊥〈f〉ds+

∫ t

0

v⊥

θ̇

d

ds
Fθds

−
∫ t

0

v⊥

θ̇

(
∂tFθ + ∂y(v⊥f + h)

)
ds
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Averaging of a single particle (iii)

Integration by parts in the third integral leads to

y(t) =y0 +

∫ t

0

hds+

∫ t

0

v⊥〈f〉ds+
v⊥

θ̇
Fθ +

∫ t

0

(v⊥θ̈
θ̇2
− v̇⊥

θ̇

)
Fθds

−
∫ t

0

v⊥

θ̇

(
∂tFθ + ∂y(v⊥f + h)

)
ds

Now, for ε small enough, as long as µ ≥ Cε, we can have bounds of the form

θ̇ ≥ C

ε
and |θ̈| ≤ C

ε
.

and conclude that (on an interval of length independent of ε)

y(t) = y0 +
∫ t

0
hds+

∫ t
0
v⊥〈f〉ds+O(ε)



Setting Averaging in Vlasov equation Preservation of structures First-order asymptotics of (VP) Conclusions

Averaging of a single particle (iv)

The asymptotic system is finally obtained by noticing that

〈a〉 = 〈c〉 = 0 and 〈(∂xb)c · c〉 =
1

2
div b = −∇|B| · b

2|B|

and dropping the variable θ

(A)

 ẋ
v̇‖
µ̇

 =

 v‖b

b · (Eε − µ∇|B|)
0

 .

The system is non-canonical Hamiltonian with Hamiltonian

H(x, v‖, µ) =
1

2
v2
‖ + Φε + µ|B|.
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Averaging of a single particle (v)

Lemma

Assume Eε ∈W 1,∞([0, T ]× R3) for some T > 0 and that
‖Eε‖W1,∞ ≤M, ∀ε. Given R2 > 0, there exist ε1 > 0, R1 ≥ 1 and R > 0
such that for 0 < ε ≤ ε1 and for any initial condition

(x0, (v‖)0, µ0) ∈ BR2(0) ∩ {µ ≥ R1ε}

the solutions of (C) and (A) exist on [0, T ε0 ] and remain in

BR(0) ∩ {µ ≥ 1

2
µ0}

Moreover, we have

∀t ∈ [0, T ε0 ], |x(t)− x(t)|+ |v‖(t)− v‖(t)|+ |µ(t)− µ(t)| ≤ Cε

for some positive constant (independent of ε).
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Averaging of the Vlasov-Poisson equations

Assumption

Initial data fε0 ∈W 1,∞(R6) is positive, has compact support and

Supp(fε0 ) ⊂ {(x, v) : |(x, v)| ≤M} and ‖fε0 − f0‖W1,∞ ≤ Cε

where f0 = f0(x, v‖, v⊥), i.e. f0 does not depend on θ.

First-order asymptotics of Vlasov-Poisson

(AV P ) ∂tf + v‖b · ∇xf + b · (E − µ∇|B|)∂v‖f = 0;

E(t, x) =
1

4π

∫
R3

x− x′

|x− x′|3 ρ(t, x′)dx′

ρ(t, x) = 2π|B(x)|
∫
R3×R+

f(t, x, v‖, µ)dv‖dµ

f(0, x, v‖, µ) = f0(x, v‖,
√

2|B|µ)
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Averaging of the Vlasov-Poisson equations

Theorem (Main result)

Assume that B ∈ C2
b (R3) derives from a potential vector A and is such that

|B(x)| ≥ B0 > 0 for all x ∈ R3. Suppose that previous assumption is
furthermore satisfied and let T > 0. There exists ε such that for any 0 < ε ≤ ε,
the solutions fε and f of (V P ) and (AV P ) exist on [0, T ] and satisfy∫ ∣∣∣∣fε(t, x, v‖b+ v⊥c)− f

(
t, x, v‖,

v2
⊥

2|B|

)∣∣∣∣ v⊥dxdv‖dv⊥dθ ≤ CT ε
where the constant CT does not depend on ε.

Remark: This result is derived in [7] Gyrokinetic approximations of the
Vlasov-Poisson system with a strong magnetic field in dimension 3, by Chartier,
Crouseilles, Lemou, M. (in preparation). The next-order model is also derived
therein: this is the so-called gyrokinetic model.
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Comments and perspectives

1 the derivation of the next term of the asymptotic expansion of the
characteristics is quite intricate. This is completed in our paper [7].

2 In collaboration with P. Chartier, M. Lemou and A. Murua, we aim at
using formal tools such as word-series to derive systematic and explicit
expansions in the spirit of Littlejohn.

3 uniformly accurate numerical methods for the full Vlasov-Poisson system
exist in the case of magnetic fields with constant intensity |B(x)| ≡ B0

(see [8] next slide). The case of a varying intensity remains a challenge.
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Thank you for your attention
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