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Introduction

Dark matter (DM) comprise around 22% of the energy of the universe

The energy density of DM around �ve times the energy density of the visible matter Ωdm ' 5Ωb.

There are many model of DM, among others: WIMP, axion, sterile neutrinos, Asymmetric DM.

On all (except few in the literature) of the model, DM are always considered as either Bose of
Fermi particles

There are other statistics besides Bose and Fermi that is permutation invariant statistics, ful�ll
cluster decomposition property, and have non negative norm states.

Some motivation from Quantum Gravity theory, Quantum Foam, and Holography theory � Dark
energy and (maybe also) dark matter ful�ll in�nite statistics.
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Statistics for Identical Particles in d ≥ 3
Permutation Invariant Statistics

For n identical particles in a space with the dimension of d ≥ 3, the Hilbert Space should be
invariant under the action of the permutation group Sn.

The Hilbert space of n-identical particles system with a set of quantum number and its
multiplicity (j , ν) can be decomposed according to the IUR's of the permutation group Sn

H(j,ν)
(n) = ⊕λ∈ΛnH

(j,ν)
λ , (1)

where Λn is a subset of Irr(Sn) = the set of all IUR's of Sn.

The IUR's of Sn is denoted with the partition of n, denoted by λ = (λ1, λ2, . . . ) with λi ≥ λi+1

and |λ| ≡
∑

i λi = n.

Inside each Irr-space λ there is dλ vectors. dλ = n!
∏

i<j(li − lj)/l1! . . . ln!, with li = λi + n − i .

Vectors that live inside Irr-space λ are called to have symmetry type λ.

The λ can be denoted by a Young tableaux: a set of left justi�ed boxes denoting the partition.



Permutation Invariant Statistics
Young Tableaux

Young tableau, example S4 : (4), (3,1), (2,2), (2,1,1), (1,1,1,1)

(4) : (3, 1) : (2, 2) : (2, 1, 1) : (1, 1, 1, 1) :



Cluster Decomposition
J. B. Hartle, R. H. Stolt and J. R. Taylor, Phys. Rev. D 2, 1759 (1970).

Cluster decomposition: measuring any physical properties of a set of �isolated� particles should not
depend on the existence or nonexistence of particles elsewhere.
Hartle, Stolt and Taylor have shown that the allowed Λn's under cluster decomposition should contain
either:

1 All λ ∈ Irr(Sn) for each n (in�nite statistics)

2 or All λ whose Young tableau are inside the `(p, q)-envelope' for each n, where p and q are �nite
non-negative integers with p + q > 0.

The (p, q)-envelope is the set of all Young tableau with λp ≤ q for the associated partition λ.
Parafermi and parabose statistics of order p are part of the second case.
Bose and Fermi are just special case of Parabose and Parafermi of order 1.



Cluster Decomposition
(p,q)-envelope



Indistinguishability

Knowing the allowed state symmetry type is not enough to determine the statistics.

It could happen that certain states inside each H(j,ν)
λ,i are indistinguishable from each other �

There is no observable which has di�erent expectation values for the states in question.

In such a case, these states should be considered as physically equivalent and not counted as
di�erent.

Denote by cλ the number of distinct physical state inside each Irr subspace λ.

The value of cλ depends on the observables in the system.

In general, the set O(n) of observables for the n-particle states is a subset of all hermitian
operators that act on H(n), denoted by Herm(H(n)).



Indistinguishable Statistics

The �rst case: For each observable O ∈ O(n) we have [U(π),O] = 0 for all π ∈ Sn and all n. In
this case the observables don't change under the action of U(π), � the symmetric observables.

Any two vectors in H(j,ν)
λ,i will have the same expectation values for any observable and hence

cannot be distinguished from each other.

All dλ linearly independent vectors inside each H(j,ν)
λ,i should be considered physically equivalent

and be counted as one state (cλ = 1).

The whole subspace H(j,ν)
λ,i is often called a generalized ray (A. L. M. Messiah, O. W. Greenberg,

Phys. Rev. 136, B248 (1964).)

We will refer to this case as indistinguishable statistics.



Distinguishable Statistics

The second case is when O(n) = Herm(H(n)) for all n.

There is always some observable that has di�erent expectation values for any two states (even
inside the same irreducible subspace).

For example, the (hermitian) projection operator constructed from one particular state in any

basis of H(j,ν)
λ,i will distinguish that state from all other dλ − 1 linearly independent states in that

basis.

Thus, inside each H(j,ν)
λ,i we have dλ physically distinct linearly independent states (cλ = dλ).

We will refer to this case as distinguishable statistics. (note: it is still identical particles!!)



The Grand Canonical Partition Functions

The Grand Canonical Partition Function (GCPF) for m energy levels, can be written as

Z(x1, . . . , xm) = Tr e β(µN−H) =
∞∑
n=1

∑
π,(j,ν)

〈π(j , ν)|e β(µN−H)|π(j , ν)〉, (2)

where xi = eβ(µ−Ei ), β = 1/kT , Ei is the energy of one particle state, and µ is the chemical potential.
We can decompose each state into it's components inside the Hλ's. After a long manipulation, one
has (I. G. Macdonald, Symmetric Functions and Hall Polynomials)

Z(x1, . . . , xm) =
∑
λ∈Λ

cλ sλ(x1, . . . , xm). (3)

where sλ(x1, . . . , xm) is the Schur polynomial in m variables given by

sλ(x1, . . . , xm) =

{
|xm+λi−i

j |/
∏m

i<j(xi − xj) for λm+1 = 0

0 otherwise,
(4)



The Grand Canonical Partition Functions

Some of the GCPF of the permutation invariant statistics are known:

Distinguishable In�nite Statistics

Zdis
∞ (x1, . . . , xm) =

∑
all λ

dλsλ(x1, . . . , xm) =
1

1− (x1 + · · ·+ xm)
. (5)

Indistinguishable In�nite Statistics (I. G. Macdonald, Symmetric Functions and Hall Polynomials)

Z ind
∞ (x1, . . . , xm) =

∑
all λ

sλ(x1, . . . , xm) =
1∏m

i (1− xi )
∏

i<j(1− xixj)
, (6)

Indistinguishable Parefermion Statistics (I. G. Macdonald, Symmetric Functions and Hall
Polynomials)

Z ind
parafermi−p(x1, . . . , xm) =

∑
Λ(0,p)

sλ(x1, . . . , xm) =
|xm−i

j − xm+p+i−1
j |

|xm−i
j − xm+i−1

j |
, (7)



Creation-Annihilation Operator Realization

1. Green parastatistics creation and annihilation operator (CAO) algebra

[[ai , a
†
j ]±, a

†
k ] =

2

p
δika
†
j , (8)

where p is a nonzero integer. Correspond to indistinguishable parabose and parafermi of order p
2. Govorkov parastatistics CAO algebra

[aia
†
j , a
†
k ] =

1

p
δika
†
j , (9)

where p is a nonzero integer. Correspond to distinguishable parabose or parafermi of order p.
3. Greenberg's �q-mutator� CAO algebra, interpolates between Bose (q = 1) and Fermi (q = −1)

aia
†
j − qa†j ai = δij . (10)

This q-mutator CAO algebra correspond to distinguishable in�nite statistics.
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Distinguishable In�nite Statistics

The GCPF for distinguishable in�nite statistics (where xi = eβ(µ−Ei ), and β = 1/kT . )

Zdis
∞ (x1, . . . , xm) =

∑
all λ

dλsλ(x1, . . . , xm) =
1

1− (x1 + x2 + · · ·+ xm)
(11)

The total number of particles and the energy is given by

N =
m∑

k=1

xk(
1−

∑m
i=1

xi
) ; U =

m∑
k=1

xkEk(
1−

∑m
i=1

xi
) (12)



Distinguishable In�nite Statistics
Problems with the termodynamics

In the continuum limit, the total number of particles and the energy are given by

N(T ,V , µ) =
2πd/2V

hdΓ(d/2)d
(mc)du

∫ ∞
1

dt (t2 − 1)
d
2

ze−ut

(1− VLa)
=

VLa

(1− VLa)

U =
2πd/2V

hdΓ(d/2)
c(mc)d+1

∫ ∞
1

t2dt (t2 − 1)
d−2
2 ze−ut 1

(1− VLa)
=

(
d

u
+

K d−1
2

(u)

K d+1
2

(u)

)
VLamc2

(1− VLa)

(13)

where d is the space dimension, a = ze−βmc2 , Kn(u) is the modi�ed Bessel function of the second
kind, and L is given by,

L ≡ β
2c

~d

(
m

2πβ

) d+1
2

euK d+1
2

(u). (14)

In non relativistic case L→ λ−d
T , where λT =

√
2π~2β/m is the thermal wavelength.



In�nite Statistics Dark Matter

C. M. Ho, D. Minic, and Y. J. Ng, `Dark matter, in�nite statistics, and quantum gravity', Phys. Rev.
D 85, 104033 (2012)

MONDian dark matter which behaves like cold dark matter at cluster and cosmological scales
but emulates modi�ed Newtonian dynamics (MOND) at the galactic scale

Quanta of the MONDian dark matter obey in�nite statistics, and the theory must be
fundamentally non local.

Z. Ebadia, B. Mirza and H. Mohammadzadeh, `In�nite statistics condensate as a model of dark
matter', Journal of Cosmology and Astroparticle Physics, (2013)

Extension of an idea that dark matter is a condensate bosonic system. They claim that
condensation is also possible for particles that obey in�nite statistics and they derive the critical
condensation temperature.

Start with the Greenberg quon's statistics but then used the Medvedev Ambiguous Statistics,
where one has both Bose and Fermi statistics with some probability pb and pf respectively.

They avoid the problem with distinguishable in�nite statistics thermodynamics.



In�nite statistics condensate as a model of dark matter

M. V. Medvedev, `Properties of Particles Obeying Ambiguous Statistics', Phys. Rev. Lett.78, 4147
(1997) A system with Nj particles, where in each realization, the system has k bosons and Nj − k

fermions with the probability of pk
bp

Nj−k

f . The total number of states of the system is

W =
∏
j

Nj∑
k=0

Nj !

k!(Nj − k)!
wb(k)wf (Nj − k)pk

bp
Nj−k

f (15)

where wb(k) and wf (k) are the Bose and Fermi counting function for m energy level

wb(k) =
(m + k − 1)!

k!(m − 1)!
wf (k) =

m!

k!(m − k)!
(16)



In�nite statistics condensate as a model of dark matter
Cont-

Using the usual Lagrange multiplier method, they got the occupation number. For the case
pf = pb = p (the case of q = 0 quon statistics) they got the total energy and the total number
of particles (in a d dimensional spatial space)

U =
A

βd/2+1

∫ ∞
0

4pzexxd/2

e2x − p2z2
dx ; N =

A

βd/2

∫ ∞
0

4pzexxd/2−1

e2x − p2z2
dx (17)

where A = V
Γ(d/2)

(2mπ)d/2

hd
, z = exp(βµ) and x = βE

They showed that condensation will occur at z = 1/p or at µ = −kT ln p. They got the critical
temperature

kTcr =
2π~2

mq

(
n

ζ(d/2)

)
2/d

21−4/d

(2d/2 − 1)2/d
(18)

where mq is the quon's mass.



In�nite statistics condensate as a model of dark matter
Comment

The Medvedev's Ambiguous Statistics is not a realization of in�nite statistics!

One can start with the following GCPF for m energy levels (where xi = exp(β(µ− Ei ))).

Z(x1, . . . , xm) =
m∏
i=1

1 + pxi
1− pxi

(19)

From which one can have the total number of particles and the total energy, given by

N =
m∑

k=1

2pxk
1− p2x2k

; U =
m∑

k=1

2pxkEk

1− p2x2k
(20)

For the continuum limit, one will get their result.



In�nite statistics condensate as a model of dark matter
Comment

Using the following Cauchy identity∑
λ

sλ(x1, . . . )sλ(y1, . . . ) =
∏
i,j

(1− xiyj)
−1;

∑
λ

sλ(x1, . . . )sλ′(y1, . . . ) =
∏
i,j

(1 + xiyj) (21)

The GCPF can be written as

m∏
i=1

1 + pxi
1− pxi

=
∑
λ

sλ(p)sλ(x1, . . . , xm)
∑
µ

sµ′(p)sµ(x1, . . . , xm) (22)

where λ = (|λ|, 0, . . . ) and µ = (1, 1, . . . ). Using Littlewood Richardson rule

m∏
i=1

1 + pxi
1− pxi

=
∑
ν

∑
λµ

cνλµsλ(p)sµ′(p)sν(x1, . . . , xm) (23)

where cνλµ is the Littlewood Richardson coe�cient.



In�nite statistics condensate as a model of dark matter
Comment

The Littlewood Richardson coe�cient: For Irr-λ of S|λ| and Irr-µ of S|µ|, c
ν
λµ gives the multiplicities of

the Irr-ν in the tensor product λ⊗ µ when restrict down to S|λ|+|µ|.
For our case, we have λ = (|λ|, 0, 0, . . . ) and µ = (1, 1, . . . ).

⊗ = ⊕
Thus ν should be only in the (1, 1)-envelope. Most of the symmetry type of in�nite statistics is not
there.
The Medvedev statistics is more like a semi Bose semi Fermi statistics. It is not the realization of quon
distinguishable in�nite statistics.
But it is extensive, and the norm of the states are non negative. But it has `probabilistic' state
counting cλ.



In�nite statistics condensate as a model of dark matter
Modi�cation of Medvedev idea

One may extend the Medvedev idea. Include a number of n bosons and fermions each with probability
p such that

∑n
i 2p = 1, and take n→∞.

In this way one will include all the symmetry types of the permutation group.
The GCPF in this case will be

Z(x1, . . . , xm) = lim
n→∞

n∏
i=1

m∏
i=1

1 + pxi
1− pxi

= lim
n→∞

m∏
i=1

(
1 + 1

2n
xi

1− 1

2n
xi

)n

=
m∏
i=1

exp(xi ) (24)

We get the classical Maxwell Boltzman statistics (as a realization of a quantum statistics).
Unfortunately as we know, the Maxwell Boltzmann statistics doesn't have Bose-like condensation.
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Indistinguishable In�nite Statistics Dark Matter
Using Indistinguishable in�nite statistics as dark matter statistics?

The GCPF for indistinguishable in�nite statistics

Z ind
∞ (x1, . . . , xm) =

∑
all λ

sλ(x1, . . . , xm) =
m∏
i=1

1

(1− xi )

m∏
i<j

1

(1− xixj)

=

(
m∏
i=1

(1 + xi )

(1− xi )

m∏
i,j=1

1

(1− xixj)

)
1/2 (25)

The total number of particle and the total energy are given by

N =
m∑

k=1

xk
1− x2k

+
m∑

i,k=1

xixk
(1− xixk)

.; U =
m∑

k=1

Ek
xk

1− x2k
+

m∑
i,k=1

Ek
xixk

(1− xixk)
. (26)

We have a restriction 0 ≤ a ≤ 1 (Note: a = ze−βmc2).



Indistinguishable In�nite Statistics Dark Matter
Thermodynamics

Taking the continuum limit means∑
i

→
∫

dd r ddp

hd
=

2πd/2V

hdΓ(d/2)

∫ ∞
0

pd−1 dp =
2πd/2V

hdΓ(d/2)
(mc)d

∫ ∞
1

tdt (t2 − 1)
d−2
2 (27)

where t = E/mc2, p =
√

(E/c)2 −m2c2 is the single-particle state momentum.
The total energy U

U =
2Vc3β

~d

(
m

2πβ

) d+1
2 ∑

k odd

zk

k
d+1
2

(
d

u
K d+1

2

(ku)− K d−1
2

(ku)

)

+
4β2V 2c4

~2d

(
m

2πβ

)d+1 ∞∑
k=1

z2k

kd

(
d

u
K 2

d+1
2

(ku)− K d+1
2

(ku)K d−1
2

(ku)

) (28)



Indistinguishable In�nite Statistics Dark Matter
Thermodynamics

The total number of particle is given by

N = VL
∞∑

k odd

zke−u

k
d−1
2

K d+1
2

(ku)

K d+1
2

(u)
+ V 2L2

∞∑
k=1

z2ke−2u

kd−1

K 2
d+1
2

(ku)

K 2
d+1
2

(u)
+

a

1− a

≡ Ne + N0

(29)

In the non relativistic limit we have

Ne = VL
∞∑

k odd

ak

k
d
2

+ V 2L2
∞∑
k=1

a2k

kd
= VL

(
g d
2

(a) + f d
2

(a)
)

+ V 2L2gd(a2), (30)

while in the ultrarelativistic limit we have

Ne = VL
∞∑

k odd

ak

kd
+ V 2L2

∞∑
k=1

a2k

k2d
= VL (gd(a) + fd(a)) + V 2L2g2d(a2) (31)



Indistinguishable In�nite Statistics Dark Matter
Critical Temperature

The critical temperature can be obtained as the limit when a→ 1 (or µ→ mc2).

Ncrit

V
= L

∞∑
k odd

e(k−1)u

k
d−1
2

K d+1
2

(ku)

K d+1
2

(u)
+ VL2

∞∑
k=1

e2(k−1)u

kd−1

K 2
d+1
2

(ku)

K 2
d+1
2

(u)
(32)

By solving this equation for the temperature T at a �xed N, we can obtain the critical temperature Tc .
In the non-relativistic limit

N =VL
∞∑

k odd

1

k
d
2

+ V 2L2
∞∑
k=1

1

kd
= λ−d

T ζ(d/2)2(1− 1

2d/2
) + Vλ−2dT ζ(d),

Tc =
2π~2

kmV 2/d

[(
ζ2(d/2)

ζ2(d)2d

(
2d/2 − 1

)
2

+
N

ζ(d)

)1/2

− ζ(d/2)

ζ(d)

(
1− 1

2d/2

)]2/d (33)

In the termodynamic limit (N,V →∞) we have Tc = (2π~2/km)(N/ζ(d)V 2)1/d



Indistinguishable In�nite Statistics Dark Matter
Critical Temperature

Figure: Fig. T in unit of kmV 2/d/2π~2 vs density N/V , for a unit Volume. curve 1 for Bose
statistics, curve 2 for Indistinguishable In�nite Statistics.
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Gross Pitaevskii Equation for In�nite Statistics?

Can we use the Gross Pitaevskii Equation for In�nite Statistics condensate?
For this, lets look at the usual derivation of Gross Pitaevskii Eq. in second quantized non relativistics
formulation.
One can start from the de�nition of the number operators in terms of creation and annihilation
operator, where in the case of (scalar) Boson one have ni = a†i ai . The energy operator can be written
as

H =
∑
i

Eini =
∑
i

Eia
†
i ai =

∫
d3k

(2π)3
(
k2

2m
+ V (k)ext)a(~k)†a(~k) (34)

For interaction, one adds two bodies particle-particle interaction
∑

i<j ninjVij

H =

∫
d3k

(2π)3
(
k2

2m
+ V (k)ext)a(~k)†a(~k) +

1

2

∫ ∫
d3k

(2π)3
d3k ′

(2π)3
a(~k)†a(~k ′)†V (k, k ′)a(~k ′)a(~k) (35)



Gross Pitaevskii Equation for In�nite Statistics?

Taking the fourier transform to go to the position basis, one have

H =

∫
d3rΨ†(r)

(
−∇

2

2m
+ V (r)ext

)
Ψ(r) +

1

2

∫ ∫
d3rd3r ′Ψ†(r)Ψ†(r ′)V (r − r ′)Ψ(r ′)Ψ(r). (36)

Going to time dependent Heisenberg representation, and write the �eld as

Ψ(r , t) = ψ(r , t) + Ψ′(r , t) (37)

where ψ(r , t) = 〈Ψ(r , t)〉 is a classical �eld, that will become the condensate wave function,
constrained by the normalization condition

N =

∫
d3rρ(r , t); ρ(r , t) = |ψ(r , t)|2. (38)

The equation of motion of the condensate can be obtained from the Heisenberg equation of motion for
the �eld

i
∂

∂t
Ψ(r , t) = [Ψ(r , t),H] =

(
−∇

2

2m
+ Vext(r) +

∫
d3r ′Ψ†(r ′, t)V (r ′ − r)Ψ(r ′, t)

)
Ψ(r , t) (39)



Gross Pitaevskii Equation for In�nite Statistics?

One can then approximate the dynamics using the condensate wave function ψ(r , t) and neglect the
Ψ′(r , t). One use V (r − r ′) = gδ3(r − r ′) where g = 4πa/m where a is the scattering length, then

i
∂

∂t
ψ(r , t) =

(
−∇

2

2m
+ Vext(r) + g |ψ(r , t)|2

)
ψ(r , t) (40)

How about in�nite statistics?
The only in�nite statistics that may have condensation is the indistinguishable statistics, but there is
no known CAO algebra for this statistics. The only known CAO algebra for in�nite statistics is the
quon's algebra (but it is for distinguishable statistics).
The number operator for quon's algebra is of in�nite term (Greenberg, 1990)

ni = a†i ai +
∑
k

a†ka
†
i aiak +

∑
k1,k2

a†k1a
†
k2
a†i aiak2ak1 + · · ·+

∑
k1,k2,...,ks

a†k1a
†
k2
. . . a†ks a

†
i aiaks . . . ak2ak1 + · · · .

(41)
But it still obey [ni , aj ] = −ajδij



Gross Pitaevskii Equation for In�nite Statistics?

Using H =
∑

i Eini +
∑

i<j ninjVij the dynamics of the creation/annihilation operator is given by

i
∂

∂t
a(k, t) =

[
a(k, t),

∫
d3k ′E(k ′)n(k ′, t) +

1

2

∫
d3k ′

(2π)3

∫
d3k ′

(2π)3
V (k ′, k ′′)n(k ′, t)n(k ′′, t)

]
=

(
E(k) +

∫
d3k ′

(2π)3
V (k ′, k)n(k ′, t)

)
a(k, t)

(42)

But putting this into position basis will not be easy, because of the in�nite terms in occupation number
operator.
But if there is condensation (doubtful for the case of quon's in�nite statistics), we can use the
condensate �eld ψ(r , t) (which is a classical �eld!!). After taking fourier transform into position basis,
neglecting the �uctuating �eld Ψ′(r , t), and assuming contact interaction

V (r − r ′) = gδ3(r − r ′), (43)



Gross Pitaevskii Equation for In�nite Statistics?

One have

i
∂

∂t
ψ(r , t) =

(
−∇

2

2m
+ Vext(r) + gn(r , t)

)
ψ(r , t) (44)

where

n(r , t) = |ψ(r , t)|2
(
1 +

∫
d3r ′|ψ(r ′, t)|2 +

(∫
d3r ′|ψ(r ′, t)|2

)
2

+

(∫
d3r ′|ψ(r ′, t)|2

)
3

. . .

)
(45)

and constrained by the following normalization

N =

∫
d3r |ψ(r , t)|2 +

(∫
d3r |ψ(r , t)|2

)
2

+

(∫
d3r |ψ(r , t)|2

)
3

+

(∫
d3r |ψ(r , t)|2

)
4

. . . (46)
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Parafermionic Dark Matter
Can we have condensation?

The GCPF for parafermi of order p only known in the discreate energy level case

Z ind
parafermi−p(x1, . . . , xm) =

∑
Λ(0,p)

sλ(x1, . . . , xm) =
|xm−i

j − xm+p+i−1
j |

|xm−i
j − xm+i−1

j |
, (47)

But it is known that the dominator (I. G. Macdonald, Symmetric Functions and Hall Polynomials)

|xm−i
j − xm+i−1

j | =
∏
i

(1− xi )
∏
i<j

(1− xixj)(xi − xj) (48)

While it can be shown that the numerator

|xm−i
j − xm+p+i−1

j | =
∏
i

(1− xi )
∏
i<j

(1− xixj)(xi − xj)F (x1, . . . , xm) (49)

F (x1, . . . , xm) is a symmetric polynomial of �nite order. Thus no condensation in parafermi!!



Parafermionic Dark Matter

T. Kitabayashi and M. Yasue, Phys Rev D 98, 043504 (2018)

They assume that parafermionic dark matter is a cold dark matter particle consisting of
nonrelativistic particles, which is described by the standard freeze-out scenario of nonrelativistic
particles.

Started from the usual de�nition of the creation and annihilation algebra of parafermion

They used the following Grand Canonical Partition Function (GCPF) which is based on the
assumption that the GCPF is the sum of all possible quantum numbers - counting function
(parafermi of order q)

Z(x1, . . . , xm) =
∏
i

qi∑
ni=1

e−β(Ei−µ)ni =
m∏
i

(1 + xi + · · ·+ xq
i )

From which one get the following distribution function for parafermions

f (x) = x
d

dx
ln(1 + x + · · · xq) =

x + 2x + 3x + · · ·+ qxq

1 + x + x2 + · · ·+ xq

where x = eβ(E−µ)



Parafermionic Dark Matter

They generalized the simple-formed Boltzmann equation to estimate the relic abundance of
parafermionic dark matter.

They extend the simple Boltzman equation for the 1 + 2↔ 3 + 4 process, and obtain for the
parafermions χ annihilates into fermionics particles

dnχ
dt

+ 3Hnχ = −
∫

dΠχdΠχ̄dΠf dΠf̄ (2π)4δ4(pχ + pχ̄ − pf − pf̄ )|M|2

× {fχfχ̄(1− ff )(1− ff̄ )− ff ff̄ (q − fχ)(q − fχ̄)}
(50)

where q is the order of parafermions, and f is the particle distribution function.

Assuming that at non relativistic condition (m >> kT ) the fermionic and parafermionic
distribution functions approximately obey the Maxwell Boltzmann distribution, they obtained

dYχ
dx

= −λ〈σv〉
x2

[
Y 2

χ − r2(Y EQ
χ )2

]
(51)

where x = mχ/T , Yχ = nχ/sχ, and λ = 4π√
90
Mplmχ

√
g∗



Parafermionic Dark Matter
Comment

The GCPF that they used is not the correct GCPF for parafermion.
Infact, their GCPF is problematic (It was known as the extensive Gentile statistics). This can be seen
easily:

(1 + x + x2 + · · ·+ xq) =

q∏
k=1

(1− ξkx) (52)

where ξ = exp(2πi/(q + 1)).
Thus

Z(x1, . . . , xm) =

q∏
j=1

m∏
i=1

(1− ξjxi ) =

q∏
i=1

∑
µi

sµ′i (ξi )sµi (x1, . . . , xm) (53)

Using the same method as in the case of Medvedev statistics above, since we have Schur function with
non positive variable, one can show that state of certain symmetry type will have negative (or even
imaginary) norms.



Parafermionic Dark Matter
Comment

The GCPF for parafermi for a �nite energy level is given by the symmetric polynomial F (x1, . . . , xm)
above.
Even though we don't have a closed form formulation for F (x1, . . . , xm), but we know the highest order
of its terms is (x1 + x2 + · · ·+ xm)q.
From which we �nd that the maximum occupancy in each energy level is q.
Thus the Pauli blocking term that they proposed is correct, and as long as one consider the case of
non relativistic condition (m >> kT ), their last result should be ok.



Conclusion

Some of the proposal about the dark matter being particles obeying in�nite statistics or
parafermions, have some mistakes (using semi bose and semi fermi statistics instead of in�nite
statistics and using statistics with negative norm states)

Dark matter using in�nite statistics particles have some problem regarding their thermodynamics
being not extensive, (and non local). But if one can accept probabilistics counting of Medvedev,
we just get the Maxwell Boltzmann statistics.

The indistinguishable in�nite statistics can have Bose-like condensation, and thus can be a model
for a condensed particle dark matter, but the thermodynamics is non extensive.

The Gross Pitaevskii equation cannot be used directly for in�nite quon's statitistics. But some
modi�cation of it can be derive, if condensation do occur.

THANK YOU


