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Full-Navier-Stokes equations

The motion of a compressible viscous,heat-conductive, and
Newtonian polytropic fluid is governed by the following full

compressible Navier-Stokes system:

Pt + div(pu) =0,
(pu)¢ + div(pu @ u) + VP = divT, (1.1)
(pE)¢ + div(pEu + Pu) = div(uT) + div(kV0).

v

t > 0 is the time, x € R3;

v

p: fluid density;

u = (uy, up, U3)TZ velocity;

v

v

e: specific internal energy;



Full-Navier-Stokes equations

v

0: absolute temperature;

v

1
E=e+ §|u|2: specific total energy;
» P(p,e): pressure,
R -
7oL
(1.2)

R, A: positive constant, v > 1: the adiabatic exponent; S:

P=Rp)=(y—1)pe=Ae/%p, e=ch, c =

the entropy.

» T: the viscosity stress tensor, D(u): deformation tensor,

_ Vu+(Vu)'

e (13)

T =2u(0)D(u) + A(0)divulz, D(u)



Full-Navier-Stokes equations

> u: shear viscosity coefficient;

v

2
A+ Pl bulk viscosity coefficient;

> x: heat conductivity coefficient;

w(0) = ab®,  X0)=B0°, K =uv6", (1.4)

where («, 3, v, b) are all constants satisfying

a>0, 2a+38>0, v>0, and b>0. (1.5)



Full-Navier-Stokes equations

For example,
» Maxwellian molecules, b = 1.

1
» Rigid elastic spherical molecules, b = 5

3
> lonized gas, b = 5



Introduction

Some known results when u, A, k are all constants for Cauchy
problem:

» Serrin,J.(1959)and Nash,J.(1962) Local existence and
uniqueness of classical solutions in the absence of vacuum
(multi-dimensional case).

» Kazhikhov,A.V.and Shelukhin,V.V.(1977) Well-posedness for
the one-dimensional problem with strictly positive initial
density and temperature.

» Z.Xin (1998) Blowup of smooth solutions to the compressible
Navier-Stokes equation with compact density.

> E.Feireisl(2004) Global existence of weak solution with finite

3
energy for v > 5



Introduction

» Y.Choe and H.Kim(2006) Local well-posedness of smooth

solutions with non-negative density.

» X.Huang and J.Li(2017) Global well-posedness of classical
solutions with smooth initial data which are of small energy
but possibly large oscillations where the initial density is
allowed to vanish.

» Huan.Wen and Chang,Zhu(2017) Global well-posedness of
classical solutions when density vanishes at infinity.

» Jinkai, Li and Zhouping,Xin(2019) Entropy bounded solutions
to the one-dimensional compressible Navier-Stokes equations

with zero heat conduction and far field vacuum.



Introduction

Some known results when (u, A, k) are dependent of 6:

» H.K.Jenssen and T.Karper (2010) Global existence of weak
sqution3in 1-D under the assumption p = a, k(0) = v6° for
b€ [0, §).

» H. Liu, T.Yang, H.Zhao and Q.Zou(2014) Global existence of
a smooth nonvacuum solution is obtained in 1-D with
w=p(@) >0, k=mr(0)>0for § > 0.

» W.Zhang (2014) Global existence of variational solution with

finite energy.



Introduction

» R.Pan and W.Zhang (2015) Global strong solution away from
vacuum in 1-D for b € (0, 00).

» T, Wang and H.Zhao (2016) Global existence and uniqueness
non-vacuum solution in 1-d to its Cauchy problem with
viscosity coefficient depends on both the density and the

temperature.



Introduction

Recently, the local and global well-posedness of classical solutions
with vacuum to the isentropic compressible Navier-Stokes with
degenerate viscosities has been obtained by Y.Li, R.Pan, Z.Xin and
S.Zhu.

Qn: How about the well-posedness for classical solutions of
Full-Navier-Stokes equations in 3-D with the degenerated
viscosities and far field vacuum?

Main difficulties:
» Strong degeneracy near the vacuum.

» Strong nonlinearity in viscosities.



Introduction
We consider the following case
u(0) = ab®,  A(6) = B6°, k(6) =0, (2.6)

A s
where b > 0. By using of the relation of § = —=p? tea, we can

Y4
R
rewrite the equation with respected to the (p, u, S)

pr + div(pu) = 0,

s s AP b Sh
pus + pu-Vu+ Ap'Vew + Aewv Vp7 = RbP 77 Pdiv(ew " Q(v))

+ VDb b Q(u),
b

s s A _ s
Ap[(e%)e +u- Ve ] = Zp(y = 1) VPee PH(u),

(2.7)



Introduction
where
Q(u) = a(Vu + (VuT) + Bdivuls,
Lu = —divQ(u) = —alu — (a + B)Vdivuy,
H(u) = %|Vu + (Vu) T[> 4 B|divu|® = 2a|Dul? + S|divul?,
and0<d=(y—1)b< 1.
We look for smooth solutions (p, u, S) with finite energy to the

Cauchy problem for (2.7) with the following initial data and far

field behavior:
(p, u, S)|e=0 = (po(x) > 0, up(x), So(x)) for xcR3 (2.8)
(p,u,S)(t,x) = (0,0,5) as |x| —o00 for t>0, (2.9)

where S is a constant.



Introduction

Definition 1: Let T > 0 be a finite constant. A solution (p, u, S)
to the Cauchy problem (2.7) — (2.9) is called a regular solution in
[0, T] x R3 if (p, u, S) satisfies this problem in the sense of

distribution and:

p>0,p"1e (o T];D'nD3, Ve C(o, T]; L9n DY N D?),
ue C([0, T]; H¥) N L3([0, T; HY), p°~*Vu e L([0, T]; DY),

P Vu € C([0, T]; L2), p~1V2u € L([0, T]; HY) N L3([0, T]; D?),
us € C([0, T]; HY) N L2([0, T]; D?),

S—Se (o, T]; D n D3).

(2.10)
where g > 3.



Introduction

Remark 1: It follows from the Definition 1 that Vp®~1 e L,
which means that the vacuum occurs only in the far field.
Remark 2: Note that the conservation of momentum is not clear
for the strong solution with vacuum to the flows of constant
viscosities (see Y.Choe, H.Choe and H.Kim[2004]). In the sense,
the definition of the regular solutions here is consistent with the

physical background.



Main theorem

Main Theorem: Let parameters (7, d, o, 3) satisfy
v>1, 0<d<l, a>0, 2a+33>0, ~+d<2. (211)

If the initial data (po, uo, So)satisfy

po>0, pltel*nDnD? VpilelinDMBnD?
51 _
Vpo? €L% weH? S -S5eD'nD3
(2.12)

for some q € (3,00),



Main theorem

and the initial layer compatibility conditions:

Vuy = Po gl, div(e%bQ(uo)) = p5 g2,
V(o div(eQu) = po? &5 Ay VZeR = pot g,
(2.13)
for some (g1, 82, 83,8s) € L2, then there exists a time T* > 0 and
a unique regular solution (p, u, S) in [0, T*] x R® to the Cauchy
problem (2.7) — (2.9). Moreover, (p,u,S) is a classical solution to

(2.7) = (2.9) in (0, T*] x R3,



Main theorem

Remark 3: We remark that (2.12)-(2.13) identifies a class of
admissible initial data that provide unique solvability to our

problem (2.16)-(2.18), for example,

1
S N C3(R3
pO(X) (1—|—|X’)2‘9’ LIO(X)E 0( )7
1-3/g 3 ¢
- 242 §<2
=1 " 20=gy 2727 T0=4

So— 5 € C3(RD).

S
Particularly, when Vugy and Vei compactly supported, the

compatibility conditions (2.13) are satisfied automatically.



Main theorem

Remark 4: The compatibility conditions (2.13) are also necessary
for the existence of regular solution. It plays a key role in the
derivation of u; € L°°([0, T*]; L?), p%Vut € L*([0, T*]; L),

which will be used in the uniform estimates for |u|p2, |u|ps.



Reformation

Introducing some new variables

¢ — A’Y y—1 e% -/ h= ]‘ 5 1 ¢2L n—= p2757’y
’y—]_ ) M a )
__9 5-1 _ 1l - ., ad Vh
w—5_1w , p=h"=0¢"", f—¢¢—5_17
v —1 A AL _Ab_laz(y—l)
a; = o ag_a(R), a3—(R)7 ag = b
(2.14)
where
0l (A (2.15)



Reformation

the system (2.7) can be rewritten as

¢e+u-Vo+ (v —1)gdivu =0,

U+ u-Vu+ a¢pVI+ IVp — apd®div(IPQ(u)) = ashI’Q(u),
Iy 4+ u - VI = agp* nlPH(u),

Ve + V(u-1p) + (6 — 1)pdivu + dagp®* Vdivu = 0.

(2.16)
The initial data are given by

(¢7 u, /7 w)‘t:() = (¢07 o, /0>¢0)
(M
= (ﬁp

J

5 (x), uo(x), eSOV

Vi l(x), xeR:
(2.17)



Reformation

(¢,%, 1, u) also need to satisfy the far filed behavior:

(¢, u,l,7) — (0,0,1,0), as |x| = +oo, t>0. (2.18)

where T = e/,
To prove the Main Theorem, our first step is to establish the
following well-posedness to the reformulated problem

(2.16) — (2.18).



Reformation

Main difficulties:
» For equation of : Singularity of the source term;

» For equation of u: Singularity of ¢2L.(Note > — 00 as

p—0).



Reformation

Observation:
» For equation of 1: Symmetric hyperbolic system +
Singularity a¢® Vdivu = p°'Vdivu .
» Regularity estimate for elliptic equation:

div(p”H1PQ(u)) = f,

P’ lu—=0, as |x| — oco.



Reformation

Theorem: Let (2.11) hold. If the initial data (¢o, uo, lo, ¥0)

satisfies:

$o >0, (do,w0) €H®, hh—TeD'ND3 Itel™,

(2.19)
Yo € LINDYPND? Vi e 1O
and the initial layer compatibility conditions:
Vup = ¢p'gr,  div(lgQ(uo)) = d5 > &2,
0 ¢ 0 (2.20)

V(g div(IFQ(w))) = ¢p'g3:  $oVlo = by g,

for some (g1, 82, 83, &) € L2, then there exists a time T* > 0 and

5
%V(bh) to the Cauchy

a unique classical solution (¢, u, l,9 = 5

problem (2.16) — (2.18),



Reformation

satisfying

¢ e C([0, T*; H?), V¢/o e L°°([0, T*]; L N L5 N D3 N D?),
Y e C([0, T*]; LN D3 N D?),6% € ([0, T*]; L N L° N D*>3 n D*
ue C([0, T*]; H3) N L3([0, T*]; HY), ¢*Vu e L°°([0, T*]; DY),
I —Te C(o, T*]; D* N D3),
(2.21)



Linearized problem for uniformly positive initial density and

artificial viscosity

In order to proceed with the nonlinear problem (2.16)-(2.18), we

need to consider the corresponding linearized problem.

¢e +v-Vo+ (y—1)pdive =0,

4 v Vv + a1¢VI + IVp — ap\/h? + div(IPQ(u)) = azih 1 Q(v),
le + v - VI = a4l’g?n(2a| Dv|? + B|divv|?),

hy +v-Vh+ (6 —1)gdivv =0,

(¢, u, 1, h)|t=0 = (¢, o, lo, ho), x € R?,

(¢, u, 1, h) — (6>,0,1,h), as |x| = 400, t >0,

(3.22)



Linearized problem for uniformly positive initial density and
artificial viscosity

where € is a positive constants
aé

h™ = (%)%, ¢ = 51
,v2,v3) € R3 is a known vector and g is a known real
function satisfying (v(0, x), g(0, x)) = (uo(x), ho(x)) and:
gcl*nC(o, T] xR3?, VgeC([0,T];H?), g < ([0, T];H?),
Vg € L2([0, T); L?), v e C([0, T]; H®) n L2([0, T]; H*),
tzv € ([0, T]; D*), v € C([0, T]; HY) N L2([0, T]; D?),
vee € L2([0, T]; L2),  t2v, € L([0, T]; D?) N L2([0, T]; D),
t2ve € L°([0, TT; L2) N L2([0, T]; DY).

Vh, (3.23)

v=(!

(3.24)



Linearized problem for uniformly positive initial density and

artificial viscosity

Remark 5: Here, we need to linearize (¢, u, I, h) instead of
(¢, u,l,1)). Suppose we use the equation of ¢ in the linearized

system, we can have
P+ V(u- ) + (6 — 1)pdivu + dagVdivey = 0.

Then the relationship

ad
60—1

b= Vo™

will be destroyed.



Linearized problem for uniformly positive initial density and

artificial viscosity

Then the L?— estimate for u will encounter an obvious difficulty:
d :
a\u\% + apal| @ 1PV ul3 + ax(a + B)|¢* 1Pdivul3

_ —/(v-Vv+...+32/bv¢2‘-Q(u)) .
#

That is, there is no way to control the term V¢ - Q(u)!



Linearized problem for uniformly positive initial density and

artificial viscosity

Lemma
Let (2.11) hold and € > 0. Assume that (¢o, uo, b, ho = (¢0)%)
satisfies
¢0>’I’], ¢0_¢OO€H3a UOGH?Ja
- (3.25)
b—TeD'nD3 I|tel™
for some constant n > 0. Then for any T > 0, there exists a

unique classical solution (¢, u, I, h) to (3.22) such that



Linearized problem for uniformly positive initial density and

artificial viscosity

¢—¢>* e C([0,T; D nD3), hel®nC(o, T] x R3),
Vhe C([0, T]; H?), h: € C([0, T]; H?),
ue C([0, T]; H¥) N L2([0, T]; HY), 1 —Te C([o, T]; D* n D?),

I € C([0, T*]; DY), Iy € L2([0, T*]; DY).
(3.26)



A priori estimates independent of (¢, 7).

Now we fix T > 0 and a positive constant ¢y large enough such

that
2+ ¢ + 1+ |goll prp2 + lluolls + [1hg |l Lenprenp2anps

+ [V log hollreontenpr3np2 + IV holl tanprsnp2 + [V A/ hole

+ |g1l2 + lg2l2 + lgal2 + lgalz + 11l — Tl prrps + |l Moo < co-
(3.27)

We assume that there exist some time T* € (0, T| and constants

¢i(i=1,---,5) such that
l<g<a<o<la<lac<lc, (3.28)

and



A priori estimates independent of (¢, 7).

sup_ | Ve(t)lfonpranpe < €F
0<t<T*

T*
sup [v(£)3 + / (IVPs + |wl2)de < &,
0<t<T* 0

T*
sup (1vibe + vl +1g92vB) + [ (Vb + lufi)de < &,
0<t<T* 0

T*
sup (V2 + [vePou + lgeon) + / (Ve + Ve + Ive2)dt < 2.
0<t<T* 0

T*
s (1872wl + ad)(0) + | Uev2eB+ lgvvlde < &,
t 0

T*
sup_ (el -+ vibe + )+ [ evilb o+ lufe)de < B
0<t<T* 0
(3.29)



A priori estimates independent of (¢, 7).

T* and ¢i(i =1,---,5) will be determined later, and depend only
on ¢y and the fixed constants («, 3,7, 9, T).
Under the condition (3.27) — (3.30), we can obtain that

(W—¢ﬂ%+wmaw@ﬁxw+Aer%ksé,

() fanpranpe < cfs lhelae +10e(8)]2 < 7,

t
1
0o+ [ (Bt lhaB)ds <. h>
0

2C0
2 —2 2 2 2
577 ‘< ® (||90HL°<>0D1’60D2730D3 + Hf”LoomLﬁmDL’:‘mm)(t) <G,
(leelZenpranpe + Ifell3nap)(t) < 3,

1
oo > ?07 |1 — /HD10D3( ) < C12> “t‘%oomﬁ < Cg,



A priori estimates independent of (¢, 7).

el Binpe + /Ot Vie|5ds < 2,

VAV(0)3 + [u(e)3 + [ (176l + lucB)as < &

(lulBo + [AVul5 + [uel3)(t) + /Ot(|u|%3 + |V ulBy + |ue|f)ds < 3,
(IVhVuel3 4 |ue) 3 + |ul3s + |hVul2: + [AVZul2:)(t) < 2,
/Ot(|ut|202 + [ugels + |ulhe + [AV?ul B + [(AV?u)e[3)ds < ¢,

t
t(|ue|Be + Jueel5 + [ulBa)(t) +/ (sluee|5n + s|uelpa)ds < 2,
0
(3.30)
for0 <t < T..



passing to the limit ¢ — 0.

With the help of the (¢, n)-independent estimates established in
(3.30), we can established the local existence result for the
following linearized problem without artificial viscosity (i.e.,e — 0)

under the assumption ¢g > 7,

¢t +v-Vo+ (y—1)pdive =0,

U +v- Vv + a9V + IV — axhdiv(I°Q(u)) = azp/’Q(v),
li + v - VI = a41°g?n(2a| Dv|? + Bldivv|?),

ht+v-Vh+ (5§ —1)gdivv =0,

(6, 4,1, B)|e=0 = (b0, U0, lo, ho) = (¢o, to, o, (¢0)*),  x € R?,

(¢, u, 1, h) = (62,0,1,h° = (¢o0)?), as |x| = 400, t>0.
(3.31)
Also, (¢, u, I, h) satisfies the estimates in (3.30) independent.of 7.




Construction of the nonlinear approximation solutions away

from vacuum.

Based on the assumption that ¢g > 1, we can prove the
local-in-time well-posedness of the classical solution to the

following Cauchy problem

¢+ u-Vo+ (v — 1)gdivu = 0,

U + u-Vu+ a1¢VI+ IVp — apdp®div(I°Q(u)) = asih1°Q(u),
le + u- VI = ag*nl’H(u),

Ve + V(u- 1) + (6 — 1)pdivu + 6a¢? Vdivu = 0.

1)
(¢7 u, /7w)|t:0 = (¢07 o, lOawO) = (¢07 Uo, IO, 53_71

(¢, u,1,9) — (6>,0,1,0), as |x| — oo, t>0,

V(¢0)*), xeR®

(3.32)



Construction of the nonlinear approximation solutions away

from vacuum.

Theorem: Let (2.11) hold and ¢> be a positive constant. Assume

) .
that the initial data (¢o, uo, lo, ho, Yo = 53_ 1V(qbo)ZL) satisfies

(3.25), and there exists a positive constant ¢y independent of n

such that (3.27) holds. Then there exist a time T* > 0 and a

535 -Vh) in
[0, T*] x R3 to the Cauchy problem (3.32) satisfying (3.26) and

unique classical solution (¢, u,/,h = P> =

¢~ € L>°([0, T*]; L>° N DY° N D*>* N D?),
Vo /b € L2([0, T*]; L N L° n D3 n D?),



Construction of the nonlinear approximation solutions away

from vacuum.

where T* is independent of 7. Moreover, if the initial data satisfies
(3.25), then the estimates (3.30) hold for (¢, u, I, h) with T,
replaced by T, and are independent of 7.

Main idea: The proof of this theorem is given by an iteration

scheme based on the estimates for the linearized problem (3.31).



Taking limit from the non-vacuum flows to the flow with

far field vacuum.

Based on the local (in time) estimates in (3.30), now we can prove
our Main Theorem. In order to obtain this result, we need the
following property for the local uniform positivity of ¢.

Lemma: For any Ry > 0 and 7 € (0, 1], there exists a constant

aR, such that
¢"(t,x) > aR,, V (t,x)€[0,T*]x Bg,, (3.33)

where ag, is independent of 7.



Non-existence of global solution with L> decay on wu.

Qn: Whether the local solutions obtained in Main Theorem can be
extended to the globally in time and what the large time behavior
is.

In contract to the classical theory phenomenon for constant
viscosity case that such an extension is impossible if the velocity

field decay to zero as t — +oc.



Non-existence of global solution with L> decay on wu.

Definition 2: Let T > 0 be any constant. For the Cauchy
problem (2.7) — (2.9), a classical solution (p, u, S) is said to be in
D(T) if (p, u,S) satisfies the following conditions:
» (B) Conservation of total mass:0 < m(0) = m(t) < oo for any
tel0,T);
» (C) Conservation of momentum: 0 < |P(0)| = |P(t)| < oo for
any t € [0, TJ;
» (D)Conservation of momentum: 0 < E(0) = E(t) < oo for
any t € [0, T].

Then we have



Non-existence of global solution with L> decay on wu.

Theorem

Let parameters (7,6, «, 3) satisfy
v>1, 6>0, a>0 2a+35>0.

Then for Cauchy problem (2.7) — (2.9), there is no classical
solution (p, u, S) € D(o0) with

tll)r’go sup |u(t, x)|eo = 0.



Non-existence of global solution with L> decay on wu.

Corollary
Let (2.11) hold and
7
1<y < 6’ (4.34)

assume that m(0) > 0 and |P(0)| > 0. Then for the Cauchy
problem (2.7) — (2.9), there is no global regular solution (p, u, S)
defined in Definition 1 satisfying the following decay

tll[go sup |u(t, x)|s = 0.



Non-existence of global solution with L> decay on wu.

Remark 6: Also, we show that if  satisfied (4.34), the solution
we obtained satisfied the conservation of mass, momentum and

energy.



Thank You!



	Full-Navier-Stokes equations
	Introduction
	Linearization
	Non-existence of global solution with L decay on u.

