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In this talk, we will consider the following cubic Klein-Gordon equation
with potentials (NLKG) in R3+1 for both focusing and defocusing case:

∂2
t u−∆u + V(x)u + m2u = λu3, λ ∈ R, λ 6= 0. (1)

u(0, x) = u0(x), ∂tu(0, x) = u1(x). (2)

We assume that B2 := −∆ + V(x) + m2 has a positive eigenvalue
Ω2 and an eigenfunction ψ(x)

−∆ψ(x) + V(x)ψ(x) + m2ψ(x) = Ω2ψ(x).

Hence eiΩtψ(x) solves linear Klein-Gordon equation (bound state).

Motivation
Adding nonlinear perturbations, we will study the instability
mechanism (Fermi’s Golden Rule) for this bound state.
We will show that the outcomes are anomalously slow-decaying
waves (called metastable states).
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Soffer-Weinstein’s result
In 1999, Soffer and Weinstein first studied this problem and they
proved the following result
Theorem I: Let V(x) be real-valued and satisfy technical conditions:

(V1) for δ > 5 and |α| ≤ 2, |∂αV(x)| ≤ Cα(1 + |x|2)−
δ
2 ,

(V2) (−∆ + 1)−1
(
(x · ∇)lV(x)

)
(−∆ + 1)−1 is bounded on L2

for |l| ≤ N∗ with N∗ ≥ 10.
(V3) zero is not a resonance of the operator −∆ + V.

Assume the operator

B2 = −∆ + V(x) + m2 (3)

has continuous spectrum, σcont(B2) = [m2,+∞), and a unique strictly
positive simple eigenvalue, Ω2 < m2 with associated normalized
eigenfunction, ψ:

B2ψ = Ω2ψ. (4)
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Soffer-Weinstein’s result

Further assume: 0 < Ω2 < m2 < 9Ω2.
(This is related to a nonlinear damping mechanism (called Fermi
Golden Rule)

Γ =
π

3Ω

(
Pcψ

3, δ(B− 3Ω)Pcψ
3) ≡ π

3Ω
|(Fcψ

3)(3Ω)|2 > 0. (5)

Here, Pc denotes the projection onto the continuous spectral part of B
and Fc denotes the Fourier transform relative to the continuous
spectral part of B.)

Remark: Γ is the transition rate of energy from a bound state to free
waves.
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Soffer-Weinstein’s result

Assume that the initial data u0, u1 are prescribed such that the norm
‖u0‖W2,2∩W2,1 and ‖u1‖W2,2∩W2,1 are sufficiently small. Then, the solution
of the initial value problem for (1), with λ 6= 0 decays as t→ +∞. Then
solution u(t, x) has the following expansion as t→ +∞:

u(t, x) = 2ρ(t) cos θ(t)ψ(x) + η(t, x), (6)

where

0 ≤ ρ(t) ≤ 2
1
4 ρ(0)(

1 + 3λ2Γ
Ω ρ(0)4t

) 1
4

, (7)

θ(t)− Ωt = O(t
1
2 ), and ‖η(t, x)‖L8

x(R3) ≤
1

(1 + t)
3
4

. (8)
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An-Soffer’s result

Main theorems of An-Soffer are
Theorem II
Under the same assumption of Theorem I, we have

(1/2)
1
4 ρ(0)(

1 + 3λ2Γ
Ω ρ(0)4t

) 1
4

≤ ρ(t) ≤ (3/2)
1
4 ρ(0)(

1 + 3λ2Γ
Ω ρ(0)4t

) 1
4

. (9)
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An-Soffer’s result

Theorem III
Under the same assumption of Theorem I, there exist S1(x) ∈ L2

x(R3)
and S2(x) ∈ L2

x(R3) such that as t→ +∞

‖η(t, x)− sin Bt
B

S1(x)− cos BtS2(x)‖H1
x (R3) → 0. (10)

Remark: Since
‖2ρ(t) cos θ(t)ψ(x)‖H1

x (R3) → 0, (11)

as t→ +∞. Therefore, we also prove
Theorem IV (H1 Scattering) Under the same assumption of Theorem I,
for solution u(t, x) in (6), there exist S1(x) ∈ L2

x(R3) and S2(x) ∈ L2
x(R3)

such that as t→ +∞

‖u(t, x)− sin Bt
B

S1(x)− cos BtS2(x)‖H1
x (R3) → 0. (12)
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Main difficulties

To prove Theorems II-IV, we would expect some difficulties. It is natural
to ask

Question 1: How to show the lower bound for ρ(t) as in (9)?

Question 2: We have ‖η(t, x)‖L8
x
≤ 1/(1 + t)

3
4 from

Soffer-Weinstein. But how to explore the detailed structures for
η(t, x) in L2

x as in (10)?
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Question 1

To derive a lower bound for ρ(t), we use polar coordinates and
introduce a new ODE approach. Under the ansatz (6)

u(t, x) = 2ρ(t) cos θ(t)ψ(x) + η(t, x),

and using a suitable gauge for NLKG, ρ(t) would satisfy an ODE:

ρ′(t) +
3λ2

4Ω
Γρ5 +

∑
k≥1

ck‖ψ‖4
L4

x
ρ(t)5 sin kθ(t) +

∑
k≥1

dk‖ψ‖4
L4

x
ρ(t)5 cos kθ(t)

+
λ

Ω
‖ψ‖4

L4
x
ρ3 sin 2θ(t) +

λ

2Ω
‖ψ‖4

L4
x
ρ3 sin 4θ(t) + l.o.t = 0.

Here k are some positive integers; ck and dk are real numbers. And
Γ > 0 is due to Fermi golden rule (5).

Xinliang An (NUS) Fermi’s Golden Rule October 3, 2019 9 / 22



Question 1
This equation implies

1
ρ(t)4 =

(1 + 3λ2Γ
Ω ρ(0)4t)
ρ(0)4 −

∫ t

0
4ck‖ψ‖4

L4
x
sin kθ(t′)dt′

−
∫ t

0
4dk‖ψ‖4

L4
x
cos kθ(t′)dt′ −

∫ t

0

4λ
Ω
‖ψ‖4

L4
x

sin 2θ(t′)
ρ(t′)2 dt′

−
∫ t

0

2λ
Ω
‖ψ‖4

L4
x

sin 4θ(t′)
ρ(t′)2 dt′ + l.o.t.

(13)

In Theorem II, we hope to prove 1/ρ(t)4 ≈ 1 + t for t large. This would
give both lower and upper bounds for ρ(t). Hence we only need to
show that, on the right hand side of (13), the first term
(1 + 3λ2Γ

Ω ρ(0)4t)/ρ(0)4 dominates.
Luckily, for θ(t) we have θ(t) = Ωt + l.o.t. When t is large, the second
and third terms

∫ t
0 4ck‖ψ‖4

L4
x
sin kθ(t′)dt′ and

∫ t
0 4dk‖ψ‖4

L4
x
cos kθ(t′)dt′ are

like constants. They are much smaller than the first term.
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Question 1
For

∫ t
0

4λ
Ω ‖ψ‖

4
L4

x
sin 2θ(t′)/ρ(t′)2dt′ and

∫ t
0

2λ
Ω ‖ψ‖

4
L4

x
sin 4θ(t′)/ρ(t′)2dt′,

in principle we could use integration by part and hope to deal with
terms as the second or the third term.

However, we encounter an additional difficulty: since we are proving
upper and lower bounds at the same time, we cannot rule out the
possibility that ρ(t) decays faster than 1/(1 + t)

1
4 . And this would make

1/ρ(t′)2 out of control.

To overcome this difficulty, we construct a parametrix ρ̄(t) ≥ 0 through

ρ̄(t)4 =
ρ(0)4

1 + 3λ2Γ
Ω ρ(0)4t

. (14)
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Question 1
One can check ρ̄(t) satisfies:

ρ̄′(t) = −3λ2

4Ω
Γρ̄(t)5,

ρ̄(0) = ρ(0).

(15)

Here ρ̄(t) is an approximate solution for

ρ′(t) +
3λ2

4Ω
Γρ5 +

∑
k≥1

ck‖ψ‖4
L4

x
ρ(t)5 sin kθ(t) +

∑
k≥1

dk‖ψ‖4
L4

x
ρ(t)5 cos kθ(t)

+
λ

Ω
‖ψ‖4

L4
x
ρ3 sin 2θ(t) +

λ

2Ω
‖ψ‖4

L4
x
ρ3 sin 4θ(t) + l.o.t = 0.

Then we introduce the unknown ε(t) through

ρ = ρ̄(t)(1 + ε(t)). (16)

For initial data, we have ε(0) = 0. Therefore, the seeking of lower
bound for ρ(t) is reduced to close a bootstrap argument for ε(t) and to
show that ε(t) is small for all the time. And this is proved in An-Soffer.
Remark: For this method, we do not use normal form transformation.
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Question 2
After deriving the asymptotic behavior for ρ(t), we move to study the L2

x
norm of η(t, x). For η, we have

η(t, x) = η1(t, x) + η2(t, x) + η3(t, x),

where

(∂2
t + B2)η1 = 0, η1(0, x) = Pcu0, ∂tη1(0, x) = Pcu1,

(∂2
t + B2)η2 = λa3Pcψ

3, η2(0, x) = 0, ∂tη2(0, x) = 0, (17)

(∂2
t + B2)η3 = λPc(3a2ψ2η+ 3aψη2 + η3), η3(0, x) = 0, ∂tη3(0, x) = 0.

Here a = a(t) := 2ρ(t) cos θ(t). Let’s first focus on η2(t, x). From (17), we
have

η2(t, x) = λ

∫ t

0

sin B(t − s)
B

a3(s)Pcψ
3(x)ds. (18)
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Question 2

If we only use |a(t)|3 ≤ ρ(t)3 ≈ 1/(1 + t)
3
4 and the standard dispersive

estimates for wave operator (see Theorem 2.1 in Soffer-Weinstein), we
cannot even prove that η2(t, x) ∈ L2

x for all t ≥ 0.
We overcome this difficulty by constructing an auxiliary function w(t, x)
through solving

(i∂t + B)w =λa3Pcψ
3,

w(0, x) = 0.

Hence

w(t, x) = −i
∫ t

0
eiB(t−s)λa3(s)Pcψ

3(x)ds.
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Question 2

Thus,

Im w(t, x) = −
∫ t

0
sin B(t − s)λa3(s)Pcψ

3(x)ds,

and

Re w(t, x) =

∫ t

0
cos B(t − s)λa3(s)Pcψ

3(x)ds.

Define

l(t) := ‖w(t, x)‖2
L2

x
= ‖Re w(t, x)‖2

L2
x

+ ‖Im w(t, x)‖2
L2

x
.
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Question 2

Since B is a self-adjoint operator, a key cancellation happens and a
simple calculation implies

d
dt

l(t) = −2
∫
R3

Im w(t, x)λa3(t)Pcψ
3(x)dx.
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Question 2

Using the definitions of Re u(t, x), Im u(t, x), together with the standard
dispersive estimates for B and the fact |a(t)| ≤ 1/(1 + t)

1
4 , we derive

‖Re w(t, x), Im w(t, x)‖L8
x
≤ 1

(1 + t)
3
4

.

With the estimate above, we arrive at

l(t) ≤l(0) +

∫ t

0
| d
dt

l(t)|dt

≤
∫ t

0
‖Im w(t, x)‖L8

x
|a3(t)|‖Pcψ

3(x)‖
L

8
7
x

dt

≤
∫ t

0

1

(1 + t)
3
4

· 1

(1 + t)
3
4

< +∞.
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Question 2

Therefore, we have proved

Im w(t, x) =

∫ t

0
sin B(t − s)λa3(s)Pcψ

3(x)ds ∈ L2
x ,

Re w(t, x) =

∫ t

0
cos B(t − s)λa3(s)Pcψ

3(x)ds ∈ L2
x ,

for any t > 0. Since 1/B is a bounded operator for L2
x , we deduce

η2(t, x) = λ

∫ t

0

sin B(t − s)
B

a3(s)Pcψ
3(x)ds ∈ L2

x .

In order to prove Theorem III and Theorem IV, it requires more detailed
analysis for η2(t, x) and η3(t, x) in L2

x norms. Details are shown in
An-Soffer.
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Some Historical Remarks

In quantum mechanics, people observed some long-lived states,
which last at least 100 to 1000 times longer than the expection.
These long-lived states are called metastable states in physics
literature. Mathematically, one would expect that these states
carry anomalously slow-decaying rates.
One way to produce a metastable state is through the instability of
an excited state.
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Some Historical Remarks
To study the instability mechanism, with perturbation theory in
1927 Dirac did calculations in the following setting: Give two
Hamiltonians H0 and H1 close to each each, assume they have
eigenfunction (initial eigenstate) i(x) and eigenfunction (final
eigenstate) f (x) respectively, Dirac calculated the transition
probability per unit time from the state i(x) to the state f (x):

Γi→f =
4π2

h
|
∫
R3

i(x)H1(x)f (x)dx|2 · ρf . (19)

Here h is the Planck constant (≈ 6.626× 10−34 kg · m2 · s−1) and
ρf is the density of final states.
In 1934 Fermi used (19) to establish his famous theory of beta
decay. In nuclear physics, beta decay is a type of radioactive
decay in which a β−ray (fast energetic electron or positron) and a
neutrino are emitted from an atomic nucleus. In his paper, Fermi
called (19) golden rule. Later, in physics community, (19) is called
Fermi’s golden rule.
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Title: How to Make a Black Hole

Abstract: Black holes are predicted by Einstein’s theory of general
relativity, and now we have ample observational evidence for their
existence. However theoretically there are many unanswered
questions about how black holes come into being. In this talk, with
tools from hyperbolic PDE, quasilinear elliptic equations, geometric
analysis and dynamical systems, we will prove that, through a
nonlinear focusing effect, initially low-amplitude and diffused
gravitational waves can give birth to a black hole region in our universe.
This result extends the 1965 Penrose’s singularity theorem and it also
proves a conjecture of Ashtekar on black hole thermodynamics.

THANK YOU!
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