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Part I. Introduction.

$1. Formal derivation of low Mach number limit.

Non-dimensional Full compressible Navier-Stokes equations

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (µ+ λ)∇divu+ 1
ϵ2
∇p = 0,

cv((ρΘ)t + div(ρΘu)) + Pdivu− κ∆Θ = ϵ2(2µ|D(u)|2 + λ(divu)2).

ρ : density, u = (u1, ..., un) : velocity, Θ : temperature,

p = RρΘ : pressure (for perfect gases),

cv, R > 0: constant, κ > 0 : heat conductivity constant,

µ > 0, λ ≥ −2
nµ : viscosity constants,

ϵ : Mach number<<1 (the fluid is “nearly incompressible”)
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Low Mach number expansion and limit:

compressible flows ≈ background incompressible flows

+ high order corrections(acoustic waves)

ρϵ = ρ̄+ ϵρ1 +O(ϵ2);

Θϵ = Θ̄ + ϵΘ1 +O(ϵ2);

uϵ = ū+O(ϵ).

Let ϵ → 0 ⇒ ρ̄Θ̄=constant, and (ρ̄, ū, π) satisfies the following non-isentropic
low Mach number Navier-Stokes equations:

ρ̄t + div(ρ̄ū) = 0,

(ρ̄ū)t + div(ρū⊗ ū)− µ∆ū− λ∇divū+∇π = 0,

γdivū = div
[
κ
R∇

(
1
ρ̄

)]
, γ = 1 + R

cv
.
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In particular, for isentropic fluids or ρ̄ = const or κ = 0

The third equation ⇔ divū = 0 (Incompressibility)

Then the low Mach number limit reduces to the incompressible limit, where the
limiting system is the homogeneous isentropic Navier-Stokes system (for the
isentropic case, or the non-isentropic case with small temperature variation)

ūt + ū · ∇ū− µ∆ū+∇π = 0,

divū = 0.

or inhomogeneous isentropic Navier-Stokes system (for the case of κ = 0 and
large temperature variation)

ρ̄t + ū · ∇ρ̄ = 0,

(ρ̄ū)t + div(ρū⊗ ū)− µ∆ū+∇π = 0,

divū = 0,
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$2. Rigorous verification:

(1) Derive uniform estimates with respect to the Mach number ϵ ∈ (0, ϵ̄] in
a time interval [0, T ] independent of ϵ

(2) Verify rigorously the limit as ϵ → 0.
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$3. Known results on low Mach number limit/ incompressible limit

1. Incompressible limit of isentropic Navier-Stokes equations.

(a) The incompressible limit of local-in-time smooth solution with well-
prepared initial data.

⋄ S.Klainerman & A.Majda (1981): Rn or Tn, divu0 = 0 or divu0 = O(ϵ)
in high-norm (well-prepared initial data)
Uniform estimates: using the anti-symmetric structure of singular
differential operator
Convergence: compactness theory

(b) The incompressible limit of global weak solution for t ∈ [0, T ], with
ill-prepared initial data (divu0 = O(1)).
Uniform estimates: energy estimates of global weak solutions with finite
energy which is developed by P.-L. Lions
Convergence: using the “rescaled group method” which is developed by
S. Schochet 1994 and E. Grenier 1997 independently

⋄ P.-L. Lions & N. Masmoudi (1998): weak convergence,
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various boundary conditions, ill-prepared initial data.

⋄ B. Desjardins & E. Grenier (1999): strong convergence in Rn (Strichartz
estimates)

⋄ Desjardins, Grenier, Lions, Masmoudi (1999); N. Jiang & N.Masmoudi
(2015): strong convergence in bounded domains (spectrum method)
⋄ Feireisl, et al (2011, 2013,...): strong convergence in exterior domains
⋄ Feireisl, Novotny, Petzeltova, et al (2010,... ): strongly stratified fluids,
various boundary conditions

(c) The incompressible limit of long-time solution for t ∈ [0,+∞): difficult
to get the uniform estimate for both ϵ ∈ (0, ϵ̄] and t ∈ [0,+∞).

⋄ D. Hoff (1998):

weak solutions in R3 with compatible data, but require the global
smoothness of the background incompressible solutions.

⋄ H. Bessaih (1995), O.(2009), O. and D. Ren (2014)

strong solutions in bounded domains with & well-prepared initial data:
difficult to get uniform high-norm estimates
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(d) Unsolved problems: IBVP & ill-prepared initial data, free boundary
problems, multi-scale limits, ......

2. Non-isentropic Navier-Stokes equations

The pressure variation ≈ p̄ + O(ϵ)p1(ρ, T ) (for isentropic case, pressure
variation ≈ density variation), which leads to the different structure on
the singular differential operator and the difficulty in deriving the uniform
estimates, in particular, for the case with solid boundary.

(a) Heat-conductivity coefficient κ = 0. (diffusive effect<< convective effect)
• Bresch, Desjardins, Grenier & Lin (2002): show the formal expansion in
periodic domains when the entropy is purely transported.

• Kim & Lee (2005): incompressible limit of strong solutions in R3, with
well-prepared data and large temperature variation.

• O. (2009, 2011); S. Jiang & O. (2011): incompressible limit in boundary
domains, with well-prepared data and large temperature variation:
uniform high-norm estimates
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(b) Heat-conductivity coefficient κ > 0: .

• T. Alazard (2006): Low Mach number limit of local-in-time classical
solution in Rn, with ill-prepared data, for perfect gas (P = RρT ).
Uniform estimates: the methods of pseudo-differential operators
Convergence: due to Metivier and Schochet

• Feireisl, Novotny, Petzeltova, et al (2007, 2008,2010, 2013, ......): Low
Mach number limit of global variational weak solution for Navier-
Stokes-Fourier system with various boundary conditions and ill-prepared
data and require that the temperature variation is small (but excludes
the case of perfect gas, and the limiting velocity is divergence-free, that
is, divū=0)
Convergence: rescaled linear group

• C. Dou, S. Jiang & O.(2015): Low Mach number limit of local strong
solutions with well-prepared data for perfect gas, and require that the
temperature variation is small: T ≈ 1 + O(ϵ) ⇒ the limiting velocity:
divū=0. In this case, it is difficult to get the uniform estimates due to
the solid boundary.
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Question:

Low Mach number limit of local strong solution of full Navier-Stokes
equations for perfect gases (κ > 0) in bounded domains in case of large

temperature variation? (γdivū = div
[
κ
R∇

(
1
ρ̄

)]
)

Difficulties of this problem

• The system is nonlinear and strongly coupled.

• The singular differential operator of O(1ϵ) is no longer anti-symmetric (after
the transform).

• Unlike the cases of the whole space or the torus, integrating by parts cannot
be applied for the estimates of high-order spatial derivatives.
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Part II. Incompressible limit of local strong solutions for full
Navier-Stokes equations in 3-D bounded domains
(Joint work with Qiangchang Ju (IAPCM, Beijing)).

In what follows, we drop the superscript ϵ for simplicity. We introduce the
change of variables:

p = 1 + ϵq, Θ = 1 + θ (large temperature variation),

where the pressure p satisfies

pt + u · ∇p+ 2pdivu = κ∆Θ+ ϵ2[2µ|D(u)|2 + λ(divu)2], (1)

by using the density equation and the temperature equation, and the pressure
law p = RρΘ.

Then the full Navier-Stokes equations are converted into into an
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“overdetermined” system

ρt + div(ρu) = 0,

ρ(ut + u · ∇u) +
1

ϵ
∇q = µ∆u+ (µ+ λ)∇divu,

ρ(θt + u · ∇θ) + (1 + ϵq)divu = κ∆θ + ϵ2[2µ|D(u)|2 + λ(divu)2],

qt + u · ∇q + 2qdivu+
2

ϵ
divu− κ

ϵ
∆θ = ϵ[2µ|D(u)|2 + λ(divu)2],

(2)

where any of these equations coincides with the others. Suppose that (ρ,u, q, θ)
satisfies the following initial and boundary conditions:

(ρ,u, q, θ)|t=0 = (ρ0,u0, q0, θ0) := (ρ0,u0,
1

ϵ
(ρ0Θ0 − 1),Θ0 − 1). (3)

u · n|∂Ω = 0, n× curlu|∂Ω = 0,
∂θ

∂n

∣∣∣
∂Ω

= 0. (4)

where Ω ⊂ R3 is a simply connected, bounded domain with C4-boundary ∂Ω.
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We introduce the change of variable:

v = u− k

2
∇θ. (5)

Then (ρ,v, q, θ) satisfies the following initial-boundary value problem



ρt + div(ρu) = 0, in Ω× (0, T ],

ρ(vt + u · ∇v) +
1

ϵ
∇q − µ∆v − ξ∇divv−β∇∆θ = f, in Ω× (0, T ],

1

2
(qt + u · ∇q) +

1

ϵ
divv = g, in Ω× (0, T ],

ρ(θt + u · ∇θ)− 3κ

2
∆θ + divv = h, in Ω× (0, T ],

v · n = 0, n× curlv = 0,
∂θ

∂n
= 0, on ∂Ω× (0, T ],

(ρ,v, q, θ)|t=0 = (ρ0,v0, q0, θ0)(x), x ∈ Ω,
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(6)

where the constants ξ := µ + λ + κ
2 , β := κ

2(2µ + λ − 3
2κ), and the functions

v0 := u0 − κ
2∇θ0,

f :=
κ

2
[∇ρ(θt + u · ∇θ) + ρ∇u∇θ −∇h],

g := −qdivu+
ϵ

2
[2µ|D(u)|2 + λ(divu)2],

h := −ϵqdivu+ ϵ2[2µ|D(u)|2 + λ(divu)2].

(7)

Although the singular differential operators of (6)2,3 of the order 1
ϵ are in anti-

symmetric form in the current formulation, however, the third order differential
operator is introduced in (6)2, which creates essential difficulty in the uniform
estimates.
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The aims of our problem:

(1) Derive uniform estimates with respect to the Mach number ϵ ∈ (0, ϵ̄]
and the time t ∈ [0, T ]) for some ϵ̄ and T .

(2) Verify rigorously the singular limit as Mach number ϵ → 0.
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Theorem 1. (Local existence) Let ϵ ∈ (0, 1] be fixed and Ω ⊂ R3 be a simply
connected, bounded domain with smooth boundary ∂Ω. Suppose that the
initial datum (ρϵ0,v

ϵ
0, q

ϵ
0) ∈ H3(Ω), θϵ0 ∈ H4(Ω) satisfies ρϵ0 ≥ m > 0 and

1 + θϵ0 ≥ m for some constant m, and

(∂k
t ρ

ϵ(0), ∂k
t v

ϵ(0), ∂k
t q

ϵ(0)) ∈ H2−k(Ω), ∂k
t θ

ϵ(0) ∈ H3−k(Ω), k = 0, 1.

Assume the following compatibility conditions are satisfied:

vϵ
0 · n = vϵ

t(0) · n = 0, n× curlvϵ
0 = n× curlvϵ

t(0) = 0 on ∂Ω, (8)

∂θϵ0
∂n

=
∂θϵt(0)

∂n
= 0 on ∂Ω. (9)

Then there exists a positive constant T ϵ = T ϵ(ρϵ0,v
ϵ
0, q

ϵ
0, θ

ϵ
0,m, ϵ), such that

the initial-boundary problem (6) admits a unique solution (ρϵ,vϵ, qϵ, θϵ),
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satisfying ρϵ > 0 and 1 + θϵ > 0 in Ω× (0, T ϵ) and

(∂k
t ρ

ϵ, ∂k
t v

ϵ, ∂k
t q

ϵ) ∈ C([0, T ϵ],H2−k), ∂k
t v

ϵ ∈ L2(0, T ϵ;H3−k),

∂k
t θ

ϵ ∈ C([0, T ϵ],H3−k) ∩ L2(0, T ϵ;H4−k), k = 0, 1.

Definition 1.We define the uniform energy

M ϵ(t) :=∥(ρϵ,vϵ, qϵ)∥2L∞(0,t;H2(Ω)) + ∥θϵ∥2L∞(0,t;H3(Ω)) + ∥(ρϵ)−1∥2L∞
x,t

+ ∥(ρϵt,vϵ
t, q

ϵ
t)∥2L∞(0,t;L2(Ω)) + ∥θϵt∥2L∞(0,t;H1(Ω))

+ ∥(vϵ,∇θϵ)∥2L2(0,t;H3(Ω)) + ∥(vϵ
t,∇θϵt)∥2L2(0,t;H1(Ω))

+ ∥ϵ(ρϵt,vϵ
t, q

ϵ
t ,∇θϵt)∥2L∞(0,t;H1(Ω)) + ∥ϵ(vϵ

t,∇θϵt)∥2L2(0,t;H2(Ω)).
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Remark 1. We can derive from (5) and (2)2, and the definition of M ϵ(t)
that, for any t ≥ 0,

∥uϵ∥2L∞(0,t;H2(Ω)) + ∥uϵ
t∥2L∞(0,t;L2(Ω)) + ∥uϵ∥2L2(0,t;H3(Ω))

+ ∥uϵ
t∥2L2(0,t;H1(Ω)) ≤ CM ϵ(t),

∥ϵuϵ∥2L∞(0,t;H3(Ω)) + ∥ϵuϵ
t∥2L∞(0,t;H1(Ω))

+ ∥ϵuϵ
t∥2L2(0,t;H2(Ω)) ≤ C[(M ϵ(t))2 + (M ϵ(t))3].

We first show the following energy estimates which will give the uniform
estimates.
Proposition 1. For any t ∈ (0, 1] and ϵ ∈ (0, 1], we have

M ϵ(t) ≤ C0(M
ϵ
0) exp{C1(t

1
4 + ϵ)(M ϵ(t))4}, (10)

where C0(·) is a positive and continuous function and C1 is a positive
constant, and both of them are independent of M ϵ(t) and M ϵ

0 := M ϵ(0).
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Theorem 2. (Uniform estimates) Suppose that Ω ⊂ R3 is a bounded domain
with ∂Ω ∈ C4 and β > 0. Assume that M ϵ

0 ≤ α, and 1 + θϵ0 ≥ A, where
α and A are positive constants independent of ϵ. Then ∃ positive constants
ϵ0 := ϵ0(Ω, α,A), T := T (Ω, α,A) and C := C(ϵ0, T ) independent of ϵ, such
that (6) ∃! (ρϵ,vϵ, qϵ, θϵ) in Ω× (0, T ], with

M ϵ(t) ≤ C, ϵ ∈ (0, ϵ0], t ∈ (0, T ], (11)

1 + θϵ(x, t) ≥ C−1, (x, t) ∈ Ω× [0, T ]. (12)

Remark 2. To ensure that M ϵ
0 ≤ α, it suffices to suppose that

∥(ρϵ0,vϵ
0, q

ϵ
0)∥H2(Ω) + ∥θϵ0∥H3(Ω) ≤ C, ϵ(∥(ρϵ0,vϵ

0, q
ϵ
0)∥H3(Ω) + ∥θϵ0∥H4(Ω)) ≤ C,

ρϵ0 ≥ C−1 and
∥divvϵ

0∥L2 + ∥∇qϵ0∥L2 ≤ Cϵ,

for some constant C > 0 independent of ϵ. The last inequality is the minimal
requirement on the incompressibility of the initial data.
Remark 3. β > 0: thermal diffusion < viscosity effect.
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Using the compactness theory, we canverify the following results.
Theorem 3. (Low Mach number limit) Let (ρϵ,vϵ, qϵ, θϵ) be the solution of
(6), satisfying the uniform-in-ϵ estimates established in Theorem 1, and uϵ =
vϵ − κ

2∇θϵ. Then (ρϵ,uϵ, θϵ) ⇀ (θ−1, ω, θ) weakly-∗ in [L∞(0, T ;H2(Ω))]2 ×
L∞(0, T ;H3(Ω)) as ϵ → 0, moreover, there exists a function π(x, t), such
that (ω, θ, π) satisfies the following initial-boundary value problem of low
Mach number model:

divω =
κ

2
△θ, in Ω× (0, T ],

θ−1(ωt + ω · ∇ω) +∇π = µ∆ω + (µ+ λ)∇divω, in Ω× (0, T ],

θ−1(θt + ω · ∇θ) =
3κ

2
∆θ, in Ω× (0, T ],

ω · n = 0, n× curlω = 0,
∂θ

∂n
= 0, on ∂Ω× [0, T ],

(ω, θ)|t=0 = (ω0, θ0)(x), x ∈ Ω,

where (ω0, θ0) is the weak limit of (uϵ
0, θ

ϵ
0) in H2(Ω)×H3(Ω).
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Difficulties (compared with previous results):

• The singular differential operator of O(1ϵ) is no longer anti-symmetric after
the transform p = 1 + ϵq, Θ = 1 + θ, and the third order term −β∇∆θ
appears in the momentum equation after the change of variable v = u−k

2∇θ.
Thus the classical strategy cannot apply.

• The unsigned integrals of highest order spatial and time derivatives need to
be absorbed carefully in the energy estimates.

Crucial points:

• Determine the uniform energy M ϵ(t)

• Carry out the estimates of high-order (weighted) estimates

• Cancel the unsigned integrals
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Strategy of uniform estimates:

1. Energy estimates of the density ρϵ and weighted estimates of ρϵt

2. Low estimates and weighted high order estimates of qϵt and vϵt

3. Energy estimates of curlvϵ = curluϵ and weighted estimates of curluϵ
t

4. High order estimates and weighted high order estimates of θϵt
(the order of θϵt= the order of vϵt +1)

5. High order spatial estimates of qϵ, vϵ and θϵ.
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Part III. Sketch of the proof

1. Energy estimates of the density ρϵ and weighted estimates of ρϵt.

Lemma 1. For any t ∈ [0, T ], we have

∥ρ−1∥2L∞
x,t

+ ∥ρ∥2L∞
t (H2)+ ∥ρt∥2L∞

t (L2)+ ∥ϵρt∥2L∞
t (H1) . M0 exp

{
Ct

1
2M(t)

}
.

(13)

It is done by the method of characteristics and the energy method (no
singular term occurs in the density equation).
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2. Low estimates and weighted high order estimates of qϵt and vϵt.

Lemma 2. For any t ∈ [0, T ], we have

∥(√ρqt,vt)∥2L∞
t (L2) + ∥vt∥2L2

t (H
1)

. C0(M0) + t
1
4M2(t)−β

∫ t

0

∫
Ω

∆θtdivvtdxdt.
(14)

Lemma 3. For any t ∈ [0, T ] and ϵ ∈ (0, 1], we have

∥ϵ(
√

ρ−1∇qt,divvt)∥2L∞
t (L2) + ∥ϵdivvt∥2L2

t (H
1)

. C0(M0) exp
{
C(t

1
4 + ϵ)M4(t)

}
−βϵ2

∫ t

0

∫
Ω

ρ−1∇∆θt · ∇divvtdxdt.

(15)

The terms in blue are unsigned highest order terms which cannot be absorbed
by the left-hand side.
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3. Energy estimates of curlvϵ and weighted estimates of curlvϵt.

Note that v = u− κ
2∇θ and curl∇ = 0. To estimate curlv and its spatial

and time derivatives, it suffices to evaluate curlu and its derivatives.

Applying the operator “curl” on (2)2 and set w := curlv = curlu, we obtain

ρ(wt + u · ∇w)− µ∆w = F , in Ω× (0, T ], (16)

where F := F1 + F2 := [ρ, curl]ut + [ρu · ∇, curl]u with [a,b]:=ab-ba. Note
that the above equation is associated with the boundary condition

n×w|∂Ω×[0,T ] = 0. (17)

Lemma 4. For any t ∈ [0, T ], we have

∥curlu∥2L∞
t (H1) + ∥ϵcurlut∥2L∞

t (L2) + ∥curlu∥2
L2
t (H

2)
+ ∥ϵcurlut∥2L2

t (H
1)

. C0(M0) exp
{
Ct

1
4M3(t)

}
.

(18)
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4. High order estimates and weighted high order estimates of θϵt.
(the order of θϵt= the order of vϵt +1)
Lemma 5. For any t ∈ [0, T ] and ϵ ∈ (0, 1], we have

∥(√ρθt,∇θt)∥2L∞
t (L2) + ∥(∇θt,∆θt)∥2L2

t (L
2)

. M0 + (t
1
4 + ϵ)M3(t)+

∫ t

0

∫
Ω

divvt∆θtdxdt.
(19)

Lemma 6. For any t ∈ [0, T ] and ϵ ∈ (0, 1], we have

∥ϵ∆θt∥2L∞
t (L2) + ∥ϵ∇∆θt∥2L2

t (L
2)

. C0(M0) exp
{
C(t

1
4 + ϵ)M

7
2(t)

}
+ϵ2

∫ t

0

∫
Ω

ρ−1∇∆θt · ∇divvtdxdt.

(20)

Now we can balance the extra terms of high order derivatives in Step 2.
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5. High order spatial estimates of qϵ, vϵ and θϵ.
Lemma 7. For any t ∈ [0, T ] and ϵ ∈ (0, 1], we have

∥v∥2L∞
t (H2) . C0(M0) exp

{
C(t

1
4 + ϵ)M4(t)

}
, (21)

∥∇2q∥2L∞
t (L2) + ∥∇2divv∥2

L2
t (L

2)

. M0 + (t
1
8 + ϵ)M3(t)−β

∫ t

0

∫
Ω

∂i∇∆θ · ∂i∇divvdxdt.
(22)

Lemma 8. For any t ∈ [0, T ], we have

∥∆∇θ∥2L∞
t (L2) . M0 + t

1
2M

3
2(t), (23)

∥∂i∇∆θ∥2
L2
t (L

2)
≤C0(M0) exp{(t

1
4 + ϵ)M3(t)}

+

∫ t

0

∫
Ω

∂i∇∆θ · ∂i∇divvdxdt.
(24)
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Part IV. Future Works.

• The (multi-scale) singular limit of 3-D full N-S equations in bounded domains.

• Low Mach number limit of isentropic/non-isentropic N-S equations in 3-D
bounded domains with ill-prepared initial data (in preparation).

• The singular limits of multi-dimensional free boundary problems of N-S
equations (in preapration).
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Thank you!
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