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Aggregation equation with (degenerate) diffusion

In this talk, we consider

ρt = ∆ρm︸︷︷︸
local repulsion

+∇ · (ρ∇(W ∗ ρ))︸ ︷︷ ︸
nonlocal interaction

in Rd ,

where m ≥ 1, W is radially symmetric, and W (r) is
increasing. (So W is an attractive interaction potential).

An example is the Keller-Segel equation, which models the
collective motion of cells attracted by a self-emitted chemical
substance:

ρt = ∆ρ+∇ · (ρ∇(N ∗ ρ)),

where N = 1
2π log |x | is the Newtonian potential in R2.

The nonlinear diffusion term with m > 1 models the
anti-overcrowding effect.

(Boi-Capasso-Morale ’00, Topaz-Bertozzi-Lewis ’06)
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Free energy functional

The associated free energy functional plays an important role:

E [ρ] =
1

m − 1

ˆ
ρmdx︸ ︷︷ ︸

=:S[ρ] (entropy)

+
1

2

ˆ
ρ(ρ ∗W )dx︸ ︷︷ ︸

=:I [ρ] (interaction energy)

.

(When m = 1, the first term becomes
´
ρ log ρdx).

Formally taking time derivatives along a solution, we have

d

dt
E [ρ] = −

ˆ
ρ

∣∣∣∣∇(
m

m − 1
ρm−1 + ρ ∗W )

∣∣∣∣2 dx ≤ 0.

Formally, the solution is a gradient flow of E in the metric
space endowed by the 2-Wasserstein distance. (But rigorously
justifying this requires certain convexity of W ).
(Ambrosio-Gigli-Savare ’08)

Yao Yao (Georgia Tech) Aggregation equation with diffusion



Main questions

In order to understand the long-time dynamics, a key step is to
identify the stationary solutions.

Questions

1 For a given mass, does there exist a stationary solution?

2 Are they necessarily radially symmetric (up to a translation)?

3 If so, is it unique within the radial class?

4 If so, are they global attractors for the evolution equation?

Existence of stationary solution can be done by a
concentration-compactness argument (Lions ’84):

For power-law kernels W = |x |k/k , there exists a global
minimizer when m > 1− k/d .
For m > 2, there exists a global minimizer for any attractive
kernel (Bedrossian ’11)
For 1 ≤ m < 2, criteria of existence v.s. non-existence are
given in Carrillo–Delgadino–Patacchini ’18.
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Symmetric or not?

By Riesz rearrangement inequality, a global minimizer of E must
be radially decreasing. But can there be other stationary solutions?

Questions

Must stationary solutions be radially symmetric (up to a
translation)?

Here a stationary solution satisfies
m

m − 1
ρm−1 + W ∗ ρ = Ci in supp ρ.

For all attractive kernels W that is no more singular than
Newtonian kernel, we give a positive answer:

Theorem (Carrillo-Hittmeir-Volzone-Y. ’16, to appear in Invent. Math.)

Let ρs ∈ L1
+(Rd) ∩ L∞(Rd) be a stationary solution in the above

sense. Then ρs must be radially decreasing up to a translation.
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Sketch of the symmetry proof

Idea: Assume a stationary solution ρs is non-radial, we
perturb it using its continuous Steiner symmetrization:

ρs ρε

x1

Since
´
ρms =

´
(ρε)m, and interaction energy decreases in the

first order for a short time (need some work to check this!),

Em[ρε]− Em[ρs ] < −cε for all sufficiently small ε > 0,

where c > 0 depending on ρs and W .

If the equation has a rigorous gradient flow formulation, the
above argument implies that |∂E |[ρs ] ≥ c , directly leading to
a contradiction.
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Contrast with the attractive-repulsive kernel

If W is repulsive in short-range and attracting in long-range, then
stationary solutions to ρt = ∇ ·

(
ρ∇(W ∗ ρ)

)
can have many

non-radial patterns.

For example, when W ′(r) = tanh((1− r)a) + b with parameters
a, b, below are the patterns of stationary solutions for some a, b:
(Kolokolnikov-Sun-Uminsky-Bertozzi, ’11)
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Unique or not?

Now that all stationary solutions are known to be radially
decreasing (up to a translation), a natural question is whether
there is uniqueness within this class.

Questions

For attractive kernels, for a given mass, must stationary solutions
be unique?

Uniqueness results are only known in the following cases:

W = N is the Newtonian potential in Rd , and m is in the
diffusion dominated regime. (Lieb–Yau ’87)

W = N ∗h, where h ≥ 0 is radially decreasing. (Kim–Yao ’12)

W is an attractive Riesz potential, and m is in the diffusion
dominated regime. (Carrillo–Hoffmann–Mainini–Volzone ’18,
Calvez–Carrillo–Hoffmann ’19)

m = 2 and W is a C 2 attractive potential. (Burger–Di
Francesco–Franek ’13 and Kaib ’17)
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Uniqueness for m ≥ 2

Theorem (Delgadino–Yan–Y., ’19)

Let m ≥ 2 and W ∈ C 1(Rd \ {0}) be an attractive potential with
W ′(r) . r−d−1+δ for some δ > 0 for all r ∈ (0, 1). Then for any
given mass, there is at most one stationary solution in
L1

+(Rd) ∩ L∞(Rd) up to a translation.

Idea of proof (when the gradient flow structure is rigorous):

Due to the gradient flow structure, a stationary solution ρs
should be a critical point of the energy functional E .

For m ≥ 2, if ρ0, ρ1 are two radial stationary solutions with
the same mass, we will construct a curve {ρt}1

t=0 connecting
them, such that the energy along this curve is strictly convex.

Therefore ρ0 and ρ1 can’t be both critical points!

But how to find such an interpolation curve?
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Convexity along interpolation curve

So far convexity along an interpolation curve are known only for
the following kernels:

If W is convex, energy is convex along the geodesic in
2-Wasserstein metric.

If Ŵ (ξ) ≥ 0 for all ξ, energy is convex along the linear
interpolation in ρ0 and ρ1.

But a general attractive kernel does not satisfy either property.

Given any two radially decreasing ρ0, ρ1, we construct a novel
interpolation curve {ρt}1

t=0, such that:

1 I [ρ] =
´
ρ(ρ ∗W )dx is strictly convex along the curve for all

attractive potential W .

2 S [ρ] = 1
m−1

´
ρmdx is convex along the curve if and only if

m ≥ 2.

3 This curve is Lipschitz in 2-Wasserstein metric.
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Construction of the interpolation curve

Suppose ρ0, ρ1 are two radially decreasing step functions
having N horizontal layers with mass 1/N in each layer.

ρt is constructed by deforming each layer so that its height
changes linearly, and meanwhile adjust the width so that the
mass in each layer remains constant.

ρ0 ρ1ρt

a0

b0 b1

a1
(1− t)a0 + ta1

(1− t)b0 + tb1

mass=1/2

mass=1/2 mass=1/2

mass=1/2
mass=1/2

mass=1/2

Note that ρt is neither the linear interpolation between ρ0 and
ρ1, nor the geodesic in 2-Wasserstein metric.

For two radially decreasing function, the interpolation can be
seen as a N →∞ limit of the step-function case.
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Construction of the interpolation curve

For a radially decreasing function ρ with mass 1, define its
“height function with respect to mass” h(s) as the left figure:

mass = s h(s)

ρ(x)

mass = s h(s)

ρ(x)

(cnh′(s))−1/n

mass = ds h′(s)ds

h : [0, 1]→ [0, ‖ρ‖∞] is increasing and convex in s. Also, ρ
can be uniquely recovered from h (see the right figure):

ρ(x) =

ˆ 1

0
1B(0,(cdh′(s))−1/d )(x)h′(s)ds

Let h0, h1 be the height function for ρ0, ρ1. For t ∈ (0, 1), let

ht(s) = (1− t)h0(s) + th1(s),

and let ρt be determined by the height function ht .
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Convexity of energy

For the entropy, an explicit computation gives

S [ρ] =

ˆ
Rd

1

m − 1
ρmdx

=

ˆ max ρ

0

m

m − 1
hm−1|{ρ > h}|dh

=

ˆ 1

0

m

m − 1
h(s)m−1ds,

thus

d2

dt2
S [ρt ] = m(m − 2)

ˆ 1

0
(h1 − h0)2ht(s)m−3ds,

which is positive if and only if m > 2.

The interaction energy I [ρ] =
´
ρ(ρ ∗W )dx is strictly convex

along the curve for all attractive potential W , but the proof is
more technical.
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Non-uniqueness for 1 < m < 2

For all m < 2, our uniqueness proof fails. But is there really
non-uniqueness in this regime?

Theorem (Delgadino–Yan–Y., ’19)

Let 1 < m < 2. Given any attractive kernel W with a stationary
solution ρs , we can modify the tail of W (which remains attractive
after the modification), such that it gives an infinite sequence of
radially decreasing stationary solutions with the same mass.

It shows that the uniqueness result for m ≥ 2 is indeed sharp.

Key step in the construction: starting from a stationary
solution ρs , can we modify the tail of W so it leads to another
stationary solution with the same mass, while ρs remains
stationary?

ρs is known to be compactly supported for m > 1; call its
support B(0,R). We will modify W outside B(0, 2R). (so
that ρs remains stationary.)
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Modifying the tail

WR,k(r)

r2R 3R

W (r) slope ≡ k

Claim: If k > 0 is sufficiently small, then it leads to a different
stationary solution from ρs .

Reason: If k = 0, then W become an integrable attractive
kernel. For such kernel, a heuristic scaling argument shows a
sufficiently flat initial data should continue spreading for
1 ≤ m < 2.
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Scaling argument for integrable kernels

Assume that W is a integrable attracting kernel. As we replace ρ
by ρλ := λdρ(λx), the entropy and interaction energy scales as
follows as λ→ 0:

S [ρλ] = λ(m−1)dS [ρ] =
λ(m−1)d

m − 1

ˆ
ρmdx ,

I [ρλ]→ λd

2
‖W ‖L1

ˆ
ρ2dx + o(λd).

Thus we formally expect the following:

m = 2 (critical power): here both terms scale the same as
λ→ 0.

1 ≤ m < 2: E [ρλ] > 0 for sufficiently small λ > 0.
(i.e. It is energy favorable for a sufficiently flat initial data to
spread more.)

m > 2: E [ρλ] < 0 for sufficiently small λ > 0.
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Leading to non-uniqueness

Let 1 < m < 2. To rigorously justify the heuristics, we use a
standard energy estimate to track the evolution of L3−m norm
of a solution.

We show if 0 < k � 1 and ‖ρ0‖3−m ≤ ‖ρs‖3−m

2 , then

‖ρ(t)‖3−m is bounded by ‖ρs‖3−m

2 for all times, so ρ(t) can
never return to ρs .

t

‖ρ(t)‖3−m
‖ρs‖3−m

‖ρs‖3−m

2

‖ρ0‖3−m

But {ρ(t)}t>0 must remain tight, since W (r) ∼ kr for r � 1,
implying the first moment of ρ(t) is uniformly bounded in
time.

Uniform-in-time L3−m bounds + tightness + energy
dissipation ⇒ existence of a new stationary solution.
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Infinite sequence of stationary solutions

Finally, an iterative procedure allows us to construct a kernel
with an infinite number of stationary solutions (all with the
same mass, and radially decreasing).

R1

2R1

R2

2R2

W1(r) W2(r) W3(r)

r

R3

ρ1s

ρ2s
ρ3s

2R3

r
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Open questions

Questions

For a given mass, are stationary solutions unique (up to a
translation) when m = 1?

They are still radially decreasing, but both our uniqueness and
non-uniqueness proof fails in the m = 1 case.

Questions

When m > 2, does the dynamical solution converges to the unique
stationary solution with the same mass and center of mass as the
initial data?

Difficulty: need to show mass can’t escape to infinity.
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Thank you for your attention!
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