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Existence and asymptotic behavior of positive
solutions for a class of quasilinear Schrödinger

equations with parameters
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We discuss the following quasilinear elliptic equation

−∆u + V (x)u− γ[∆(1 + u2)
1
2 ]

u

2(1 + u2)
1
2

u = λk(x, u), (0.1)

where x ∈ RN , N ≥ 3, k is a nonlinear function including critical

growth and subcritical perturbation;

γ and λ are parameters.

the potential V (x) : RN → R is positive.
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1 Motivation

1) Consider quasilinear Schodinger equation

i∂tz = −∆z + W (x)z − k(x, z)−∆l(|z|2)l′(|z|2)z
(1.1)

Set z(t, x) = exp(−iEt)u(x), whereE ∈ R and u is a
real function, (1.1) can be reduce to the corresponding
equation of elliptic type:

−∆u + V (x)u−∆l(u2)l′(u2)u = k(x, u). (1.2)
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If we take

g2(u) = 1 +
((l(u2))′)2

2
,

then (1.2) turns into

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = k(x, u),

(1.3)
If we set g2(u) = 1 + 2u2, i.e., l(s) = s, we get the
superfluid film equation in plasma physics:

−∆u + V (x)u−∆(u2)u = k(x, u), x ∈ RN .

(1.4)
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If we set g2(u) = 1 + u2

2(1+u2), i.e., l(s) = (1 + s)
1
2, we

get the equation:

−∆u + V (x)u− [∆(1 + u2)
1
2]

u

2(1 + u2)
1
2

u = k(x, u),

(1.5)
which models the self-channeling of a high-power ul-
trashort laser in matter.
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Consider the quasilinear problem
g2(u) = 1 + 2u2, (l(s) = s):−∆u−∆(u2)u + V (x)u = k(x, u), x ∈ RN ,

u→ 0, as |x| → ∞,
The variational functional corresponding to (1.6) is

I(u) =
1

2

∫
RN

(1+2u2)|∇u|2dx+
1

2

∫
RN

V u2dx−
∫
RN

Kdx,

which not well defined in H1(RN).
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Consider following problem:−∆u−∆(u2)u + V (x)u = |u|p−2u, x ∈ RN ,

u→ 0, as |x| → ∞,

i) Exist positive solution if 4 < p < 2 · 2∗;
ii) No positive solution if p ≥ 2 · 2∗.
• Poppenberg et al.(see Calc. Var. PDE (2002)).

•Liu (J. Liu Wang and Wang, Comm. PDE 2004)

•Liu (J. Liu Wang and Wang, JDE 2003)
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Critical problem with subcritical perturbation:{
−∆u−∆(u2)u + V (x)u = |u|22∗−2u + λ|u|p−2u,

u→ 0, as |x| → ∞, x ∈ RN ,
(1.6)

Moameni (JDE (2006)) considered the related singu-
larly perturbed problem and obtained a positive radial
solution in the radially symmetric case.
João Marcos et al, (JDE(2010)): An existence result
of positive solutions was obtained by via Mountain-
Pass lemma.
Liu, Liu and Wang, (JDE (2013)): An existence result
of positive solutions was obtained by via perturbation
method.
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Recently, we discussed the sign-change solutions for
critical problem (1.6)
The following theorem is established for the existence
of k-node solutions of problem (1.6), (JMP, 2013).

Theorem 1.1 Assume that V (x) satisfies (V1). Then
for all λ > 0, problem (1.6) exists at least one pair of
k-node solutions if one of the following hold:
i) N ≥ 6, 4 < q < 22∗ and λ > 0,
ii) 3 ≤ N < 6, 2(N+2)

N−2 < q < 22∗ and λ > 0;
iii) 3 ≤ N < 6, 4 < q ≤ 2(N+2)

N−2 and λ > 0 large.
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Consider the general quasilinear elliptic problem
(g(u) is a general function)

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(u),

(1.7)
The problem with subcritical growth:
1) Existence of positive solution is obtained by Shen
and Wang.

2) Existence of k-node solutions is obtained by Deng,
Peng and Wang.
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The problem with critical growth:
We find that the critical exponents for quasilin-
ear problem (1.7) with general g(s) are α2∗ if

lim
t→+∞

g(t)

tα−1
= β > 0 for some α ≥ 1. Consider

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + a(x)u

= |u|α2∗−2u + |u|p−2u, x ∈ RN ,
(1.8)

where 2∗ = 2N
N−2.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 1.2 (Deng, Peng and Yan, JDE 2016)
Problem (1.8), exists at least one positive solution if

either N ≥ max
{

2 + 4α
p−(α+γ+), 4

}
and p > 2α,

or N = 3 and p > 5α+ γ+, where γ+ = max {γ, 0} .
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Remark 1): The case for p ≤ 2α:

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + u

= |u|α2∗−2u + λ|u|p−2u, x ∈ RN ,
(1.9)

Theorem 1.3 (Y. Deng, W. Huang and S. Zhang)
Problem (1.9) exists a positive ground state solution
if one of the following assumptions hold:

(1) p > α(N+2)
N−2 + γ+ for 3 ≤ N < 6 and λ > 0;

(2) p > max{α(N+2)
N−2 + γ+, 2α} for N ≥ 6 and λ > 0;

(3) 2 < p < α2∗ for N ≥ 3 and λ > 0 sufficiently
large.
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Remark 2): α2∗ = 2αN
N−2 behaves like a critical expo-

nent since for

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + a(x)u = |u|q−2u,

we can deduce the nonexistence of the positive solu-
tion in H1(RN) with

∫
RN g

2(u)|∇u|2dx < ∞ under
the assumption (g1) if q ≥ α2∗ and x · ∇a(x) ≥ 0 in
RN .
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The assumption for g(t):

(g1) g ∈ C1(R) is an even positive function and g′(t) ≥
0 for all t ≥ 0, g(0) = 1. Moreover, there exist
some constants α ≥ 1, β > 0

and γ ∈ (−∞, α) such that

g(t) = βtα−1 + O(tγ−1) as t→ +∞,
(α− 1)g(t) ≥ g′(t)t, ∀ t ≥ 0;

(1.10)
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Note that the the second inequality of (1.10) on the
assumption (g1) is not satisfied if we take g2(u) =

1 + u2

2(1+u2) (i.e., l(s) = (1 + s)
1
2) which correspond

to problem (1.5). Since

lim
u→+∞

g(u) = lim
u→+∞

√
1 +

u2

2(1 + u2)
=
√

3/2,

we obtain, in this case, that α = 1 and β =
√

3/2 and
hence the corresponding critical exponent is α2∗ = 2∗.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Consider g2(t) = 1 + t2

2(1+t2), (l(s) = (1 + s)
1
2 ) Take k(x, u) = |u|p−2u

−∆u− [∆(1 + u2)
1
2 ]

u

2(1 + u2)
1
2

u + V (x)u = |u|p−2u, (1.11)

The variational functional corresponding to (1.11) is

I(u) =
1

2

∫
RN

(1 +
u2

2(1 + u2)
)|∇u|2dx +

1

2

∫
RN

V u2dx− 1

p

∫
RN

|u|pdx,

which is well defined in H1(RN), but not smooth.

i) Exist positive solution if 12− 4
√

6 < p < 2∗ i.e. (2.2 < p < 2∗) ;

ii) No positive solutions if p ≥ (6− 2
√

6)2∗ ≈ 1.1× 2∗.

Questions:

1) 2∗-critical exponent?

2) Existence for p ∈ (2, 12− 4
√

6)?

3) Existence for p ∈ (2∗, (6− 2
√

6)2∗)?



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

To consider Eq.(1.11) when p ∈ (2, 12 − 4
√

6), we
assume that the potential V ∈ C1(RN ,R) satisfies the
following conditions:

(V1) 0 < V0 ≤ V (x) ≤ V∞ := lim
|x|→∞

V (x) for all x ∈

RN ;

(V2) there exists a function φ ∈ L2(RN) ∩ W 1,∞(RN)

such that

|x∇V (x)| ≤ φ2(x), ∀x ∈ RN .
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Theorem (Y. Deng and W. Huang):
Assume (V1) and (V2) hold. Then problem (1.11) ex-
ists at least one positive solution if either p ∈ (2, 2∗)

for N ≥ 4 or p ∈ (4, 6) for N = 3.

Question: Assumption (V2)? Necessary?
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2 Main results

We discuss the following quasilinear elliptic equation

−∆u + V (x)u− γ[∆(1 + u2)
1
2 ]

u

2(1 + u2)
1
2

u = λ|u|p−2u, (2.1)

where x ∈ RN , N ≥ 3, p > 2;

γ and λ are parameters, the potential V (x) : RN → R is positive.
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Theorem 2.1 Assume that (V1) and p > 2, N ≥ 3. Then, the following statements hold:

(1) for all λ > 0 and p ∈ (2, 2∗), equation (2.1) has a positive classical solution if γ ∈ (0, γ∗),

where

γ∗ =


16(p−2)
(p−4)2 , if p < 4,

+∞, if p ≥ 4

;

(2) for all γ > 0 and p ∈ (2, 2∗), equation (2.1) has a positive classical solution if λ ∈

(λ∗,+∞), where

λ∗ = (p− 2)
2−p
2

(
2∗ − p+ 2

2

)2(2∗−p+2)(p−2)

(2∗−p)2

2
7·2∗−2−6p
2(2∗−p) S−

(2∗−2)(p−2)
2(2∗−p) (2 + γ)

p(2∗−2)
2(2∗−p)γ

p−2
2

and S is the best Sobolev constant of inequality S‖u‖22∗ ≤ ‖∇u‖22, u ∈ D1,2(RN).

(3) for all γ, λ > 0, there exists a constant p∗ ∈ [2∗, min{9+2γ
8+2γ ,

2γ+4−2
√
4+2γ

γ }2∗) such that

equation (2.1) has no positive solution if p ∈ [p∗,+∞) and∇V (x) · x ≥ 0 in RN .
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Theorem 2.2 Suppose V (x) = µ = constant > 0, p ∈ (2, 2∗), then

the corresponding solution uγ,λ of equation (2.1) obtained in Theorem

2.1 is spherically symmetric and monotone decreasing with respect to

r = |x|. Passing to a subsequence if necessary, we have

uγ,λ → uλ in H2(RN) ∩ C2(RN) as γ → 0+,

where uλ is the ground state of semilinear problem

−∆u + µu = λ|u|p−2u, u ∈ H1(RN). (2.2)
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3 Sketch of Proof

The energy functional corresponding to (2.1) is

Ĩγ,λ(u) = 1
2

∫
RN

(
1 + γu2

2(1+u2)

)
|∇u|2dx + 1

2

∫
RN V (x)u2dx

−λ
p

∫
RN |u|pdx.

Denote g̃γ(t) =
√

1 + γt2

2(1+t2), we have

Ĩγ,λ(u) = 1
2

∫
RN g̃γ(u)|∇u|2dx + 1

2

∫
RN V (x)u2dx

−λ
p

∫
RN |u|pdx.

g̃γ(t) does not satisfy the assumption: (α−1)g̃(t) ≥ g̃′(t)t ≥ 0, ∀ t ≥ 0

since α = 1.
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Step 1: Find a new function gγ(t) such that gγ(t) = g̃γ(t) if t ∈ [0, δγ)

and gγ(t) satisfy p−2
2 g(t) ≥ g′(t)t ≥ 0, ∀ t > 0;

gγ(t) =

√√√√1

2

(
1 +

γt2

1 + t2

)
η(t) +

1

2
,

where η(t) is a spatial function satisfying either the following (η1) or

(η2):
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(η1) η(t) ≡ 1, for all t ∈ R;

(η2) η(t) ∈ C∞0 (R, [0, 1]) is a cut-off function satisfying

η(t)



= η(−t), if t ≤ 0,

= 1, if 0 ≤ t ≤ δγ := 1
4

√
p−2
γ ,

∈ (0, 1), if 1
4

√
p−2
γ < t < 1

2

√
p−2
γ ,

= 0, if t ≥ 1
2

√
p−2
γ ,

(3.1)

where p ∈ (2, 2∗). Moreover, it also satisfies

−σ
√
η(t) ≤ η′(t)t ≤ 0, for all t ∈ R, (3.2)

where σ is a positive constant independent of γ.
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Step 2: By changing variables, reduce the problem to Semilinear one;

The energy functional corresponding to gγ is

Iγ,λ(u) = 1
2

∫
RN gγ(u)|∇u|2dx + 1

2

∫
RN V (x)u2dx

−λ
p

∫
RN |u|pdx.

Introduce a change of known variables v = Gγ(u) =

∫ u

0

gγ(t)dt,

Then Iγ,λ(u) can be rewritten by

Jγ,λ(v) =
1

2

∫
RN

(
|∇v|2 + V (x)|G−1γ (v)|2

)
dx

−λ
p

∫
RN

|G−1γ (v)|pdx.

All nontrivial critical points of Jγ,λ are the nontrivial solutions of

−∆v + V (x)
G−1γ (v)

gγ(G−1γ (v))
−
λ|G−1γ (v)|p−2G−1(v)

gγ(G−1γ (v))
= 0. (3.3)
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Step 3: To find the positive solution vγ,λ for semilinear problem (3.3);

Step 4: To estimate vγ,λ;

||vγ,λ||∞ ≤
(

2∗ − p + 2

2

)2(2∗−p+2)

(2∗−p)2

2
2·2∗−2−p
2(2∗−p) S−

2∗−2
2(2∗−p)

(
1

2 + γ

) p(2∗−2)
2(2−p)(2∗−p)

λ
1

2−p.

Step 5: To prove Theorem 1;

Proof of Theorem 2.1–(1): For all γ > 0, if p ∈ (2, 2∗) and γ ∈ (0, γ∗),

we take η(t) satisfying (η1). In this case, g̃γ(t) = gγ(t). It follows that

uγ,λ = G−1γ (vγ,λ) > 0 is a solution of (2.1).
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Proof of Theorem 2.1–(2): From Step 4, for any γ > 0, we set K =(
2∗−p+2

2

)2(2∗−p+2)

(2∗−p)2
2

2·2∗−2−p
2(2∗−p) S−

2∗−2
2(2∗−p)

(
1

2+γ

) p(2∗−2)
2(2−p)(2∗−p)

and choose λ∗ = dγ
p−2
2

with d = (
√
p−2

4
√
2K

)2−p such that

||uγ,λ||∞ = ||G−1γ (vγ,λ)||∞

≤
√

2||vγ,λ||∞ ≤
√

2Kλ
1

2−p ≤ 1

4

√
p− 2

γ
, ∀λ ∈ (λ∗,+∞).

In this case, we take η(t) satisfying (η2). It follows from above estimate

that g̃γ(t) = gγ(t) if λ ∈ (λ∗, +∞) and hence uγ,λ = G−1γ (vγ,λ) > 0 is a

solution of (2.1).
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Proof of Theorem 2.1–(3): We are going to find a constant

p∗ ∈ [2∗, min{9 + 2γ

8 + 2γ
,

2γ + 4− 2
√

4 + 2γ

γ
}2∗)

such that problem (2.1) has no positive solution u ∈ H1(RN) for p ≥ p∗

if x · ∇V (x) ≥ 0 in RN . It suffices to prove that problem (3.3) has no

positive solution.
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Suppose by contrary that v ∈ H1(RN) is a positive solution of (3.3), it

follows from the Pohozaev identity that

− 1

2

∫
RN

(x · ∇V (x))|G−1γ (v)|2dx =

∫
RN

K(G−1γ (v))dx

=:

∫
{x∈RN : 0≤u< 1

λ
1
p−2
}
K(u)dx +

∫
{x∈RN :u≥ 1

λ
1
p−2
}
K(u)dx,

(3.4)

where u = G−1γ (v) and

K(u) =
(N − 2)λ

2

Gγ(u)up−1

gγ(u)
− Nλ

p
up +

N

2
u2 − N − 2

2

Gγ(u)u

gγ(u)
.

The assumption x · ∇V (x) ≥ 0 implies that

−1

2

∫
RN

(x · ∇V (x))|G−1γ (v)|2dx < 0.
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Therefore, to complete the proof of our theorem 2.1–(3), it suffices to

verify that the right hand side of (3.4) is nonnegative.

Using Lemma 2.1, we get K(u) > 0 if p ≥ 2γ+4−2
√
4+2γ

γ 2∗ > 2∗. Noting

that 2γ+4−2
√
4+2γ

γ → 1 as γ → 0. Hence, we only need to consider the

case p ∈ [2∗, 2γ+4−2
√
4+2γ

γ 2∗).
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Noting that

K(u) ≥ (N − 2)λ

2

Gγ(u)up−1

gγ(u)
− Nλ

2∗
up +

N

2
u2 − N − 2

2

Gγ(u)u

gγ(u)

=
N − 2

2

u

gγ(u)

(
ugγ(u)−Gγ(u)

)(
1− λup−2

)
+ u2,

(3.5)

we see ∫
{x∈RN : 0≤u< 1

λ
1
p−2
}
K(u)dx > 0. (3.6)
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Observing (3.5), we can choose t̄ > 1

λ
1
p−2

(which can be independent of

p) such that K(t) ≥ 0, ∀ t ∈ [ 1

λ
1
p−2
, t̄]. Now, by direct calculation, we

see
tg′γ(t)

gγ(t)
=

1

2t−2 + (4 + γ) + (2 + γ)t2

≤ 1

2t̄−2 + (4 + γ) + (2 + γ)t̄2
=: η(t̄) ≤ 1

8 + 2γ
, ∀ t ≥ t̄.

Hence, if we choose p ≥ (1 + η(t̄))2∗ =: p∗, we find

K(u) =
Nλup−1

pgγ(u)

( p
2∗
Gγ(u)− ugγ(u)

)
+
N − 2

2

(
ugγ(u)−Gγ(u)

)
+ u2

>
Nλup−1

pgγ(u)

[
(1 + η(t̄))Gγ(u)− ugγ(u)

]
≥ 0,

which combined with (3.6) implies that the right hand side of (3.4) is

positive.
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Remark: Since we can not find the explicit form of Gγ(t), it is difficult

for us to give the exact value of t̄, below which K(u) in (3.5) is non-

negative. However, we guess that t̄ there should be +∞, which implies

that p∗ is exactly 2∗, the critical exponent.
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Thank you for your
attention !
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